Supplemental Materials

Molecular Biology of the Cell

Laborenz et al.

Supplemental Figures

Figure S1. The uracil-independent growth of Oxa1-Ura3-expressing $\Delta ema19$ cells is influenced by the strain background. A, B. The indicated strains were generated in the wild type background YPH (A), W303 or BY4742 and analyzed as described for Fig. 1. C. Cells expressing Oxa1-GFP¹¹ and Sec63-GFP¹⁻¹⁰ were analyzed by fluorescence microscopy.

Figure S2. Phylogenetic analysis of the members of Ema19/TMEM97/sigma 2 receptor family. For the phylogenetic tree construction, pairwise sequence alignments were generated using ClustalW with default settings and subjected to the calculation of maximum likelihood distances implementing a JTT matrix (Jones *et al.*, 1992). This matrix was then used to calculate a neighbor-joining tree. Given bootstrap values are based on 1000 random reconstructed trees and indicate the confidence of the respective branches. All analyses were conducted in MegaX (Kumar *et al.*, 2018). Sequences and corresponding accession numbers are listed in the Supplementary Tables file.

Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. CABIOS 8, 275-282.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol *35*, 1547-1549.

Sc		
Ca		
Ca		
Zb		
K]		
Dh		
Hs		
Mm		
Dr	MWULRI, DHE DMSSWESAHSRNODSRI, TNWKTRIKKIRAKCRIRNRCI, TRYSTI, DTDANDD	60
DI		00
SC	TUPSSVVT PAKWOL	37
Ca		39
Ca		31
Ca 7h		20
20 V1		15
n1 Dh		40
DI		44
HS	MGAPATRRCVEWLIGLYFISHIPITLFMDLQAVLPRELYP	40
Mm	MGALAARRCVEWLLGLYFVSHIPITLFIDLQAVLPPELYP	40
Dr	LLNHPDGGTTCRKHLTRHLNQTIKMFLRVLE <mark>IIYFIYFASHIPITLLVDLQALL</mark> PEHVYP	120
~		~ ~
Sc	GIAQKVVSDHIAKQHDFLLSEKPEWLYWFVVLELVLQLPLFVYFVNKFWNSSE	90
Cg	LPGLVQWHIRQNNDFLLYEKPMWLQLFVWWELVFQLPLFFYFAHQFKKIWALRSKDTK	97
Ca	PITKSILEFHISTNNDILLAYPQTWFKIFGFIELIFQLPLFFYFIYKLLSSNR	87
Zb	AGWLLERHIAQNNDFLLCDRPMWLQVFVALELTVQLPLFFQFAKQLRRNSV	89
Kl	TKGLLDGYIDNFNDFLTANPPNWLKYMTIIEILFQLPVAIYCLYQLLNLSKSKTIK	101
Dh	QFQKQFLEFHISSNKDFLLVSLP LWLKVFGLFELFVQLPFFAIGAYMLV KQMK	97
Hs	VEFRNLLKWYAKEFKDPLLQEPPAWFKSFLFCELVFQLPFFPIATYAFLKGSC	93
Mm	QEFSNLLRWYSKEFKDPLMQEPPVWFKSFLLCELVFQLPFFPIAAYAFFKGSC	93
Dr	PELIKLLHWYAGEFKDPMMMDPPAWFKSFVFCEALVQLPFFPVAAYAFLKGGC	173
	.: : :* : *: : * .***. :	
Sc	LQVNTNSRLKKWLRIYGWNASLTTLICIVVIFKRGYIPYDVLKTSLS	137
Cg	NAKAERASTKKSLYLWLRVYGLNAALTTWICIVVILYRGYYPFTLDASRIAGTKLE	153
Ca	RVLDVNYYLWSIIYGFNAGFTTFVCLIWLIIE-YKNFQLS	126
Zb	PRRSLKLYGLLASTTTLVCIGAILEGHYPGTAIPMT	125
Kl	RTLFTVDRLSKCYAFNVITTTSFCIWYVWAYGYYPATMNTDHVSLS	147
Dh	QVYPYMLIYGFNASFTTLVCLVHIFCD-YERFGLT	131
Hs	KWIRTPAIIYSVHTMTTLIPILSTFLFEDFSKASGFKGORPET	136
Mm	RWIRIPAIIYAAHTITTLIPILYTLLFEDFSKAVAFKGORPES	136
Dr	KWIRTPALLYSVHVATTLVPILSHILFHKEPLSPHEGPOT	213
21	* * • • •	010
SC		
Ca		
Ca		
Ca 7h		
ZD V I		
N1 Db		
Dn	TGESIKLAALIIPILVIPLVMLVDISIKIN-KSI-K-AHIPPTKKNI 1/5	
HS	LHEKLTLVSVIAPYLLIPFILLIFMLKSPYYKYEEKRKKK 1/6	
Mm	FREKLTLVGVYAPYLIIPLILLFMLKNPYYKYEEKRKKK 1/6	
Dr	LNERLT <mark>LVSIYAPYLIIPIMILLTMLF</mark> SATYNSPSLKGNAPSKAKKQR 261	
	* * * * *	

Figure S3. Alignment of sequences of members of the Ema19/TMEM97 protein family. Sc, *Saccharomyces cerevisiae*; Cg, *Candida glabrata* KTA97029; Ca, *Candida albicans* EEQ46884; Zb, *Zygosaccharomyces bailii* AQZ15181; Kl, *Kluyvermyces lactis* CAH00503; Dh, *Debaromyces hansenii* CAG89731; Hs, *Homo sapiens* TMEM97; Mm, *Mus musculus* TMEM97; Dr, *Danio rerio* tmem97. Transmembrane domains are highlighted in blue.

Figure S4. *Aema19* **cells show morphological changes upon growth on glycerol but staining with BODIPY does not show obvious changes.** Yeast cells were visualized by electron microscopy as described for Fig. 3A.

Scale bar = 10 µM

Figure S5. BODIPY staining does not indicate the accumulation of lipid droplets in *Aema19* **cells.** Cells were grown in glycerol medium before mitochondria and lipid bodies were visualized by fluorescence microscopy using MitoTracker Orange and BODIPY 493/503, respectively.

Figure S6. Ema19 is not critical for the import of mitochondrial proteins. A. Microsomes and mitochondrial fractions were isolated from cells expressing or lacking Ema19. The levels of the indicated proteins were analyzed by Western blotting. **B.-G.** *In vitro* import experiments with isolated mitochondria or semi-intact cells as described in the legend to Fig. 5.

Figure S7. Pull-down experiments indicate that the mitochondrial membrane potential influences the interaction partners of Ema19. The log2-fold change of proteins in Ema19-GFP pulldowns in the presence or absence of 200 μ M CCCP was plotted against each other (see Table S5 for data). To visualize proteins that were identified only in one of the two pull-down experiments, missing values were replaced by 0 (indicated by rotated labels). Proteins with a predicted mitochondrial localization are shown in red, proteins with a predicted matrix targeting sequence are shown in dark red. Proteins with a significant enrichment in both pull-down experiments are shown as filled circles. Proteins with significant enrichment in only one of the two pull-down experiments are shown in non-filled circles (four replicates, FDR<0.05). Note that Ema19 (fold change = 9.14 / 9.22) has been omitted for clarity.

Strain	Genotype	Reference
BY4742 WT	MATα his3 leu2 lys2 ura3	
YPH499 WT	MATa ura3 lys2 ade2 trp1 his3 leu2	
W303 WT	MATa ura3-1 ade2-1 his3-11 leu2-3,112 trp1Δ2	
$\Delta ema19$	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2	This study
$\Delta ema19$	MATa ura3-1 ade2-1 his3-11 leu2-3,112 trp1∆2 EMA19::NatNT2	This study
$\Delta ema19$	MATα his3 leu2 lys2 ura3 EMA19::NatNT2	This study
$\Delta d j p l$	MATa ura3 lys2 ade2 trp1 his3 leu2 DJP1::KanMX4	This study
$\Delta ema19\Delta djp1$	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 DJP1::KanMX4	This study
$\Delta oxal$	MATa ura3 lys2 ade2 trp1 his3 leu2 OXA1::KanMX4	This study
$\Delta emal9\Delta oxal$	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 OXA1::KanMX4	This study
$\Delta cox 23$	MATa ura3 lys2 ade2 trp1 his3 leu2 COX23::KanMX4	This study
$\Delta ema19\Delta cox23$	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 COX23::KanMX4	This study
$\Delta qcr2$	MATa ura3 lys2 ade2 trp1 his3 leu2 QCR2::KanMX4	This study
$\Delta ema19\Delta qcr2$	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 QCR2::KanMX4	This study
$\Delta coa4$	MATa ura3 lys2 ade2 trp1 his3 leu2 COA4::KanMX4	This study
$\Delta ema19\Delta coa4$	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 COA4::KanMX4	This study
Δ <i>ema19-</i> ΔΝ- Oxa1-HA	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 pYX223-ΔN-Oxa1-HA	This study
∆N-Oxa1-HA	MATa <i>ura3 lys2 ade2 trp1 his3 leu2</i> pYX223- ΔN-Oxa1- HA	This study
$\Delta ema19$ -Erv1-HA	MATa <i>ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2</i> pYX232-Erv1-HA	This study
Erv1-HA	MATa ura3 lys2 ade2 trp1 his3 leu2 pYX232-Erv1-HA	This study
∆ <i>ema19-</i> Oxa1- Ura3	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 pRS313 Oxa1-Ura3	This study
YPH499-Oxa1- Ura3	MATa ura3 lys2 ade2 trp1 his3 leu2 pRS313 Oxa1-Ura3	This study
∆ <i>ema19</i> -Oxa1- Ura3	MATα his3 leu2 lys2 ura3 EMA19::NatNT2 pRS313 Oxa1-Ura3	This study
BY4742-Oxa1- Ura3	MATα his3 leu2 lys2 ura3 pRS313 Oxa1-Ura3	This study
∆ <i>ema19</i> -Oxa1- Ura3	MATa ura3-1 ade2-1 his3-11 leu2-3,112 trp1∆2 EMA19::NatNT2 pRS313 Oxa1-Ura3	This study
W303-Oxa1-Ura3	MATa <i>ura3-1 ade2-1 his3-11 leu2-3,112 trp112</i> pRS313 Oxa1-Ura3	This study
$\Delta ema19$ -Oxa1- GFP ¹¹ + Oxa1- GFP ¹⁻¹⁰	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 pYX142-Oxa1-GFP ¹¹ + pYX122-Oxa1-GFP ¹⁻¹⁰	This study

Supplemental Table S1 listing the strains used in this study

$\Delta ema19$ - ΔN - Oxa1-GFP ¹¹ + Sec63-GFP ¹⁻¹⁰	MATa ura3 lys2 ade2 trp1 his3 leu2 EMA19::NatNT2 pYX142-Oxa1-GFP ¹¹ + pYX122-Sec63-GFP ¹⁻¹⁰	This study
YPH499-∆N- Oxa1-GFP ¹¹ + Sec63-GFP ¹⁻¹⁰	MATa <i>ura3 lys2 ade2 trp1 his3 leu2</i> pYX142-Oxa1-GFP ¹¹ + pYX122-Sec63-GFP ¹⁻¹⁰	This study
Ema19-GFP Sec63-mCherry	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 EMA19-GFP::HIS SEC63-mCherry::KanMX	This study
GFP-Ema19 Sec63-mCherry	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 hph∆n::URA3::SpNOP1pr-sfGFP-EMA19 SEC63- mCherry::KanMX	This study
GFP-Ema19	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 hphΔn::URA3::SpNOP1pr-sfGFP-EMA19	Hansen et al., 2018

Supplemental Table S2 listing the plasmids used in this study

Plasmid	Description	Reference
pYX223-∆N-Oxa1-HA	2μ, GAL-ΔN-Oxa1-HA	Hansen et al., 2018
pYX232-Erv1-HA	2µ, TPI-Erv1-HA	Bien et al., 2010
pRS313	CEN, empty vector	Hansen et al., 2018
pRS313-Oxa1-Ura3	CEN, Oxa1-Ura3	Hansen et al., 2018
pGem4-Mrpl40		Herrmann lab collection
pGem4-Cox19		Herrmann lab collection
pGem4-Cmc1		Herrmann lab collection
pGem4-Oxa1		Herrmann lab collection
pYX142-Oxa1-GFP ¹¹	CEN, TPI-Oxa1- GFP ¹¹	This study
pYX122-Oxa1-GFP ¹⁻¹⁰	CEN, TPI-Oxa1-GFP ¹⁻¹⁰	This study
pYX142-∆N-Oxa1-GFP ¹¹	CEN, TPI-∆N-Oxa1-GFP ¹¹	This study
pYX122-Sec63-GFP ¹⁻¹⁰	CEN, TPI-Sec63-GFP ¹⁻¹⁰	This study

Supplemental Table S3 listing the antibodies used in this study

Antibodies	Source	Identifier
anti-Ilv5	Herrmann lab collection	Peleh et al., 2017
anti-Oxa1	Herrmann lab collection	
anti-Atp23	Herrmann lab collection	
Anti-Cmc1	Herrmann lab collection	
anti-Erv1	Herrmann lab collection	
anti-Rpl6B	Herrmann lab collection	
anti-HA-Peroxidase	Roche	12 013 819 001
anti-rabbit secondary antibody	BioRad	172-1019

Supplemental Table S4 listing organisms, accession numbers and protein names of the sequences used for the unrooted neighbor-joining tree shown in Fig. S2

	Organism	Protein	Accession Number
fungi	Brettanomyces naardenensis	DEKNAAC105048	VEU23783.1
	Cyberlindnera fabianii	TMEM97	ONH65138.1
	Debaryomyces hansenii	DEHA2F22616p	XP_461326.1
	Eremothecium gossypii	AFR508Wp	NP_986055.1
	Komagataella pastoris	BA75_00687T0	ANZ74746.1
	Lachancea nothofagi	LANO_0B02652g1_1	SCU81319.1
	Millerozyma farinosa	Piso0_004871	CCE86385.1
	Saccharomyces cerevisiae	Ema19p	NP_013151.1
	Zygosaccharomyces bailii	ZYBA0S09-00276g1_1	CDF90900.1
sts	Acanthamoeba castellanii	TMEM97	XP_004367690.1
proti	Thecamonas trahens	TMEM97	XP_013756112.1
	Arabidopsis thaliana	TMEM97	NP_565742.1
	Capsella rubella	sigma intracellular receptor 2	XP_006295112.1
	Coffea arabica	sigma intracellular receptor 2	XP_027063739.1
its	Hordeum vulgare	TMEM97	KAE8810566.1
plar	Papaver somniferum	sigma intracellular receptor 2	XP_026392546.1
	Prunus persica	TMEM97	XP_007216330.1
	Selaginella moellendorffii	sigma intracellular receptor 2	XP_002969527.1
	Solanum lycopersicum	sigma intracellular receptor 2	XP_004243464.1
	Bos taurus	sigma intracellular receptor 2	NP_001029575.1
	Crassostrea gigas	sigma intracellular receptor 2	XP_011421127.1
	Danio rerio	sigma intracellular receptor 2	NP_001313327.1
	Dasypus novemcinctus	sigma intracellular receptor 2	XP_004450017.2
s	Desmodus rotundus	sigma intracellular receptor 2	XP_024420904.1
imal	Homo sapiens	TMEM97	AAH91504.1
ani	Loxodonta africana	sigma intracellular receptor 2	XP_003416883.2
	Molossus molossus	TMEM97	KAF6417492.1
	Mus musculus	sigma intracellular receptor 2	NP_598467.1
	Oncorhynchus mykiss	sigma intracellular receptor 2	XP_021444210.2
	Otolemur garnettii	sigma intracellular receptor 2	XP_012665224.1

Tupaia chinensis	sigma intracellular receptor 2	XP_006165494.1
Ursus arctos horribilis	sigma intracellular receptor 2	XP_026373477.1
Xenopus tropicalis	sigma intracellular receptor 2	sp Q6DFQ5.1