
Supporting information for: Circular swimming motility and disordered hyperuniform

state in an algae system

Mingji Huang,1 Wensi Hu,2 Siyuan Yang,1 Quan-Xing Liu,2, 3 and H. P. Zhang1, 4, ∗

1School of Physics and Astronomy and Institute of Natural Sciences,
Shanghai Jiao Tong University, Shanghai, China

2State Key Laboratory of Estuarine and Coastal Research,
School of Ecological and Environmental Sciences,

East China Normal University, Shanghai 200241, China
3Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Center for Global Change and Ecological Forecasting,

School of Ecological and Environmental Sciences,
East China Normal University, Shanghai 200241, China

4Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
(Dated: March 31, 2021)

I. INDIVIDUAL CELL MOTILITY

A. Diurnal motility pattern

We culture E. voratum under periodic illuminations,
with 12-hour light-on and 12-hour light-o�. During the
24-hour cycle, we measured the ratio of actively swim-
ming cells in population every 3 hours. Results in Fig. S1
clearly shows a 24-hour diurnal pattern for cell motility
[1]. Percentage of motile cells at the bottom solid-liquid
interface reaches a maximal value about 8 hours after
the light is turned on. Our experiments are carried out
during the period of 8-12 hours after the light is turned
on.

Figure S1. Ratio of motile cells on the liquid-glass interface at
di�erent phases of diurnal cycles. Error-bars represent varia-
tions among 12 di�erent samples.
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Figure S2. (A) Probability distribution functions of radius,
angular and linear speed of circular cell motions in a sample
with a density of 198 mm−2. (B) Mean and standard devia-
tion of these three quantities in samples with cell density of
41, 77, 198, and 369 mm−2.

B. Distribution of motility characteristics

We quantify circular cell motion, cf. Fig. 1C, by its
radius, angular and linear speed. Probability distribu-
tion functions of these three quantities in a sample with
a density of 198 mm−2 are shown in Fig. S2A. All dis-
tributions can be �tted by a normal distribution, from
which we extract the mean and standard deviation. In
Fig. S2B, we plot the mean and standard deviation
extracted from di�erent samples. Results are approxi-
mately independent of cell density; the mean values for
radius, angular and linear speed are 11.6 µm, 16.2 rad/s,
and 180 µm/s, respectively.
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Figure S3. (A) Schematic illustrations of a cycling cell segmenting close to a vertical wall and of a dead cell sedimenting far
away from a wall. (B) Distribution of sedimenting velocities in these 2 cases.

C. Gap between cell and interface

To quantitatively reproduce measured �ow �eld in Fig.
2A, we need to know the gap between the cycling cell
and the interface. For that, we measure sedimentation
speed of cycling cells near a vertical liquid-glass inter-
face, and compare the result to sedimentation speed of
dead cells in the bulk �uid, cf. Fig. S3A. Probability
distribution functions of two quanti�es are shown in Fig.
S3B. Cells sediment signi�cantly slower near the inter-
face: 〈U〉 = 0.66 µm/s and 〈U∞〉 = 1.70 µm/s; this is
presumably caused by the increase of hydrodynamic drag
near a no-slip boundary [2]. We assume swimming of cy-
cling cells doesn't a�ect its sedimentation over a long
distance and treat the cell as a passive sphere with a
radius of Rcell. Under these assumption, Low-Reynolds
number hydrodynamic theory predicts the ratio of two
sedimentation speeds is determined as follows [2]:
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where l is the distance from the sphere center to the
boundary. From this equation and measured sedimenta-
tion speeds, we have Rcell/l = 0.943. For a cell of radius
Rcell = 5.0 µm, we have l = 5.3 µm, which leads to a gap
of 0.3 µm.

D. Non-circular motion and �agellar dynamics

Fig. S4 shows how a cell transits from circular to non-
circular motion at the air-liquid interface. In the �rst

half second (0-0.5 s), the cell follows a circular trajec-
tory and its longitudinal �agellum beating at the normal
(side-way) position, as shown in Fig. S4B. However,
starting at three instants (0.55 s, 0.75 s, and 1.00 s), the
cell swims linearly and the longitudinal �agellum extends
to the backside of the cell. This shows that the transi-
tion between circular and non-circular motion is strongly
correlated to the beating position of the longitudinal �ag-
ellum, which is possibly controlled by noises in �agellar
oscillation [3�5].

E. Statistics of non-circular motion

The transition from circular to non-circular motion can
be identi�ed by the following procedure from instanta-
neous cell position, r (t). Taking the trajectory in Fig.
S5A as an example, we �rst compute the tangential and
normal components of the cell acceleration from r (t),
then project the trajectory onto a phase-plane of these
two acceleration components, which are normalized by
their respective standard deviations. As shown in Fig.
S5B, data points corresponding to circular motion are
clustered inside a dashed circle in the plane and those
from non-circular motion signi�cantly deviate from the
circular values, i.e. outside of the circle. Quantitatively,
we plot the acceleration deviation from the circular value
(center of the dash circle) as a function of time in the
lower panel of Fig. S5C. A cell is considered to be in cir-
cular motion if its acceleration deviation remains below a
threshold of 6 for at least 0.4 sec; the period between two
adjacent circular motion phases is considered to be non-
circular if cells travel more than 30 µm (approximately
the circular �donut� diameter, cf. Fig. 3A) during the
period. Circular and non-circular phases, identi�ed by
the above procedure, are colored in blue and orange in
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Figure S4. Transition from circular to non-circular motion.
(A) Cell trajectory for one second. Color code represents
time. Cell positions at every 0.05 s are marked by red points;
shapes of the longitudinal �agellum at these marked positions
are shown in (B).

Fig. S5A-C, respectively.

We apply the above procedure to a data set obtained at
cell density of 198 mm−2, which is 900 sec long and con-
tains 4855 cell trajectories; 5137 events of non-circular
motion are identi�ed. This means that, on average, non-
circular motion occurs to a cell at a rate of 1.2×10−3 s−1.
Probability distributions of temporal duration and spa-
tial displacement of non-circular motion are plotted in
Fig. S5D-E, which show a power-law scaling with an ex-
ponent of −3 for large values. Fig. S5D also shows that
non-circular motion lasts less than 10 sec, which is the
typical time step in particle-based simulations; thus, in
simulations, we assume that non-circular motion occurs
in a single time step, see main text for details. Green
dashed line in Fig. S5E represents the distribution of
non-circular motion distance produced by our model, us-
ing parameters corresponding to cell density of 198 mm−2

in Table SIII.

II. HYDRODYNAMIC MODEL

A. Method of regularized Stokeslets

In the method of regularized Stokeslets, �uid �ow
around a swimmer is generated by N localized forces f (i)

at r(i) =
(
x(i), y(i), z(i)

)T
on the swimmer surface:

v (r) =

N∑
i=1

S
(
r − r(i)

)
f (i), (S2)

where S (r) is the regularized Green's function for
the velocity [6, 7]. To guarantee the free-slip bound-
ary condition at the interface z = 0, S (r) includes
the contributions from the localized force at r(i) =(
x(i), y(i), z(i)

)T
and its mirror image at Pr(i) =(

x(i), y(i), −z(i)
)T

, where P = I − 2ẑẑ is a re�ec-
tion operator reversing the sign of z-component; S (r)
has the following expression:

S
(
r − r(i)

)
= S0

(
r − r(i)

)
+ S0

(
r − Pr(i)

)
P , (S3)

where

S0 (r) =
1

8πη

(
|r|2 + 2ε2

)
I + rr(

|r|2 + ε2
)3/2

is a regularized Oseen tensor with a regularization param-
eter ε [8, 9]. Setting r = r(i) in Eq. (S2), we can compute
�ow v

(
r(i)
)
at the location of force f (i) on the cell sur-

face. Because of no-slip boundary condition, v
(
r(i)
)
can

also be determined by the swimmer motion:

v
(
r(i)
)

= vc + ω ×
(
r(i) − rc

)
+ v(i)

s ,

where rc is the centroid of the swimmer, vc and ω are
linear and rotational velocities of the swimmer, and the

swimming stroke v
(i)
s is the velocity of surface elements in

the body-�xed frame. Combining these two expressions
for v

(
r(i)
)
, we have

N∑
j=1

S
(
r(i) − r(j)

)
f (j) = vc + ω ×

(
r(i) − rc

)
+ v(i)

s .

(S4)
Eq. (S4) gives us 3N linear equations for 3N + 6 un-
knowns: f (i),vc and ω . To close the system, we use the
following (six) constraints of force and torque balances

N∑
i=1

f (i) = 0, (S5)

N∑
i=1

(
r(i) − rc

)
× f (i) = 0. (S6)
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Figure S5. A trajectory containing circular (blue) and non-circular (orange) motion in real space (A) and in phase plane of
normal and tangential acceleration components (B). Dashed circle represents a threshold used to separate circular and non-
circular motion, see SI text for details. (C) Temporal record of y-coordinate and acceleration deviation of cell motion in (A).
(D-E) Probability distributions of temporal duaration and spatial distance of non-circular motion. Green dashed line in (E)
represents simulation results with model parameters corresponding to cell density of 198 mm−2 in Table SIII.

Eqs. (S4-S6) form a closed linear system from which f (i),
vc, and ω can be solved. Each quantity is linearly related
to swimming stroke vs. We denote these linear relations
as

M f vs = f , (S7)

Mvvs = vc, (S8)

Mωvs = ω, (S9)

where force vector f ≡

 f (1)

...
f (N)

 , stroke velocity vector

vs ≡

 v
(1)
s

...

v
(N)
s

, M f , Mv and Mω are matrices.

After localized forces are obtained from Eq. (S7), we
can compute �ow velocity (u) at any given positions via
Eq. (S2):

Suf = SuM f vs = u, (S10)

where Su is the regularized Stokeslets matrix depending
on the location of interest and r(i).

B. Infer swimming stroke from experimental

measurements

Eqs. (S8-S10) establish linear relations that connect
swimming stroke vs to swimmer motion (vc and ω) and
generated �ow �eld (u). We use these relations to infer
unknown part of the swimming stroke (transverse �agel-
lum, cf. Fig. 1A) from swimmer motion (vc and ω) and
measured �ow �eld (u, only the in-plane component of
�ow �eld) in Fig. 2A.

To do that, we �rst discretize the swimmer surface.
As shown in Fig. 2C, the longitudinal �agellum is rep-
resented by a string of Nf = 18 stokeslets and there are
Nb = 700 stokeslets uniformly covering the spherical cell
surface to model the e�ect of the transverse �agellum.
On sphere, distance between nearest surface elements is
about 0.65 µm; meanwhile regularization parameter ε is
chosen to be 0.25 µm. Velocities of these Stokeslets, rel-
ative to the center of spherical swimmer body, de�ne the
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Figure S6. Mean in-plane �ow �eld measured in experiment (A) and regularized Stokeslet model (B). Cell symmetry axis is
oriented along the X axis and an angle from X direction is de�ned as φ in (B). (C) An optimal slip �ow pattern obtained from
our numerical procedure (see Text for details). The air-liquid interface is shown by a green line. (D) Angular dependence of the
magnitude of the in-plane velocity at two radii, 30 µm and 40 µm dashed lines in (A) and (B), from experiments (symbols) and
numerics (lines). Angular dependence of far-�eld �ow speed (at the radius of 2000 µm, computed from regularized Stokeslet
calculation) is shown in the inset; the far-�eld �ow is dominated by a pair of orthogonal pusher-puller dipoles (see SI for detail).
Experimental data are measured from tracer motion around a cell with a swimming speed 197 µm/s and a radius 8.8 µm .

swimming stroke vs =

(
vb

vf

)
:

vb ≡

 v
(1)
b
...

v
(Nb)
b

 ≡
 v

(1)
s

...

v
(Nb)
s

 ,

vf ≡

 v
(1)
f
...

v
(Nf )
f

 ≡
 v

(Nb+1)
s

...

v
(N)
s

 ,

where the longitudinal �agellum motion vf can be mea-
sured experimentally but the slip �ow pattern on cell

body vb is unknown (see main text). To get explicit
equations for vb, we need to rewrite Eq. (S8), Eq. (S9),
and Eq. (S10) . Starting with Eq. (S8), we partitionMv

into two blocks
(
Mv

b Mv
f

)
and re-write this equation:

Mvvs =
(
Mv

b Mv
f

)( vb

vf

)
= Mv

b vb + Mv
f vf = vc.

(S11)
Similarly, partitioning Mω in Eq. (S9) into blocks(
Mω

b Mω
b

)
leads to

Mω
b vb + Mω

f vf = ω. (S12)

After partitioning M f into
(
M f

b Mf
f

)
, we rewrite
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(S10) as

Suf = SuM f vs = SuM f
bvb + SuM f

f vf = u. (S13)

A fourth constraint equation for vb arises from non-
penetrative boundary condition on the sphere surface:

Kvb = 0, (S14)

with

K =


(
r(1) − rc

)T
. . . (

r(Nb) − rc
)T
 ,

a Nb × 3Nb diagonal matrix.
We seek vb to satisfy four constraints, Eqs. (S11-S14),

which can be written in the following form
Mv

b
Mω

b

SuM f
b

K

vb =


vc −Mv

f vf

ω −Mω
f vf

u− SuM f
f vf

0

 , (S15)

or in a compact form as

Avb = b, (S16)

with A =


Mv

b
Mω

b

SuM f
b

K

 and b =


vc −Mv

f vf

ω −Mω
f vf

u− SuM f
f vf

0

.

As shown in Fig. 2A, measured in-plane velocity
�eld u is experimentally measured on a grid with 3200
points. Therefore, Eq. (S16) represents 7106 [3(cell
velocity)+3(cell angular velocity)+3200 × 2(two compo-
nents of u �eld)+700( non-penetrative boundary condi-
tion)] linear equations for 2100 (3× 700) unknowns (vb).
To solve this over-constrained linear problem, we used
Moore-Penrose inverse:

vb = A+ (t) b,

where A+ (t) is Moore-Penrose inverse of A with a toler-
ance t. Moore-Penrose inverse is a kind of pseudo-inverse
based on singular value decomposition. We empirically
choose the tolerance value in Moore-Penrose inverse algo-
rithm to be the 714th singular value ofA. With tolerance
around the chosen value, the algorithm produces excel-
lent �ts for the �ow �eld and smooth slip-�ow pattern on
the sphere, as shown by results in Fig. 2 and Fig. S6.

C. Stalled force and torque generated by �agella

We use the Regularized Stokeslet method to compute
contributions of two �agella to stalled force and torque.

For that, we set cell translation and rotation velocities to
be zero, vc = 0 and ω = 0, and Eq. (S4) becomes

N∑
j=1

S
(
r(i) − r(j)

)
f (j) = v(i)

s ,

which can also be denoted as

Sf = vs =

(
vb

vf

)
.

Forces that the cell acts on �uid can be solved out

f ≡
(

fb

ff

)
= S−1

(
vb

vf

)
,

where fb and ff are forces generated by transverse and
longitudinal �agellum, respectively. From fb and ff , we
can compute total force and torque contributions by two
�agella; results are shown in in Table SI.

transverse longitudinal total

force
(pN)

X 14.4 −1.1 13.3

Y −1.2 −0.5 −1.7

Z −0.4 0.3 −0.1

torque
(µm · pN)

X −2.6 1.5 −1.1

Y −0.4 −1.1 −1.5

Z 73.8 29.4 103.2

Table SI. Stalled force and torque contributions from two sets
of �agella.

D. Far-�eld �ow scaling in the cell plane

We focus on �uid �ow in the horizontal plane where
cell centers are, cf. Fig. 2B . In Fig. S7, we plot angular
pro�les of radial and tangential velocity components at
the radius r = 1000 µm calculated by Eq. (S10); such
pro�les can be decomposed into low-order Fourier com-
ponents. After carrying out similar Fourier analysis on
pro�les at di�erent radius, we found that coe�cients for
Fourier components decay with radius r in power laws
and we can parameterize the far-�eld �ow as

V far
r (r, φ)

vc
≈A0

cos (φ− ψ0)

r3
+A11

3 cos (φ− ψ1)
2 − 1

r2

+A12
3 sin (φ− ψ1)

2 − 1

r2
, (S17)

V far
t (r, φ)

vc
≈B0

1

r4
+B1

sin (φ− ξ1)

r3
+B2

sin 2 (φ− ξ2)

r4

+B3
sin 3 (φ− ξ3)

r3
+B4

sin 4 (φ− ξ4)

r4
.

(S18)
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Parameter values for Fourier coe�cients and phase are
listed in Table SII. In Eq. (S17) , A11 and A12 terms rep-
resent two perpendicular force-dipoles and A0 term rep-
resents a mixed contribution of source-dipole and force-
quadrupole; force-dipole terms dominate in the far �eld,
as shown in the insets of Fig. 2D and Fig. S6D. In Eq.
(S18) , B0 term represents contributions from a pair of
rotlet-dipole.
We average Eqs. (S17) and (S18) along a circular tra-

jectory of radius a, cf. Fig. 5A and obtain the following
expressions for period-averaged �ow in far �eld:

V̄ far
R (R)

vc
=
A11 +A12

2R2
+ O

(
1

R3

)
, (S19)

V̄ far
ϕ (R)

vc
=A0

a cosψ0

2R4
+ (−A11 +A12)

3a2 sin 2ψ1

8R4

(S20)

+B0
1

R4
−B1

a cos ξ1
R4

+ O

(
1

R5

)
.

Using parameters in Table SI and setting a = 10 µm, we
�nd that Eq. (S20) is dominated by A0 term. Therefore,
we can rewrite the far-�eld �ow as

V̄ far (R; vc) = vc

( p
R

)2
R̂ + vc

( q
R

)4
ϕ̂, (S21)

where we have

p ≡
(
A11 +A12

2

)1/2

= 1.664 µm,

q ≡
(
A0

a cosψ0

2

)1/4

= 7.999 µm.

As for the full data of period-averaged �ow from R = 30
to 2000 µm shown in Fig. 5A, they can be well �tted by
adding higher order terms to Eq. (S21), which are

V̄R (R) = vc

(
1.646 µm

R

)2

+ vc

(
3.269 µm

R

)3

,

V̄ϕ (R) = vc

(
7.733 µm

R

)4

+ vc

(
6.688 µm

R

)5

; (S22)

these formulas can be used for the calculation of interac-
tion in the simulation, as shown in Fig. S12.

III. MEAN FLOW AROUND A SPINNING

FORCE DIPOLE

In this subsection, we calculate the average �ow �eld
generated by a force dipole that lies and spins in the
x-y plane. For that, let us �rst consider a force dipole
locating at the origin and pointing at z-axis; the dipole

Figure S7. Analysis of instantaneous �ow �eld in the far �eld.
Fourier decomposition of radial (A) and tangential (B) com-
ponents at the radius r = 1000 µm. Thick black lines are re-
sults from the regularized Stokeslet method and thin colored
lines are Fourier components in Eq. (S17) and Eq. (S18).

A0 −900.4 µm3 ψ0 −0.4291

A11 8.419 µm2

ψ1 0.5032
A12 −2.885 µm2

B0 −6.9 µm4

B1 −66.07 µm3 ξ1 0.9855

B2 1736. µm4 ξ2 −0.4741

B3 27.99 µm3 ξ3 −0.3337

B4 1204. µm4 ξ4 −0.0210

Table SII. Values for coe�cient of Fourier components in Eq.
(S17) and Eq. (S18)

generates �ow �eld as

u (r) =
p

r2
(
3 cos2 θ − 1

)
r̂,

=
p

(x2 + y2 + z2)
3/2

(
3

z2

x2 + y2 + z2
− 1

) x
y
z

 ,

(S23)

where θ is the polar angle between r and z-axis. We next
introduce a rotation operation O (ξ) rotating the dipole
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direction from the z-axis to the x-y plane, pointing at(
cos ξ, sin ξ, 0

)T
:

O (ξ) = O
(
ẑ →

(
cos ξ, sin ξ, 0

)T)
= O

(
x̂→

(
cos ξ, sin ξ, 0

)T)
O (ẑ → x̂)

=

 cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1

 0 0 1
0 1 0
−1 0 0


=

 0 − sin ξ cos ξ
0 cos ξ sin ξ
−1 0 0

 .

Applying the rotation operation O (ξ) to the initial �ow
�eld u (r) in Eq. S(S23), we arrive at the �ow �eld:

u′ (r; ξ) = [O (ξ)u] (r) = O (ξ)u
(
O (ξ)

−1
r
)
.

Averaging the above expression over the orientation ξ, we
obtain the period-average �ow:

ū (r) =
1

2π

π�

−π

u′ (r; ξ) dξ

= − p

2r2
(
3 cos2 θ − 1

)
r̂ = −1

2
u (r) , (S24)

a dipolar �eld with a reduced strength from that in Eq.
(S23). This result can be used to understand period-
average 3D �ow around a circling cell in Fig. S8, which
shows a force dipole scaling in the far-�eld.

ρ
(
mm−2

)
41 77 198 369

T (s) 1600 300 400 300

D0

(
µm2/s

)
1.05 0.65 0.95 0.96

Table SIII. Optimized model parameters (T and D0) at four
cell densities (ρ).

IV. DESCRIPTION OF MOVIES

Movie S1: Holographic movie of a cell approaching and
adhering to the air-liquid interface.
Movie S2: Cell and �agellar motion in the laboratory

(left) and cell-body(right) frames at the air-liquid inter-
face.
Movie S3: Tracer motion around a circularly swimming

cell at the air-liquid interface.
Movie S4-5: Hyperuniform states of cells at two den-

sities: 41 mm−2 and 369 mm−2. Imaging window size is
1.6 mm. Examples of circular and non-circular trajecto-
ries are shown by blue and red lines, respectively.
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Figure S8. (A) Radial component of period-averaged �ow �eld in R-z plain. Cell, represented by an orange circle, centers at the
position (R = 10 µm, z = −5.3 µm). The air-liquid interface is at z = 0. Red dashed line, forming an angle of arccos 1√

3
to z-

axis, roughly marks where �ow reverses direction, seen in Eq. (S24). (B) Magnitude of radial component along z- [Vz (z,R = 0),
blue] and R- [Vr (z = 0, R), orange] axis. The ratio of Vz (z,R = 0) to Vr (z = 0, R) approaches 2 in the far-�eld, in agreement
with Eq. (S24) of θ = 0 to π/2.

Figure S9. (A) Streak image of cell motion. Raw images are obtained at cell density 77 mm−2 and averaged over 10 sec to
produce the streak image. Scale bar is 200 µm. (B) Probability distribution functions of averaged cell displacements from
experiment. See Fig. 3 for similar results obtained from another cell.
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X, Y , Z coordinates in cell-body frame

x, y, z coordinates in lab frame

a, ω, vc radius, angular velocity, and linear speed of cell circular motion

r (t) instantaneous cell position

r̄ (t) window-averaged (2 s) cell position

ρ global cell number density

δρ standard deviation of local cell number density

L size of square window used to measure density �uctuations

S (k) static structure factor

V̄ period-averaged �ow �eld produced by a circularly swimming cell

R position vector respecting to the center of cell circular trajectory

R, ϕ radius and azimuth angle of R vector

T mean stationary time of circular motion

D cell di�usivity due to stochastic non-circular motion

D0 cut-o� di�usivity in cell di�usivity distribution

β power index in cell di�usivity distribution

η random displacements representing stochastic non-circular motion

τ time step in simulation

Lmax size of computational domain

Rcell average radius of cell body

l average distance from the center of a circularly-swimming cell to air-liquid interface

rc position of cell center used in the regularized Stokeslet model

f localized force in the regularized Stokeslet model

S Green's function in the regularized Stokeslet model

v �ow �eld produced by localized forces

v// �ow �eld in the plane of cell motion

vs stroke velocity on the cell surface

vb,vf components of vs on cell body and on longitudinal �agellum

fb,ff components of f on cell body and on longitudinal �agellum

A+ Moore-Penrose inverse of A

r, φ radius and azimuth angle in polar coordinate used to compute �ow in the far �eld

V far
r , V far

t radial and tangential components of instantaneous �ow in the far �eld

VR, Vϕ radial and tangential components of period-averaged �ow of a circularly-swimming cell

V far
R , V far

ϕ VR, Vϕ in the far �eld

Table SIV. List of symbols in the manuscript
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Figure S10. (A) Cell-body centers (blue, r (t)) and centers of circular trajectories (orange, r̄ (t)) marked on the superposition
of instantaneous and streak images. Part of A is shown in (B). ϕ denotes the phase of circular motion. (C) Correlation of
circular motion. Polar (blue) and nematic (orange) correlations can be calculated by averaging cos ∆ϕ and cos 2∆ϕ, with ∆ϕ
the phase di�erence of two cells at a given distance. (D) Correlation (normalized) of instantaneous angular velocity between a
pair of cells.
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Figure S11. (A) Evolution of density �uctuations computed from instantaneous cell position [r (t), solid lines] and window-
averaged position [r̄ (t), dashed lines]. For clarity, dashed lines have been decreased by two orders of magnitude. (B-F)
Corresponding snapshots at �ve moments in (A) with a window size of 1.6 mm. Blue line in A corresponds to data measured
at 60 minutes after the sample is made.
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Figure S12. Structure factors computed with interpolated �ow [Fig. 5A, blue line] and far-�eld expression [Eq. (S22), red line]
in particle-based model. Both approaches generate results in agreement with experimental data (circles).
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