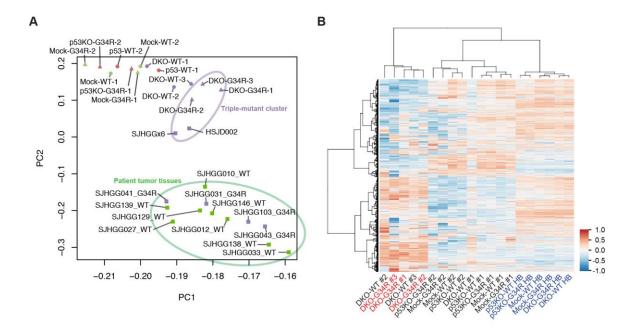
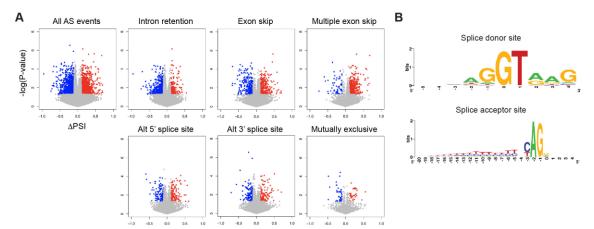

Figure S1. Characterization of tumor model cells, related to Figure 1.

(A) Heatmap shows enrichment (red) and depletion (blue) of expression signatures extracted from the indicated cell populations described in Nowakowski et al. P values were calculated by random permutation of sample labels (n = 1,000) and adjusted for multiple comparisons. (B) Schematic illustration of differentiation protocols for vFNPCs (upper) and vHNPCs (lower). (C) Immunohistochemistry for forebrain marker FOXG1 and hindbrain marker NKX6.1 demonstrates their cell type-specific expression. (D) Mutations created by CRISPR/Cas9 gene editing were validated by Sanger sequencing of genomic DNA. Nucleotide sequences of guide RNAs are shown below. Red letters indicate the PAM sequence (NGG). (E) Sanger sequencing of genomic DNA shows that putative off-targets sites are unaffected. (F) RT-qPCR demonstrates the decreased expression of knocked-out genes and p53 target gene p21. Bars indicate mean \pm S.E.M. (n = 3). (G) Western blotting confirmed the loss of expression of ATRX and p53. Asterisk indicates unspecific bands. (H) At day 18 of differentiation, vFNPCs and vHNPCs were immunostained with the indicated antibodies and counterstained with DAPI. Scale bar, 20 µm. (I) RT-qPCR shows the expression of interneuron markers and hindbrain markers in each cell type. Bars indicate mean \pm S.E.M. (n = 3). (J) Schematic illustration of H3.3-expressing construct. (K) Western blotting of chromatin fraction shows the expression of histone H3.3 transgenes and incorporation into chromatin. (L) Intracellular flow cytometry shows an increase of PLZF-positive early neuroectoderm cells in the ventral forebrain (vF) cultures but not in ventral hindbrain (vH) cultures. Bars indicate mean \pm S.E.M. (n = 4-5). *P* values in panel (L) were calculated by two-sided Welch's t test. *P < 0.05, **P < 0.01.

Α

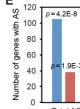

Mutations	Cell type	# of animals that reached the humane endpoint at 6 months	Median surviva (days)
DKO + H3.3G34R + MYCN	Forebrain	8/8 (100%)	99.5
DKO + H3.3WT + MYCN	Forebrain	3/8 (37.5%)	>172.5
DKO + H3.3G34R + MYCN	Hindbrain	0/7 (0%)	8
DKO + H3.3G34R	Forebrain	1/8 (12.5%)	7.
DKO + H3.3WT	Forebrain	0/8 (0%)	
DKO + H3.3G34R	Hindbrain	0/5 (0%)	~
Mock NPCs	Forebrain	0/3 (0%)	2

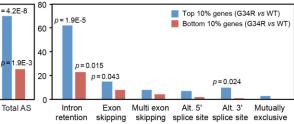
В	SOX2	GFP	DAPI
34R-MYCN			
9	Ki67	Merge	High magnification
vFNPC-DKO-G34R-MYCN			


Figure S2. Characterization of xenografts, related to Figure 2.

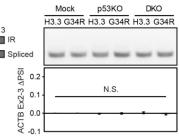
(A) Summary of *in vivo* tumorigenicity assays. Mutation status and type of cells transplanted intracranially in NOD/SCID mice, and survival outcomes are shown. DKO: ATRX/TP53 double knockout, NPCs: Neural Progenitor Cells. (B) Frozen section of mouse brain transplanted with the quadruple-mutant cells (vFNPC-DKO-G34R-NMYC) was immunostained for SOX2 and Ki67. High-magnification image shows a representative rosette structure. Scale bar, 20 µm. (C) DAB-staining for human NCAM shows leptomeningeal spread of transplanted cells. (D) Immunohistochemistry shows the maintained expression of interneuron markers in transplanted cells. Scale bar, 20 µm. (E) Immunostaining for N-Myc shows similar expression levels in xenografts. Scale bar, 20 μm. Signal intensity was calculated using Image J. Brain sections of non-grafted animals were used as control. Bars indicate mean \pm S.E.M. (n = 4). (F) RT-qPCR shows that H3.3G34R mutation does not affect the expression of N-Myc in vFNPCs. Bars indicate mean \pm S.E.M. (n = 4). (G) Intracranial growth of luciferase-labeled cells was measured by quantitative *in vivo* bioluminescence imaging. (n = 8-10) (H) Boxplot shows CpG methylation levels of the indicated groups. Each human patient tumor subtype consists of 4 samples. P values were calculated by two-sided Welch's t test (E, F) or by Wilcoxon rank-sum test (G). *P < 0.05, ***P < 0.001. NS, Not Significant.

H3.3G34R-mutant patient-derived cell lines (SJHGGx6 and HSJD002), and patient tumor tissues (St Jude's dataset, green). (B) Unsupervised hierarchical clustering of RNA-seq data. HB: Hindbrain. The remaining groups are all forebrain in origin.

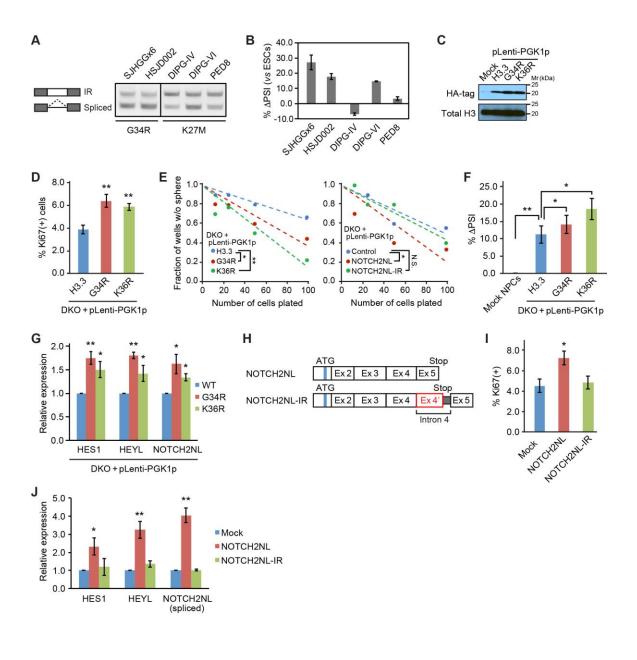

Upregulated AS (All)					
Category	Term	Count	%	P-Value	Benjamini
UP_KEYWORDS	Alternative splicing	723	74.6	1.50E-64	6.00E-62
UP_KEYWORDS	Phosphoprotein	601	62	3.80E-54	7.80E-52
UP_SEQ_FEATURE	splice variant	564	58.2	3.60E-45	8.80E-42
UP_KEYWORDS	Nucleus	378	39	1.90E-25	2.60E-23
UP_KEYWORDS	Cytoplasm	349	36	2.20E-23	2.30E-21
GOTERM_MF_DIRECT	protein binding	551	56.9	8.80E-18	7.70E-15
GOTERM_CC_DIRECT	nucleoplasm	229	23.6	2.70E-17	1.50E-14
UP_KEYWORDS	Coiled coil	231	23.8	1.80E-16	1.80E-14
GOTERM_CC_DIRECT		358	36.9	8.00E-15	2.30E-12
GOTERM_BP_DIRECT	G2/M transition of mitotic cell cycle	30	3.1	2.60E-11	7.10E-08


Downregulated AS (All)					
Category	Term	Count	%	P-Value	Benjamini
UP_KEYWORDS	Alternative splicing	654	73.8	8.30E-59	3.30E-56
UP_KEYWORDS	Phosphoprotein	545	61.5	7.00E-50	1.40E-47
UP_SEQ_FEATURE	splice variant	519	58.6	6.40E-44	1.50E-40
UP_KEYWORDS	Cytoplasm	309	34.9	2.50E-19	3.30E-17
UP_KEYWORDS	Coiled coil	218	24.6	3.10E-18	3.10E-16
GOTERM_MF_DIRECT		497	56.1	2.30E-17	1.90E-14
GOTERM_CC_DIRECT	cytoplasm	328	37	1.40E-15	7.90E-13
UP_KEYWORDS	Acetylation	214	24.2	2.70E-11	2.10E-09
GOTERM_CC_DIRECT	nucleoplasm	185	20.9	6.20E-10	1.70E-07
UP_KEYWORDS	Cytoskeleton	88	9.9	1.00E-08	6.60E-07

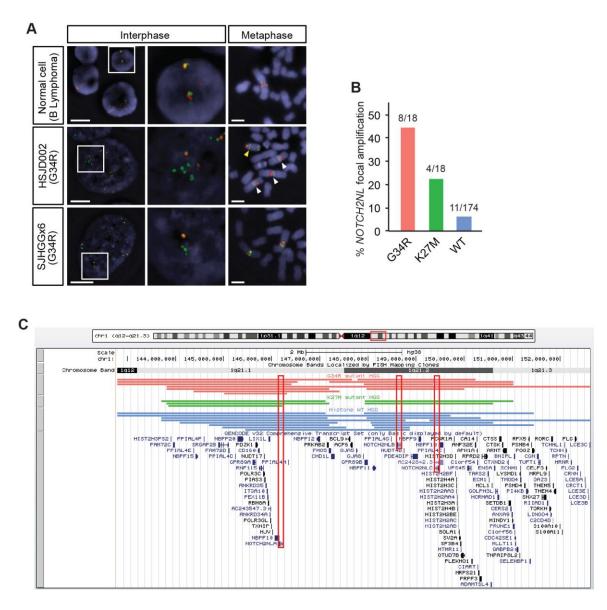
Upregulated AS (IR)					
Category	Term	Count	%	P-Value	Benjamini
UP_KEYWORDS	Alternative splicing	117	66.5	2.20E-08	5.10E-06
UP_KEYWORDS	Phosphoprotein	97	55.1	1.70E-07	2.00E-05
UP_KEYWORDS	Nucleus	69	39.2	1.40E-06	1.10E-04
UP_SEQ_FEATURE	splice variant	89	50.6	5.10E-06	3.00E-03
GOTERM_CC_DIRECT	nucleoplasm	44	25	3.40E-05	7.50E-03
GOTERM_CC_DIRECT	nucleus	69	39.2	7.60E-05	8.50E-03
UP_KEYWORDS	Acetylation	45	25.6	3.10E-04	1.80E-02
UP_KEYWORDS	Cytoplasm	57	32.4	4.90E-04	2.30E-02
GOTERM_MF_DIRECT	protein binding	87	49.4	1.10E-03	2.70E-01
GOTERM_MF_DIRECT	poly(A) RNA binding	20	11.4	1.10E-03	1.50E-01
GOTERM_CC_DIRECT	spliceosomal complex	6	3.4	1.20E-03	8.40E-02


Downregulated AS (IR)					
Category Term Count % P-Value		P-Value	Benjamini		
UP_KEYWORDS	Alternative splicing	321	71	2.40E-24	7.70E-22
UP_SEQ_FEATURE	splice variant	248	54.9	2.30E-16	2.80E-13
UP_KEYWORDS	Phosphoprotein	251	55.5	3.80E-15	6.30E-13
GOTERM_MF_DIRECT	protein binding	238	52.7	8.60E-07	4.60E-04
GOTERM_CC_DIRECT	nucleoplasm	96	21.2	1.90E-06	6.70E-04
UP_KEYWORDS	Coiled coil	96	21.2	1.70E-05	1.90E-03
UP_KEYWORDS	Cytoplasm	137	30.3	3.10E-05	2.50E-03
UP_KEYWORDS	Nucleus	146	32.3	4.30E-05	2.80E-03
GOTERM_CC_DIRECT	cytoplasm	149	33	5.30E-05	9.20E-03
UP_KEYWORDS	Methyltransferase	14	3.1	2.00E-04	1.10E-02

)	H3.3G34R-mutant	Histone wildtype
Number of patients	4	8
Grade	IV (4/4)	IV (8/8)
Location	Hemisphere (4/4)	Hemisphere (8/8)
Sex	Female 2, Male 2	Female 4, Male 4
Mean age (Median age)	14.85 (14.41)	14.12 (13.96)



Mock p53KO DKO F G DLL1 ACTB H3.3 G34R H3.3 G34R H3.3 G34R Ex7 Ex8 Ex2 Ex3 IR Spliced Spliced ÷


Figure S4. Alternative RNA splicing events impacted by the mutations, related to Figure 4.

(A) Volcano plots show alternative splicing events up- or down-regulated in DKO-G34R cells. (B) Motif analysis shows consensus splice acceptor and donor motifs at the intron retention sites down-regulated in triple-mutant vFNPCs (DKO-G34R). (C) Pathway analysis shows that most genes alternatively spliced in DKO-G34R cells are known targets of AS. (D) Clinical characteristics of H3.3G34R-mutant and age- and location-matched histone-wildtype HGGs used for AS analysis. (E) Bar graph shows overlaps between genes alternatively spliced in H3.3G34R-mutant tumors compared to histone-wildtype tumors (Δ PSI > 10% and p value < 0.05) and genes differentially expressed in H3.3G34R-mutant tumors (top 10% and bottom 10% of genes sorted by the ratio of mean values). (F) RT-PCR confirms the changes of intron retention in *DLL1* in vFNPCs. Band intensity was quantified using Image J and Percentage Spliced In (PSI) values are shown in the bar charts. Bars indicate mean \pm S.E.M. (n = 3-5). (G) *ACTB* (B-actin) was used as a negative control. *P* values were calculated by hypergeometric test (E) or by two-sided paired t-test (F, G). *P < 0.05. NS, Not Significant. PSI, Percentage Spliced In.

Figure S5. Upregulation of the *NOTCH2NL* genes by the mutations, related to Figure 5.

(A) H3.3G34R-mutant tumor cell lines (SJHGGx6 and HSJD002) show lower levels of intron retention of NOTCH2NL compared to K27M-mutant tumor cell lines (DIPG-IV, DIPG-VI, PED8). (B) Levels of alternative splicing were quantified by quantitative realtime RT-PCR using primer pairs specifically amplify spliced and unspliced transcripts, respectively. Bars indicate mean \pm S.E.M. (n = 3). (C) Western blotting of chromatin fraction shows the expression of the indicated histone transgenes and their chromatin incorporation. (D) Intracellular Flow Cytometry shows an increase of Ki67-positive cells by overexpression of H3.3G34R- and H3.3K36R-mutant transgenes. Bars indicate mean \pm S.E.M. (n = 5-6). (E) Limiting dilution assay shows an increase in sphere-forming capacity by overexpression of H3.3G34R- and H3.3K36R-mutant histones (Left panel) or the NOTCH2NL transgene (Right panel). Intron-retaining NOTCH2NL (NOTCH2NL-IR) shows no effect on sphere formation. (F) Quantitative RT-PCR shows altered splicing of NOTCH2NL intron 4 by expression of H3.3G34R- and H3.3K36R-mutant histone H3.3 transgenes. Bars indicate mean \pm S.E.M. (n = 5). (G) Quantitative RT-PCR shows an increase in the expression of Notch target genes *HES1* and *HEYL*. Bars indicate mean \pm S.E.M. (n = 3-4). (H) Schematic illustration of constructs expressing intron-excised and intron-retaining NOTCH2NL (NOTCH2NL-IR) transgenes. (I) Intracellular Flow Cytometry shows an increase of Ki67-positive cells by overexpression of NOTCH2NL, but not intron-retained *NOTCH2NL*. Bars indicate mean \pm S.E.M. (n = 3). (J) Ouantitative RT-PCR shows an increase in the expression of Notch target genes HES1 and HEYL by overexpression of NOTCH2NL, but not intron-retaining NOTCH2NL. Bars indicate mean \pm S.E.M. (n = 3). P values were calculated by two-sided Welch's t test (D, G, I and J), two-sided paired t-test (F) or by the likelihood-ratio test (E). *P < 0.05, **P < 0.050.01.

Figure S6. *NOTCH2NL* amplification in H3.3G34R-mutant HGGs, related to Figure 6.

(A) Fluorescent *in situ* hybridization (FISH) confirmed genomic amplification of *NOTCH2NL* locus (green) in two H3.3G34R-mutant patient-derived cell lines. FISH probe targeting *NOTCH2* locus is shown in red. Immortalized B lymphoma cells were used as control. Scale bar, 5 μ m. (B) The percentage ratio of tumors with *NOTCH2NL* focal amplification is shown for each tumor type (n = 210). (C) Focal amplifications associated with *NOTCH2NL* genes in each tumor type are mapped to the human genome (hg38).

Primer sequences for RT-qP	PCB
HES1 Fw	ACGACACCGGATAAACCAAA
HES1 Rv	TCAGCTGGCTCAGACTTTCA
ASCL1_Fw	AGTTGGTCAACCTGGGCTTT
ASCL1_Rv	AGCGCAGTGTCTCCACCTTA
HEYL Fw	AGACCGCATCAACAGTAGCC
HEYL_Rv	TTTCAAGTGATCCACCGTCA
TP53/p53_Fw	AGGCCTTGGAACTCAAGGAT
TP53/p53_Rv	TTATGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
CDKN1A/p21_Fw	GGAGACTCTCAGGGTCGAAA
CDKN1A/p21_FW CDKN1A/p21_Rv	GGATTAGGGCTTCCTCTTGG
ATRX_Fw	GACACCCTTCATTGCAAGTTC
ATRX_FW ATRX_Rv	TTCCATCTGAGTCACGGCTA
NOTCH2NL_Fw	GGCAGACTGGTGACTTCACTT
NOTCH2NL_FW NOTCH2NL_Rv	TCGTGTTCTTTTCCATTCCAG
FOXG1_Fw	CAACGGCATCTACGAGTTCA
FOXG1_FW FOXG1_Rv	TGTTGAGGGACAGATTGTGG
SP8 Fw	GAGAGGAGGAGGAGGGCACTTTT
	GCTGGGGCTGCCTATCTTAT
SP8_Rv ARX Fw	GACACCCAGCTTTCATCAGC
ARX_FW ARX_RV	GGTGTGGGGCTGTCTCAGG
NKX6-1_Fw	ACACGAGACCCACTTTTTCCG
	TGCTGGACTTGTGCTTCTTCAAC
NKX6-1_Rv	
HOXB2_Fw	
HOXB2_Rv DLX1 Fw	GGTGAAAAAATCCAGCTCTTCCT GGTTCCAGCAAACTCAGTACCT
DLX1_FW DLX1 Rv	CTTGAACTTGGATCGCTTGTTT
DLX1_KV DLX2 Fw	CCCTATGGAACCAGTTCGTC
DLX2_FW DLX2_Rv	TTGGCTTCCCGTTCACTATC
ID1 Fw	CCTCAACGGCGAGATCAG
ID1_FW ID1 Rv	CGCTTCAGCGACACAAGA
ACTB_Fw	GTCATTCCAAATATGAGATGCGT
ACTB_Rv	GCTATCACCTCCCCTGTGTG
Primer sequences for RT-PC	
NOTCH2NL_Exon4_Fw	TCTCCTGCAAATGCCTCAC
NOTCH2NL_Exon5_Rv	TACTCCATCAAAAGCAAAAGCA
DLL3_Exon7_Fw	GTAGATTGGAATCGCCCTGA
DLL3_Exon8_Rv	AGAGAGATGGGGTGAGAAAAA
DLL1_Exon7_Fw	ATAAGCCCTGCAAGAATGGA
DLL1_Exon8_Rv	CAGGGTGAAGAGCTGCAGTA
ACTB_Exon2_Fw	AAGACCTGTACGCCAACACA
ACTB_Exon3_Rv	AAAGCCATGCCAATCTCATC
Primer sequences for qRT-PC	
NOTCH2NL_spliced_Fw	CTGCCTTCCAGAAACAGTGAG
NOTCH2NL_spliced_Rv	CATCGTGTTCTTTTCCATTCC
NOTCH2NL_IR_Fw	TGCAACTGCCTTCCAGGT
NOTCH2NL_IR_Rv	ACACCCACTACCTCCTGTGCT
DLL3_spliced_Fw	GAGCTCGTCCGTAGATTGGA
DLL3_spliced_Rv	AGGCCTCCCGAGCGTAGA
DLL3_IR_Fw	GCCAGAGCTTTTCCACTGAT

Table S1. Oligonucleotide sequences, related to STAR Methods

DLL3_IR_Rv	GCGTCAGGCCTAGAAACAAA			
Primer sequences for ChIP-PCR				
NOTCH2NL_pair1_Fw	CCTCGGTCCTTCTCTGTGTG			
NOTCH2NL_pair1_Rv	ATGTCCAAACTCTCGGGAAC			
NOTCH2NL_pair2_Fw	TGCAACTGCCTTCCAGGT			
NOTCH2NL_pair2_Rv	ACACCCACTACCTCCTGTGCT			
LHX8_1st_Intron_Fw	AGAGAAAGGGCCTCAACTCC			
LHX8_1st_Intron_Rv	ACACTTTCTCATCGCCTGCT			
Primer sequences for genomic PCR				
NOTCH2NL_Fw	CACTCTGCGGTGGCAGTA			
NOTCH2NL_Rv	CCACCTTTCAGGTCCTAACATT			
NOTCH2+NL_Fw	GCCTAGTCACACCAAATTCTCC			
NOTCH2+NL_Rv	GTTGTAGAAAAGGGCATTCCAG			
GAPDH_TSS_Fw	AATTCCCCATCTCAGTCGTTC			
GAPDH_TSS_Rv	CAGCAGGACACTAGGGAGTCA			
shRNA target sequences				
shNOTCH2NL #1	GAGCTCTGGGAAAGAGACAGG			
shNOTCH2NL #2	GGTTAATAAAGTGCTTTAAAC			