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TITLE: "Predict ing cell health phenotypes using image-based morphology profiling" 

Dear Dr. Way: 
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Sincerely, 
Alexander Mogilner 
Monitoring Editor 
Molecular Biology of the Cell 

------------------------------------------------------------------------ 

Dear Dr. Way: 

Congratulat ions on the acceptance of your manuscript . 

A PDF of your manuscript  will be published on MBoC in Press, an early release version of the journal, within 10 days. The date
your manuscript  appears at  www.molbiolcell.org/toc/mboc/0/0 is the official publicat ion date. Your manuscript  will also be
scheduled for publicat ion in the next available issue of MBoC. 

Within approximately four weeks you will receive a PDF page proof of your art icle. 

Would you like to see an image related to your accepted manuscript  on the cover of MBoC? Please contact  the MBoC Editorial
Office at  mboc@ascb.org to learn how to submit  an image. 

Authors of Art icles and Brief Communicat ions are encouraged to create a short  video abstract  to accompany their art icle when
it  is published. These video abstracts, known as Science Sketches, are up to 2 minutes long and will be published on YouTube
and then embedded in the art icle abstract . Science Sketch Editors on the MBoC Editorial Board will provide guidance as you
prepare your video. Informat ion about how to prepare and submit  a video abstract  is available at  www.molbiolcell.org/science-
sketches. Please contact  mboc@ascb.org if you are interested in creat ing a Science Sketch. 

We are pleased that you chose to publish your work in MBoC. 

Sincerely, 

Eric Baker 
Journal Product ion Manager 
MBoC Editorial Office 
mbc@ascb.org 
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December 22, 2020Revision - authors' response



 

We were delighted by the Review Commons process and the sensible and constructive reviews, 
which were straightforward to address with new analyses and adjustments to our text. In our 
response below, we have improved the manuscript in three primary ways: 1) Improved rationale 
clarity and Cell Health assay reproducibility; 2) a greatly expanded section interrogating 
machine learning model robustness; and 3) a restructuring of the Drug Repurposing Hub cell 
health model application section, which includes a new validation analysis. We have also 
performed many additional minor improvements, as suggested. 

Our manuscript introduced two ideas: 1) a new microscopy assay to measure 70 different cell 
health phenotypes and 2) a machine learning approach to predict these phenotypes using Cell 
Painting data. Cell Painting is a different microscopy assay that is unbiased (meaning that it 
does not target any specific phenotype), inexpensive, and high-throughput, and importantly Cell 
Painting data sets are becoming widely available. Overall, we show that, given Cell Painting 
data, many useful cell health annotations can be provided that are intuitive, informative, and 
useful for cell biologists. These annotations enable a richer understanding of perturbation 
mechanisms and provide a multivariate readout of cell health state, and come with no additional 
experimental costs.  

In the manuscript, we presented two new assays to measure and predict various cell health 
indicators. These indicators included DNA damage, cell proliferation, cell cycle stage stalling, 
reactive oxygen species, and apoptosis. We collected data from these assays and trained 
machine learning models to predict cell health indicators using existing public Cell Painting data. 
Lastly, we applied these models to an external Cell Painting dataset of drug repurposing 
compounds, and validated predictions from four models. We made cell heath predictions for all 
1,571 of these compounds across 6 dose points and provided these predictions in an easy to 
navigate web application (https://broad.io/cell-health-app ) as an example of what could be done 
for larger future Cell Painting datasets - for example, our laboratory is leading a Consortium 
creating Cell Painting data for 150,000 chemical and genetic perturbations. 

 

 

Reviewer #1 (Evidence, reproducibility and clarity (Required)): 
The submitted manuscript entitled 'Predicting cell health phenotypes using image-based 
morphology profiling' (RC-2020-00394) by Way et al. presents a set of seven dyes/staining (as 
two separate panels) to microscopically screen cell viability. For automatic classification a 
training/test set of 119 CRISPR (approximately 2 sgRNAs per gene) perturbations on 3 cancer 
cell lines were generated (lung A549, ovarian ES2, lung HCC44). After segmentation of cell 
nuclei a set of morphological cell measurements were extracted from each perturbation (total 
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952 features). The nature of these feature spanning cell cycle and viability phenotypes, enabled 
the authors to define 70 different phenotype classes, which are used to model a classifier by 
elastic linear regression. Specific definitions (cell cycle and ROS) were partly predicted/validated 
in an independent existing image data set (Drug Repurposing Hub project). The data is 
available as web-based application/visualization and the supplementary method is well 
described. 
 
We thank the reviewer for their constructive comments and helpful feedback. 
 
There is one subtle point that is worth raising given this description: The images we use to 
measure the cell cycle and viability phenotypes (two different staining panels in the Cell Health 
assays) are not the same images we use to extract morphology measurements (Cell Painting 
assay). This lack of connection, which is based on a light wavelength limitation present in all 
microscopes that limits the number of stains in a single assay, prevents us from developing a 
method that analyzes the same cells across the three assays. This distinction will become 
important later in the review, and we have made specific changes in the manuscript to increase 
clarity. 

**Major concerns:** 
 
(1)The only fundamental argument of this manuscript not to apply state-of-the-art deep learning 
(DL) machine-learning (mentioned in McCain et al. 2018), which does not require segmentation, 
feature extraction, abstraction, manual gating is the 'interpretability' of the predictions. However, 
performance, precision, scalability (by modern GPUs) with DL should clearly outperform 
'manual' regression models. All recent machine vision benchmarks in microscopy confirm this, 
but also clearly shows 'real world' translational applications, e.g. 
 
https://www.nature.com/articles/s43018-020-0085-8, 
 
https://www.biorxiv.org/content/10.1101/2020.07.02.183814v1.full.pdf, 
 
In other words, the presented methodology is not compared to DL, and is not convincing in 
terms of interpretability benefits. 
 
 
(We’ve copied a similar critique from Significance section from Reviewer #1 in order to 
reduce redundancy ) The author/co-authors have been instrumental/pioneered with their past 
work on cell-based image processing (CellProfiler software), but the presented methodology is 
simply outdated. Therefore, a revision towards a comparison and benchmarking with DL will 
also not help. 
 
Ref (DL with MIL): https://academic.oup.com/bioinformatics/article/32/12/i52/2288769 
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We agree that deep learning approaches are exciting; much of our laboratory’s work focuses on 
their application (see https://doi.org/10.1073/pnas.2001227117, 
https://doi.org/10.1038/s41592-019-0612-7; https://doi.org/10.1002/cyto.a.23863, 
https://doi.org/10.1109/CVPR.2018.00970), and we agree that they are likely to outperform 
simpler regression models trained using so-called hand-engineered features. We thank the 
reviewer for highlighting our failure to accurately and fully describe our rationale. 
 
We intentionally did not use deep learning for this problem given (a) data limitations (b) the 
primary goal of the manuscript, which is to demonstrate feasibility.  
 
Data limitations. There is no mechanism to link the cells of the assays (Cell Health and Cell 
Painting) together, which greatly reduces the available sample size. In the two referenced 
manuscripts, which each propose an exciting approach, the dataset is much larger (~17,000 
and ~1,000 images respectively). Our dataset is only 357 perturbations that can only be linked 
between assays at the perturbation level rather than a single-cell level. Therefore, a deep 
learning approach is likely to produce models that don’t generalize to other datasets. 
Furthermore, reviewer 3 commented in favor of the approach we presented: “Using elastic net 
regression models is well-suited to the problem due to the low number of observations.” 
 
Primary goal of the manuscript is to demonstrate feasibility. In addition, the primary goal of 
the manuscript is to add cell health annotations as functional readouts to perturbations.  Our aim 
was to demonstrate feasibility of predicting cell health states, not to optimize performance. 
Optimizing performance would require collecting much more data, or developing new deep 
learning or data collection methods to account for the lack of matched single cell readouts. 
 
To make this rationale more clear and concise, we have made the following changes in the 
manuscript: 
 
In the first paragraph of page 3, we make some minor contextual updates (”To demonstrate 
proof of concept, we collected a small pilot dataset of 119 CRISPR knockout perturbations…”) 
and replaced “We used simple machine learning methods, which are relatively easy to interpret 
compared to deep learning” with: 
 
We used simple machine learning methods instead of a deep learning approach because of our 
limited sample size of 119 perturbations and the inability to increase the sample size by linking 
single cell measurements across assays.  
 
We have also amended the Conclusions section to emphasize our primary goal and note 
possible deep learning extensions as future directions. The Conclusions now reads: 
 
We have demonstrated feasibility that information in Cell Painting images can predict many 
different Cell Health indicators even when trained on a small dataset. The results motivate 
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collecting larger datasets for training, with more perturbations and multiple cell lines. These new 
datasets would enable the development of more expressive models, based on deep learning, 
that can be applied to single cells. Including orthogonal imaging markers of CRISPR infection 
would also enable us to isolate cells with expected morphologies. More data and better models 
would improve the performance and generalizability of Cell Health models and enable 
annotation of new and existing large-scale Cell Painting datasets with important mechanisms of 
cell health and toxicity. 
 
(2)One aforementioned point of the methodology is cryptically/not described: Why it should be 
less expensive compared with other (which?) approaches (see introduction)? 
 
We thank the reviewer for bringing up this point. We believe that part of this confusion stems 
from a slight misunderstanding about how images from the three assays (two Cell Health and 
one Cell Painting) are collected. The Cell Health assays are two distinct panels of targeted 
reagents that are separately prepared as two physically distinct assays. The Cell Painting assay 
is already an established assay used by many labs and companies around the world to mark 
cell morphology in an unbiased and relatively cheap way. We are comparing the expenses 
between the two Cell Health assays vs. the Cell Painting assay. 
 
We believe that this misunderstanding likely results from our somewhat cryptic and inconsistent 
language when describing the Cell Health assays in the abstract and introduction. We’ve 
updated the third sentence of the abstract from “We developed two customized microscopy 
assays that use seven reagents to measure 70 specific cell health phenotypes...” to now read: 
 
We developed two customized microscopy assays, one using four targeted reagents and the 
other three targeted reagents, to collectively measure 70 specific cell health phenotypes 
including proliferation, apoptosis, reactive oxygen species (ROS), DNA damage, and cell cycle 
stage. 
 
For consistency, we have also updated the penultimate paragraph in the introduction to now 
read: 
 
To do this, we first developed two customized microscopy assays, which collectively report on 
70 different cell health indicators via a total of seven reagents applied in two reagent panels. 
Collectively, we call these assays “Cell Health”. 
 
With these clarifications in mind, we believe that the question of comparing monetary costs is 
more clear. We are comparing the costs of the targeted reagents in the two Cell Health assays 
to the unbiased reagents in the single Cell Painting assay. We’ve also modified the last two 
sentences in the first paragraph of the introduction to strengthen the connection between Cell 
Health assays, targeted reagents, and high cost: 
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Cell health is normally assessed by eye or measured by specifically targeted reagents, which 
are either focused on a single Cell Health parameter (ATP assays) or multiple, in combination, 
via FACS-based or image-based analyses, which involves a manual gating approach, 
complicated staining procedures, and significant reagent cost. These traditional approaches 
limit the ability to scale to large perturbation libraries such as candidate compounds in academic 
and pharmaceutical screening centers. 
 
(3)Generalizability and/or training data size is essential for any model-based classification, but 
not evaluated or validated in the current manuscript. The independent validation on a A549 cell 
line only data might be not sufficient/convincing. 
 
We separately address the two distinct points raised by the reviewer of 1) generalizability and 2) 
training data size: 
 

1. Generalizability 
 
We agree that any model-based classification must demonstrate generalizability. For this 
reason, we have taken careful consideration to assess the generalizability of all 70 models in 
two contexts. First, we assessed model performance in a single held out test set (15% of all 
data). All results we report in the main text (e.g. Figure 2) report performance on this test set. 
We see high performance in many (but not all) models, and we observe much better model 
performance compared to a negative control baseline (New Supplementary Figure S5). High 
performance in the test set indicates that, for some cell health indicators, the models generalize 
well. 
 
Second, we also demonstrate that these models generalize to data from an entirely different 
experiment using a fundamentally different perturbation (CRISPR vs. drug compounds). We 
demonstrate generalizability to this external validation data in four different ways: 1) Validating a 
relatively simple model (“Number of Live Cells”) with an orthogonal viability readout from the 
PRISM assay (barcoding-based cell viability; updated Figure 4); 2) Demonstrating that 
proteasome inhibitors, which are known to produce reactive oxygen species, are predicted to do 
so; 3) Demonstrating that PLK inhibitors, which are known to reduce entry to G1, show a robust 
dose response in the "G1 Cell Count" model; and 4) Demonstrating that aurora kinase and 
tubulin inhibitors are predicted to induce high DNA damage (gH2AX) in G1 cells. These two 
drug classes are known to cause “mitotic slippage” and double stranded DNA breaks. The 
fourth example was added in response to a comment by reviewer 3. 
 
We’ve also added a series of enrichment tests, as described in the following new text: 
 
We also chose to validate three additional models: ROS, G1 cell count, and Number of gH2AX 
spots in G1 cells. We observed that the two  proteasome inhibitors (bortezomib and MG-132) in 
the Drug Repurposing Hub set yielded high ROS predictions (OR = 76.7; p < 1 x 10 -15) (Figure 
4C). Proteasome inhibitors are known to induce ROS (Han and Park, 2010; Ling et al., 2003). 
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As well, PLK inhibitors yielded low G1 cell counts (OR = 0.035; p = 3.9 x 10 -8) (Figure 4C). The 
PLK inhibitor HM-214 showed an appropriate dose response (Figure 4D). PLK inhibitors block 
mitotic progression, thus reducing  entry into the G1 cell cycle phase (Lee et al., 2014). Lastly, 
we observed that aurora kinase and tubulin inhibitors were enriched for high Number of gH2AX 
spots in G1 cells predictions (OR = 11.3; p < 1 x 10 -15) (Figure 4E). In particular, we observed a 
strong dose response for the aurora kinase inhibitor barasertib (AZD1152) (Figure 4F). Aurora 
kinase and tubulin inhibitors cause prolonged mitotic arrest, which can lead to mitotic slippage, 
G1 arrest, DNA damage, and senescence (Orth et al. 2011; Cheng and Crasta 2017; Tsuda et 
al. 2017).  
 
The updated methods section describing our approach to assess generalizability perform the 
enrichment tests now states: 
 
Assessing generalizability of cell health models applied to Drug Repurposing Hub data 
We used our cell health webapp (https://broad.io/cell-health-app ) to identify compounds with 
high predictions for three models with high or intermediate performance: ROS, Number of G1 
cells, and Number of gH2AX spots in G1 cells. For each model, we identified classes of 
compounds with consistently high scores, then tested for statistical enrichment: for proteasome 
inhibitors in the ROS model, PLK inhibitors in the Number of G1 cells model, and aurora kinase 
and tubulin inhibitors in the Number of gH2AX spots in G1 cells model. We used one-sided 
Fisher’s exact tests to quantify differences in expected proportions between high and low model 
predictions. For each case, we determined high and low predictions based on the 50% quantile 
threshold for each model independently.  
 
We acknowledge that prospectively making predictions and measuring Cell Health readouts 
directly in a new experiment would be more convincing, but we note that our existing 
assessment of generalizability in an external experiment is already unusual in machine learning 
publications. Additionally and unfortunately, collecting a second validation dataset for this 
manuscript is not currently feasible given experiments backlogged from COVID. 
 

2. Training data size 
 
We also agree that a more comprehensive analysis on training data size would be an important 
indicator of model limitations. Therefore, we performed a sample titration analysis in which we 
randomly dropped samples from the training procedure, and tracked performance of the held 
out test set. We add the following figure, figure legend, and results text to describe and interpret 
the results. 
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Supplementary Figure S13: Dropping samples from training reduces test set model 
performance in high, mid, and low performing models. We determined model performance 
stratification by taking the top third, mid third, and bottom third of test set performance when 
using all data. We performed the sample titration analysis with 10 different random seeds and 
visualized the median test set performance for each model.  
 
We updated the results section to introduce and discuss this result: 
 
Lastly, we performed a sample size titration analysis in which we randomly removed a 
decreasing amount of samples from training. For the high and mid performing models, we 
observed a consistent performance drop, suggesting that increasing sample size would result in 
better overall performance (Supplementary Figure 13 ). 
 
Finally, the updated methods section describing our sample titration analysis now reads: 
 
Machine learning robustness: Investigating the impact of sample size 
We performed an analysis in which we randomly dropped an increasing amount of samples 
from the training set before model training. After dropping the predefined number of samples, 
we retrained all 70 cell health models and assessed performance on the original holdout test 
set. We performed this procedure ten times with ten unique random seeds to mirror a more 
realistic scenario of new data collection and to reduce the impact of outlier samples on model 
training. 
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All software updates introducing this analysis can be viewed at 
https://github.com/broadinstitute/cell-health/pull/143 

**Minor concerns:** 
 
(1)Highest test performance comprises that precision is mainly driven by cell cycle/count and 
live status and could be probably derived from DRAQ7 (Fig. 2) and DNA granularity (Fig. 3, 
bottom right) and would argue for rigid feature selection across channels and features. 
 
We believe that clarifying the confusion between the two Cell Health assays we developed and 
the well-established Cell Painting assay addresses part of this concern. The DRAQ7 dye marks 
dead cells, and is measured in Cell Health. In other words, readouts from this reagent are what 
we aim to predict, not what we use for training. Indeed, DRAQ7-based phenotypes are among 
the top predicted models, which is a result we present in Supplementary Figure S7 - this figure 
uncovers which Cell Health phenotypes are more easily predicted by Cell Painting. 
 
The DNA granularity morphology measurements are collected from the Cell Painting assay and 
thus are  available for training, and, as noted by the reviewer, encode a high proportion of signal 
in predicting the various cell health phenotypes. In our most common processing workflows for 
other projects, we do apply a rigid feature selection pipeline to all Cell Painting profiles before 
analysis, but we do not do this in this analysis since we were using a model with a 
sparsity-inducing penalty (elastic net). 
 
To directly answer the question of how channels and feature groups influence model 
performance, we’ve performed a systematic experiment removing different channel, 
compartment, and feature groups and retraining all models with the specific group dropped. We 
now include the following supplementary figure: 
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Supplementary Figure S12: Systematically removing classes of features has little impact on 
most models’ performance. We retrained all 70 cell health models after dropping features 
associated with specific (a) feature groups, (b) channels, and (c) compartments. Each dot is one 
model (predictor), and the performance difference between the original model and the retrained 
model after dropping features is shown on the x axis. Any positive change indicates that the 
models got worse after dropping the feature group. (d) Individual model differences in 
performance after dropping features. Each dot is one class of features removed (as in a-c). 
 
Additionally, we updated the results section to introduce and discuss this result: 
 
We also performed a systematic feature removal analysis, in which we retrained cell health 
models after dropping features that are measured from specific groups, compartments, and 
channels. We observed that most models were robust to dropping entire feature classes during 
training (Supplementary Figure 12 ). This result demonstrates that many Cell Painting features 
are highly correlated, which might permit prediction “rescue” even if the directly implicated 
morphology features are not measured. Because of this, we urge caution when generating 
hypotheses regarding causal relationships between readouts and individual Cell Painting 
features.  
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And we add the following to the methods section: 
 
Machine learning robustness: Systematically removing feature classes 
We performed an analysis in which we systematically dropped features measured in specific 
compartments (Nuclei, Cells, and Cytoplasm), specific channels (RNA, Mito, ER, DNA, AGP), 
and specific feature groups (Texture, Radial Distribution, Neighbors, Intensity, Granularity, 
Correlation, Area Shape) and retrained all models. We omitted one feature class and then 
independently optimized all 70 cell health models as described in the Machine learning 
framework results section above. We repeated this procedure once per feature class. 
 
All software updates introducing this analysis can be viewed at 
https://github.com/broadinstitute/cell-health/pull/143 
 
(2)Any H2AX and 'polynuclear' would probably fail in any cell line with this size of training data. 
 
Indeed we would expect certain cell health phenotype models to fail if they had few hits and a 
relatively low variance of output values. This hit rate is directly associated with the phenotypes 
that the CRISPR perturbations induce, which is why we intentionally selected them to span 
multiple gene pathways in an attempt to maximize morphology diversity (see Supplementary 
Table S1). 
 
We did indeed observe that the polynuclear model had few hits in the training data and relatively 
poor performance. We did not expect this result, given that DNA stains are captured in the Cell 
Health and Cell Painting assays. We suspect the poor performance in this model is likely 
because so few cells were classified as polynuclear in our gating strategy, making it perhaps an 
inconsistently measured readout.  
 
By contrast, some gH2AX models did have relatively good performance. In the conclusion, we 
note that increased training data size using more perturbations is likely to improve model 
performance:  
 
The results motivate collecting larger datasets for training, with more perturbations and multiple 
cell lines. These new datasets would enable the development of more expressive models, 
based on deep learning, that can be applied to single cells. Including orthogonal imaging 
markers of CRISPR infection would also enable us to isolate cells with expected morphologies. 
More data and better models would improve the performance and generalizability of Cell Health 
models and enable annotation of new and existing large-scale Cell Painting datasets with 
important mechanisms of cell health and toxicity. 
 
(3)To what refers the 'weights' of the model in Fig. 1c? 
 
We thank the reviewer for pointing out that we never defined this term in the Figure 1 legend. 
We use “weights” to refer to the coefficients from the regression model. To make this more 
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clear, we have updated the legend to now read: “Model coefficient weights” and the text in 
Figure 1C to now read “model weights”. 

Reviewer #1 (Significance (Required)): 
 
This manuscript is not advanced in the context of latest improvements/developments of 
cell-based microscopic classification. Rationale in the introduction and the conclusion are not 
linked (interpretability, generalizability, costs). It seems to be unfinished or unformatted to this 
end? 
 
Since responding to these reviews, we believe that our primary motivation - to demonstrate 
proof-of-concept of predicting cell health phenotypes directly from Cell Painting data - is now 
much clearer, holistically. We provide below an updated introduction, which improves rationale. 
 
 Perturbing cells with specific genetic and chemical reagents in different environmental contexts 
impacts cells in various ways (Kitano, 2002). For example, certain perturbations impact cell 
health by stalling cells in specific cell cycle stages, increasing or decreasing proliferation rate, or 
inducing cell death via specific pathways (Markowetz, 2010; Szalai et al., 2019). Cell health is 
normally assessed by eye or measured by specifically targeted reagents, which are either 
focused on a single Cell Health parameter (ATP assays) or multiple, in combination, via 
FACS-based or image-based analyses, which involves a manual gating approach, complicated 
staining procedures, and significant reagent cost. These traditional approaches limit the ability 
to scale to large perturbation libraries such as candidate compounds in academic and 
pharmaceutical screening centers. 
 
Image-based profiling assays are increasingly being used to quantitatively study the 
morphological impact of chemical and genetic perturbations in various cell contexts (Caicedo et 
al., 2016; Scheeder et al., 2018). One unbiased assay, called Cell Painting, stains for various 
cellular compartments and organelles using non-specific and inexpensive reagents 
(Gustafsdottir et al., 2013). Cell Painting has been used to identify small-molecule mechanisms 
of action (MOA), study the impact of overexpressing cancer mutations, and discover new 
bioactive mechanisms, among many other applications (Caicedo et al., 2018; Christoforow et 
al., 2019; Hughes et al., 2020; Pahl and Sievers, 2019; Rohban et al., 2017; Simm et al., 2018; 
Wawer et al., 2014). Additionally, Cell Painting can predict mammalian toxicity levels for 
environmental chemicals (Nyffeler et al., 2020) and some of its derived morphology 
measurements are readily interpreted by cell biologists and relate to cell health (Bray et al., 
2016). However, no single assay enables discovery of fine-grained cell health readouts.  
 
We hypothesized that we could predict many cell health readouts directly from the Cell Painting 
data, which is already available for hundreds of thousands of perturbations. This would enable 
the rapid and interpretable annotation of small molecules or genetic perturbations. To do this, 
we first developed a customized microscopy assays, which collectively report on 70 different cell 
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health indicators via a total of seven reagents applied in two reagent panels. Collectively, we 
call these assay panels “Cell Health”. 
 
To demonstrate proof of concept, we collected a small pilot dataset of 119 CRISPR knockout 
perturbations in three different cell lines using Cell Painting and Cell Health. We used the Cell 
Painting morphology readouts to train 70 different regression models to predict each Cell Health 
indicator independently. We used simple machine learning methods instead of a deep learning 
approach because of our limited sample size and the inability to increase it by linking single cell 
measurements from both assays. We predicted certain readouts, such as the number of S 
phase cells, with high performance, while performance on other readouts, such as DNA damage 
in G2 phase cells, was low. We applied and validated these models on a separate set of 
existing Cell Painting images acquired from 1,571 compound perturbations measured across six 
different doses from the Drug Repurposing Hub project (Corsello et al., 2017). We provide all 
predictions in an intuitive web-based application at http://broad.io/cell-health-app, so that others 
can extend our work and explore cell health impacts of specific compounds. 

Reviewer #2 (Evidence, reproducibility and clarity (Required)): 

 
This report from Way et al describes a method of extending a very popular screening 
technology called Cell Painting developed by the Carpenter Lab. The authors are contending 
with an important issue and as such this paper potentially will be of great interest to the 
community. Cell Painting provides quantitative fingerprints of cell phenotypes in response to 
changes in the molecular or physiological status of cells. However the molecular basis or even 
the candidate pathways for those changes is not always clear. Here, the authors take specific 
markers of cell physiology, e.g., DNA damage, ROS production, cell cycle progression etc. and 
relate them to Cell Painting features. The authors are trying to address the issue that running 
many probes of cell physiology is expensive and time consuming and that identifying proxies for 
these assays using much simpler Cell Painting technologies would be a useful and potentially 
powerful approach. The overall goal is to develop some type of regression model that can link 
the state of cells (the "health") to Cell Painting fingerprints. 
 
The authors use three separate cell lines and CRISPR knockouts delivered through lentivirus 
that target 59 genes to establish a range of cell physiologies that they directly measure (the 
"Cell Health") and then relate to similar assays performed by Cell Painting. Ultimately they aim 
to use Cell Painting models to predict Cell Health. 
 
We thank the reviewer for their succinct summary of our goals and rationale for this manuscript, 
and for the constructive and valuable comments herein.  

**Major Issues:** 
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It appears that the phenotypes that are detected at a high enough level of significance (see Fig. 
2), e.g DNA damage (gH2Ax), apoptosis (Caspase 3/7), dead cells, ROS (CellROX), etc. are 
probably most easily detected by simply monitoring DAPI signal in these screens. To detect 
many of the phenotypes, the authors have presented a fairly complex method of doing much 
simpler assays. The authors correctly highlight in Fig. 3 that the phenotypes they are detecting 
go beyond pure signals from DAPI. They report power in their models from Radial Distribution 
across many different components of the Cell Painting feature set. 
 
We agree that the two assays we’re collectively calling “Cell Health” are indeed fairly complex - 
we use two different panels of multiplexed stains and a series of gating strategies to measure 
phenotypes in various cell subpopulations. However, the fundamental message in the 
manuscript is that we may no longer need to perform these complex assays if we get this 
information from the simpler Cell Painting assay.  
 
We agree that our machine learning approach to predict the various cell health phenotypes uses 
signals beyond nucleus-based stains. However, even if we are predicting just DAPI signals, this 
reinforces our argument that the specific stains in the Cell Health assays (which are commonly 
used in targeted experiments) are not necessary to measure specifically. Instead, in certain 
circumstances, a scientist should just use unbiased stains to capture their biology of interest, 
since the stains are cheaper at scale and one has access to much more information. 
 
It is also worth noting that the DNA damage phenotypes in specific cell subpopulations (e.g. 
DNA Damage in G1 cells) would not be possible to measure with high precision without EdU 
co-staining.  
 
However these appear to give outputs that won't be that useful. It is hard to tell whether this is 
simply because they don't have enough images or whether their signal is confounded by using 
cell lines where the lentivirus CRISPR knockouts are working less efficiently. 
 
(Reviewer 2 introduced a similar critique below, which we now move here) A fundamental 
issue that the authors mention but do not address is the efficiency of the CRISPR KOs. The 
authors should measure the efficiency of representative guides and present these data to help 
support the interpretation of their models. 
 
We definitely agree that sample size is a limitation in this manuscript. Our primary goal with this 
paper was to demonstrate feasibility of the approach to predict the targeted Cell Health readouts 
using a simpler (and more affordable/scalable) assay in Cell Painting. The promising results we 
observed, especially given this sample size limitation, motivates collecting a larger dataset using 
more perturbations. 
 
Potentially confounded signal by low efficiency CRISPR knockouts is also an interesting topic. 
We do provide Supplementary Figure S8 to describe a subtle relationship that we observed 
regarding CRISPR infection efficiency. We also discuss this in the results as: “We observed 
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overall better predictivity in ES2 cells, which had the highest CRISPR infection efficiency 
(Supplementary Figure 8 ), suggesting that stronger perturbations provide better information for 
training and that training on additional data should provide further benefit.”  
 
Additionally, we made a substantial effort to maximize CRISPR efficiency by independently 
optimizing lentivirus volumes for each sgRNA. In general, we observed that some cell lines are 
easier to CRISPR, probably based on more factors beyond Cas9 expression. However, we note 
that CRISPR is being used simply as a perturbation to elicit a variable morphology response. In 
other words, the type, efficacy, and even accuracy of perturbation does not matter as long as it 
satisfies two constraints: 1) induces a morphology response for a sufficient number of 
perturbations, and 2) is consistent between the two assays (Cell Health and Cell Painting). Our 
setup satisfies both constraints. 
 
However, this experiment (and data from the experiment) can be used in other contexts in which 
the CRISPR efficiency is extremely important. Therefore, we added three columns to 
Supplementary Table 1 providing the efficiency readouts for the three cell lines. (This 
information was already present in GitHub, but we moved it to a more obvious location in 
Supplementary Table 1). Code describing this change can be viewed here: 
https://github.com/broadinstitute/cell-health/pull/142 
 
In regards to the first sentence of this concern: “However these appear to give outputs that 
won’t be that useful” - indeed, we fully expected that many cell health readouts would be difficult 
to predict. In the original submission, we included the following explanation for potential sources 
of low performing models: ”Performance differences might result from random technical 
variation, small sample sizes for training models, different number of cells in certain Cell Health 
subpopulations (e.g. mitosis or polynuclear cells), fewer cells collected in the viability panel (see 
methods), or the inability of Cell Painting reagents to capture certain phenotypes.” 
 
It seems misleading (or perhaps the explanation lacks clarity) to describe in the same paragraph 
the need to validate the model by applying it to new datasets, namely the Drug Repurposing 
Hub project, then describe gradients in cell health features across UMAP coordinates. 
 
We thank the reviewer for pointing out this source of confusion and for providing an opportunity 
to improve the clarity of this section. Our major revisions here are as follows: 1) Introduce the 
Drug Repurposing Hub as an external dataset for validation; 2) Validate a high performing and 
simple model (number of live cells) by comparing model readout predictions from the Drug 
Repurposing Hub Cell Painting profiles against orthogonal PRISM viability readouts (in 
compounds with slightly different doses); 3) Validate three additional models: enrichment of 
proteasome inhibitors in the ROS model, enrichment of PLK inhibitors in the G1 cell count 
model, and enrichment of tubulin-destabilizing compounds in the Number of gH2Ax spots in G1 
cells model; 4) Display a global structure of Cell Health predictions in UMAP space for select 
models. Note that for the fourth point, we are using the UMAP gradients to observe patterns, 
and not to validate models. 
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In order to encapsulate the updated flow, we’ve pasted below the entire Drug Repurposing Hub 
results/discussion section, which introduces two additional analyses and new text in response to 
various other reviewer comments. We feel that the updated section improves clarity and 
purpose. 
 
The updated section now reads: 
 
“Predictive models of cell health would be most useful if they could be trained once and 
successfully applied to data sets collected separately from the experiment used for training. 
Otherwise one could not annotate existing datasets that lack parallel Cell Health results, and 
Cell Health assays would have to be run alongside each new dataset. We therefore applied our 
trained models to a large, publicly-available Cell Painting dataset collected as part of the Drug 
Repurposing Hub project (Corsello et al., 2017). The data derive from A549 lung cancer cells 
treated with 1,571 compound perturbations measured in six doses. 
 
We first chose a simple, high-performing model to validate. The number of live cells model 
captures the number of cells that are unstained by DRAQ7. We compared model predictions to 
orthogonal viability readouts from a third dataset: Publicly available PRISM assay readouts, 
which count barcoded cells after an incubation period (Yu et al., 2016). Despite measuring 
perturbations with slightly different doses and being fundamentally different ways to count live 
cells (Figure 4A), the predictions correlated  with the assay readout (Spearman's Rho = 0.35, p 
< 1 x 10 -3; Figure 4B). 
 
We also chose to validate three additional models: ROS, G1 cell count, and Number of gH2AX 
spots in G1 cells. We observed that the two  proteasome inhibitors (bortezomib and MG-132) in 
the Drug Repurposing Hub set yielded high ROS predictions (OR = 76.7; p < 1 x 10 -15) (Figure 
4C). Proteasome inhibitors are known to induce ROS (Han and Park, 2010; Ling et al., 2003). 
As well, PLK inhibitors yielded low G1 cell counts (OR = 0.035; p = 3.9 x 10 -8) (Figure 4C). The 
PLK inhibitor HM-214 showed an appropriate dose response (Figure 4D). PLK inhibitors block 
mitotic progression, thus reducing  entry into the G1 cell cycle phase (Lee et al., 2014). Lastly, 
we observed that aurora kinase and tubulin inhibitors yielded high Number of gH2AX spots in 
G1 cells predictions (OR = 11.3; p < 1e-15) (Figure 4E). In particular, we observed a strong 
dose response for the aurora kinase inhibitor barasertib (AZD1152) (Figure 4F). Aurora kinase 
and tubulin inhibitors cause prolonged mitotic arrest, which can lead to mitotic slippage, G1 
arrest, DNA damage, and senescence (Orth et al. 2011; Cheng and Crasta 2017; Tsuda et al. 
2017).  
 
We applied  uniform manifold approximation (UMAP) to observe the underlying structure of the 
samples as captured by morphology data (McInnes et al., 2018). We observed that the UMAP 
space  captures gradients in predicted G1 cell count (Supplementary Figure S14A) and in 
predicted ROS (Supplementary Figure S14B). We also observed similar gradients in the 
ground truth cell health readouts in the CRISPR Cell Painting profiles used for training cell 

15 

https://paperpile.com/c/Dp5vv9/lYwZ


 

health models (Supplementary Figure S15 ). Gradients in our data suggest that cell health 
phenotypes manifest in a continuum rather than in discrete states.  
 
Lastly, we observed moderate technical artifacts in the Drug Repurposing Hub profiles, 
indicated by high DMSO profile dispersion in the Cell Painting UMAP space  (Supplementary 
Figure 14C). This represents an opportunity to improve model predictions with new batch effect 
correction tools. Additionally, it is important to note that the expected performance of each Cell 
Health model can only be as good as the performance observed in the original test set (see 
Figure 2 ), and that all predictions require further experimental validation.“ 
 
Updated Figure 4: 
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Figure 4: Validating  Cell Health models applied to Cell Painting data from The Drug 
Repurposing Hub. The models were not trained using the Drug Repurposing Hub data. (a) The 
results of the dose alignment between the PRISM assay and the Drug Repurposing Hub data. 
This view indicates that there was not a one-to-one matching between perturbation doses. (b) 
Comparing viability estimates from the PRISM assay to the predicted number of live cells in the 
Drug Repurposing Hub. The PRISM assay estimates viability by measuring barcoded A549 cells 
after an incubation period. (c) Drug Repurposing Hub profiles stratified by G1 cell count and 
ROS predictions. Bortezomib and MG-132 are proteasome inhibitors and are used as positive 
controls in the Drug Repurposing Hub set; DMSO is a negative control. We also highlight all 
PLK inhibitors in the dataset. (d) HMN-214 is an example of a PLK inhibitor that shows strong 
dose response for G1 cell count predictions. (e) Tubulin and aurora kinase inhibitors are 
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predicted to have high Number of gH2AX spots in G1 cells compared to other compounds and 
controls. (f) Barasertib (AZD1152) is an aurora kinase inhibitor that is predicted to have a strong 
dose response for Number of gH2AX spots in G1 cells predictions. 
 
Updated Supplementary Figure: 
 

 
Supplementary Figure S14: Applying a Uniform Manifold Approximation (UMAP) to Drug 
Repurposing Hub consensus profiles of 1,571 compounds across six doses. The models were 
not trained using the Drug Repurposing Hub data. (a) The point color represents the output of 
the Cell Health model trained to predict the number of cells in G1 phase (G1 cell count). (b) The 
same UMAP dimensions, but colored by the output of the Cell Health model trained to predict 
reactive oxygen species (ROS). (c) In the UMAP space, we highlight DMSO as a negative 
control, and Bortezomib and MG-132 as two positive controls (proteasome inhibitors) in the 
Drug Repurposing Hub set. We observe moderate batch effects in the negative control DMSO 
profiles, based on their spread in this visualization. The color represents the predicted number 
of live cells. The positive controls were acquired with a very high dose and are expected to 
result in a very low number of predicted live cells. 
 
All software updates required to update these figures can be viewed at 
https://github.com/broadinstitute/cell-health/pull/145 
 
Is it surprising that cell health phenotypes and gradients therein are present in a dataset 
describing cell health perturbations? 
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This was not surprising to us, and we thank the reviewer for asking the question. We have now 
added a new Supplementary Figure to present a UMAP with ground truth cell health 
measurements in the CRISPR dataset (pasted below). By adding the figure, we show how Cell 
Health predictions are expected to show gradients in UMAP space. In fact, for any 
lower-dimensional embedding that is able to preserve local neighborhoods of the 
high-dimensional space, we should expect all linear transformations of the input data (in the 
high-dimensional space) to vary smoothly across the lower-dimensional embedding. However, it 
is still informative to observe where the specific Cell Health phenotype predictions manifest in 
relation to global morphology structure. We add the following sentence in the Drug Repurposing 
Hub paragraph juxtaposed to the other UMAP gradient observations:  
 
We applied  uniform manifold approximation (UMAP) to observe the underlying structure of the 
samples as captured by morphology data (McInnes et al., 2018). We observed that the UMAP 
space  captures gradients in predicted G1 cell count (Supplementary Figure S14A) and in 
predicted ROS (Supplementary Figure S14B). We also observed similar gradients in the 
ground truth cell health readouts in the CRISPR Cell Painting profiles used for training cell 
health models (Supplementary Figure S15 ). Gradients in our data suggest that cell health 
phenotypes manifest in a continuum rather than in discrete states. 
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Supplementary Figure S15 : Applying a Uniform Manifold Approximation (UMAP) to the Cell 
Painting consensus profile data of CRISPR perturbations. UMAP coordinates visualized by (a) 
cell line, (b) ground truth G1 cell counts, and (c) ground truth ROS counts. (d) Visualizing the 
distribution of ground truth ROS compared against G1 cell count. The two outlier ES2 profiles 
are CRISPR knockdowns of GPX4 , which is known to cause high ROS. 
 
We have also added the option to explore the CRISPR profile Cell Health ground truth in our 
shiny app https://broad.io/cell-health  (screenshot pasted below)  
 

 
 
Modifications to the software introducing these changes can be viewed at 
https://github.com/broadinstitute/cell-health/pull/141 .  
 
The actual test of the model's performance is in the paragraph below, but the data associated 
with the Spearman correlation is hidden in Fig. S10b. The data is not convincing by eye, and the 
artifactually low p value suggests that proper statistical corrections were not applied. 
 
We have moved the Spearman correlation figure (previously Supplementary Figure S10B) into a 
main figure, along with a complete restructuring of the results and discussion in the Drug 
Repurposing Hub section. 
 
We appreciate the careful observations and interpretations, and confirm the statistical test 
performed here is sound and the p value is correct (there is no need to account for multiple 
testing since there is only one test being applied, a test of correlation between two variables).  
 
We add this rationale to the “Comparing viability predictions to an orthogonal readout” methods 
section: 
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We performed the non-parametric Spearman correlation test because 1) the doses were not 
aligned between the datasets we compared, and 2) it is possible that a strong nonlinear 
correlation exists between readouts from two fundamentally different ways to measure viability. 
 
It is definitely valid to critique the scatter plot relationship to understand that the mean squared 
error is quite high (i.e. if two datasets had viability measurements using the two approaches, it 
would be wrong to assume that lower measurements in one assay automatically could be 
compared to lower measurements of the other assay). This level of variability would be lost if all 
we did was report the test statistic, which is the reason why we included the scatter plot as a 
figure. 
 
It may also be important to mention that the authors of the PRISM paper also noted high 
variation in their estimates (from Corsello et al https://doi.org/10.1038/s43018-019-0018-6 ): "At 
the level of individual compound dose–responses, we note that the PRISM Repurposing dataset 
tends to be somewhat noisier, with a higher standard error estimated from vehicle control 
measurements (Extended Data Fig. 5c and Extended Data Fig. 6a–c)." 
 
Nevertheless, we agree that the current way we report this p value is distracting and potentially 
misleading, depending on how the p value is interpreted. Therefore, we have updated the 
reporting of all p values to say that they are less than a predefined cutoff. The figure now states 
that p < 10e-3. This decision was inspired by the suggestion provided in 
https://twitter.com/rafalab/status/1310610623898808320 
 
Fig 1A and associated methods are not sufficient information to describe the manual gating 
strategy and any variability found across iterations in these gates. Effort should be taken to 
quantify where these manual boundaries were set and why. 
 
We describe the manual gating strategies in much detail in the methods section “Cell Health 
assay: Image analysis”. However, we agree that a description of measurement variability and 
experimental approach requires more detail, and we agree that the manuscript would benefit 
from a visual example of these gates. These improvements required us to rearrange Figure 1. 
 
With a goal of increasing reproducibility in the cell health assay, we’ve (1) moved example 
images of the Cell Health assay to Figure 1A; (2) Moved the existing gating strategies drawing 
to Supplementary Figure 1; (3) Added real data examples of the manual gating strategy as a 
new Supplementary Figure 2. We show all updates below: 
 
Updated Figure 1: 
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Figure 1. Data processing and modeling approach. (a) Example images and workflow from the 
Cell Health assays. We apply a series of manual gating strategies (see Methods) to isolate cell 

22 



 

subpopulations and to generate cell health readouts for each perturbation. (top) In the “Cell 
Cycle” panel, in each nucleus we measure Hoechst, EdU, PH3, and gH2AX. (bottom) In the 
“Cell Viability” panel, we capture digital phase contrast images, measure Caspase 3/7, DRAQ7, 
and CellROX. (b) Example Cell Painting image across five channels, plus a merged 
representation across channels. The image is cropped from a larger image and shows ES2 
cells. Below are the steps applied in an image-based profiling pipeline, after features have been 
extracted from each cell’s image. (c) Modeling approach where we fit 70 different regression 
models using CellProfiler features derived from Cell Painting images to predict Cell Health 
readouts. 
 
Updated Supplementary Figure S1: 
 

 
 
Supplementary Figure S1: Illustration of the gating strategy in the Cell Health assays. We 
extract 70 different readouts from the Cell Health imaging assay. The assay consists of two 
customized reagent panels, which use measurements from seven different targeted reagents 
and one channel based on digital phase contrast (DPC) imaging; shown are five toy examples 
to demonstrate that individual cells are isolated into subpopulations by various gating strategies 
to define the Cell Health readouts. 
 
Updated Supplementary Figure S2 (Example gating strategies): 
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Supplementary Figure S2: Real data of manual gating in the Cell Health assays. 
For each cell line, we apply a series of manual gating strategies defined by various stain 
measurements in single cells to define cell subpopulations. (a) In the cell cycle panel, we first 
select cells that are useful for cell cycle analysis based on nucleus roundness and Hoechst 
intensity measurements. We also identify polyploid and “large not round” (polynuclear) cells. (b) 
We then subdivide the cells used for cell cycle to G1, G2, and S cells based on total Hoechst 
intensity (DNA content) and EdU incorporation signal intensity. (c) We use Hoechst and PH3 
nucleus intensity to define mitotic cells. The points are colored by EdU intensity in the nucleus in 
both (b) and (c). (d) Example gating in the viability panel. We use DRAQ7 and CellEvent 
(Caspase 3/7) to distinguish alive and dead cells, and categorize early or late apoptosis. See 
Methods for more details about how the Cell Health measurements are made. 
 
We’ve also added the following to the methods section: 
 
Additionally, we set these gates for each cell subpopulation using a set of random wells from 
each cell line and experiment independently. We observed that the intensity measurements 
used to form the gates were consistent across wells and plates, and generally formed distinct 
cell subpopulation clusters. After using the random wells to set the gates, we used the Harmony 
microscope software to apply the gates to the remaining wells and plates. 
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In general however, the need to clearly define this process further emphasizes a strength in our 
approach: There is great potential for inconsistencies when different humans draw gates. We 
aim to reduce these inconsistencies by predicting these readouts from Cell Painting images 
directly. 
 
The authors conclude that their results motivate further data acquisition and model training, and 
that this will improve model performance. This is only true if their lack of predictive power comes 
from the data volume itself, and not in larger problems of data quality, variability and the core 
assumptions of their method. The authors note the better predictability in ES2 cells, likely due to 
higher CRISPR efficiency and therefore stronger phenotypes. It is possible, as I believe the 
authors suggest, that the ES2 cells provide information that improves the predictive power of 
cells with poor infection efficiency. It is instead possible that only the ES2 cells with strong 
phenotypes yield predictive power, pulling the average of the dataset up. Authors could train the 
cell line specific datasets independently and compare relative changes in predictive 
performance. Otherwise, is it possible that subtle or highly complex phenotypes simply cannot 
be detected by this method and more data will be unlikely to improve predictability in modest 
perturbations. 
 
We thank the reviewers for raising this possibility. To explore this, we performed a cell-line 
holdout analysis in which we retrained (and individually reoptimized) all 70 cell health models on 
every combination of two cell lines and predicted readouts from the held out third cell line. 
 
Despite there being fewer samples in the training set in the cell line holdout test compared to 
the original test set (66% vs. 85%) and the fact that each model had never seen the held out cell 
line before, many cell health phenotypes could still be predicted. We add the following results in 
a new Supplementary Figure: 
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Supplementary Figure S11: Results from a cell line holdout analysis. We trained and 
evaluated all 70 cell health models in three different scenarios using each combination of two 
cell lines to train, and the remaining cell line to evaluate. For example, we trained all 70 models 
using data from A549 and ES2 and evaluated performance in HCC44. We bin all cell health 
models into 14 different categories (see Supplementary Table S3 and 
https://github.com/broadinstitute/cell-health/6.ml-robustness for details about the categories and 
scores). We also provide the original test set (15% of the data, distributed evenly across all cell 
types) performance in the last row, as well as results after training with randomly permuted data. 
This cross-cell-type analysis yields worse performance overall. Nevertheless, despite the 
models never encountering certain cell lines, and having fewer training data points, many 
models still have predictive power across cell line contexts. Note that we truncated the y axis to 
remove extreme outliers far below -1. The raw scores are available on 
https://github.com/broadinstitute/cell-health. 
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We’ve also performed a sample size titration analysis, which suggests that more data would 
indeed improve model performance. More data would also enable a deep learning approach, 
which is also likely to improve performance. 
 

 
Supplementary Figure S13: Dropping samples from training reduces test set model 
performance in high, mid, and low performing models. We determined model performance 
stratification by taking the top third, mid third, and bottom third of test set performance when 
using all data. We performed the sample titration analysis with 10 different random seeds and 
visualized the median test set performance for each model.  
 
We also update the results section to introduce and discuss this result: 
 
Lastly, we performed a sample size titration analysis in which we randomly removed a 
decreasing amount of samples from training. For the high and mid performing models, we 
observed a consistent performance drop, suggesting that increasing sample size would result in 
better overall performance (Supplementary Figure 13 ). 
 
And an updated methods describing this analysis now reads: 
 
Machine learning robustness: Investigating the impact of sample size 
We performed an analysis in which we randomly dropped an increasing amount of samples 
from the training set before model training. After dropping the predefined number of samples, 
we retrained all 70 cell health models and assessed performance on the original holdout test 
set. We performed this procedure ten times with ten unique random seeds to mirror a more 
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realistic scenario of new data collection and to reduce the impact of outlier samples on model 
training. 
 
All software updates introducing this analysis can be viewed at 
https://github.com/broadinstitute/cell-health/pull/143 
 
Although the authors argue that the Cell Painting assay is capturing complex health phenotypes 
using a variety of morphological features, there is a clear overweighting of a particular few (in 
fact two...). It would be interesting to systematically retrain with exclusion of particular features 
to determine if equalizing the weight across features changes performance. These are also 
notably the feature groups with the fewest features-- how many individual features within these 
feature groups are pulling all the weight? 
 
We agree that an additional computational analysis including a systematic feature removal 
would be interesting and valuable. We’ve included this analysis as part of a new results 
subsection in which we assess where classification improvements are likely to come from by 
testing robustness of the ML models. 
 
Specifically, we’ve systematically removed individual features that belong to specific feature 
groups, channels, and compartments to determine how much their absence negatively affects 
model performance. The added supplementary figure is pasted below. 
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Supplementary Figure S12: Systematically removing classes of features has little impact on 
most models’ performance. We retrained all 70 cell health models after dropping features 
associated with specific (a) feature groups, (b) channels, and (c) compartments. Each dot is one 
model (predictor), and the performance difference between the original model and the retrained 
model after dropping features is shown on the x axis. Any positive change indicates that the 
models got worse after dropping the feature group. (d) Individual model differences in 
performance after dropping features. Each dot is one class of features removed (as in a-c). 
 
We conclude that the majority of cell health models are robust to missing feature groups. Some 
models actually improve with a reduction in the feature space. Combined with the feature 
heatmap presented in Figure 3, these results tell us that a lot of the morphology signal is 
redundant across Cell Painting features.  
 
We add the following text to the results: 
 
We also performed a systematic feature removal analysis, in which we retrained cell health 
models after dropping features that are measured from specific groups, compartments, and 
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channels. We observed that most models were robust to dropping entire feature classes during 
training (Supplementary Figure 12 ). This result demonstrates that many Cell Painting features 
are highly correlated, which might permit prediction “rescue” even if the directly implicated 
morphology features are not measured. Because of this, we urge caution when generating 
hypotheses regarding causal relationships between readouts and individual Cell Painting 
features.  
 
And the following to the methods: 
 
Machine learning robustness: Systematically removing feature classes 
We performed an analysis in which we systematically dropped features measured in specific 
compartments (Nuclei, Cells, and Cytoplasm), specific channels (RNA, Mito, ER, DNA, AGP), 
and specific feature groups (Texture, Radial Distribution, Neighbors, Intensity, Granularity, 
Correlation, Area Shape) and retrained all models. We omitted one feature class and then 
independently optimized all 70 cell health models as described in the Machine learning 
framework results section above. We repeated this procedure once per feature class. 
 
All software updates introducing this analysis can be viewed at 
https://github.com/broadinstitute/cell-health/pull/143 
 
In summary there is a very interesting concept here, but for several possible, currently 
undefined reasons, the authors are reporting a very weak measurement. The authors allude to 
these limitations, but it would be great if the authors could address these issues and provide a 
stronger dataset. 
 
We thank the reviewers for their encouraging remarks. We believe that with the added 
robustness analyses and with increased clarity about the motivation behind the paper, we’ve 
successfully demonstrated a proof of concept for the approach to predict cell health phenotypes 
from Cell Painting images. We believe that we’ve provided sufficient evidence to a reader to 
demonstrate the benefits of the prediction approach. As well, given the additional details 
describing the Cell Health assay reproducibility, that the paper also successfully introduces a 
new assay paradigm. 
 
Furthermore, while many of the cell health measurements are definitely weak (and unreliable), it 
is not fair to generalize all predictions as weak (especially given the sample size limitations). 
 
It is also worth noting that, under the current circumstances, separating the one dataset we 
have into a train/test set and validating the model in an external set is the best we could do; we 
do not have additional budget to run further wet lab experiments (which would also face a 
COVID backlog in our chemical screening group). We agree that additional datasets would 
benefit the field; our current data is now public, all of our future data will be public (to the extent 
possible), and we hope that others building on our work will make their data public too to 
address these questions. 
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Lastly, in response to the “currently undefined reasons” comment, as well as other comments 
throughout, we’ve now included a new subsection in the Results/Discussion subsection to more 
directly answer some of the reasons why many models may have underperformed. Specifically, 
and as mentioned previously in this response, we perform three distinct robustness analyses: 1) 
Cell line holdout; 2) feature holdout; 3) sample size titration. 
 
Authors should include representative images of their Cell Health assay in the main figures. A 
full figure of all labels and examples of manual gating should be included (S1 is too limited) 
Scale bars need to be included in all images, some are missing in S1 
 
We thank the reviewers for this suggestion. We have since substantially updated figure 1 and 
supplementary figure S1. We have also added a new supplementary figure S2 as an example of 
the manual gating strategies, and we have updated all scale bars appropriately. We’ve attached 
the specific figure updates in an earlier response. 
 
"20x water objective in confocal mode" is not a sufficient level of detail on image acquisition 
parameters especially considering the lack of representative images. At the very least, NA and if 
appropriate pinhole size should be reported. Similarly, "9 FOV per well" is not sufficient. Pixel 
size and FOV area/dimensions are necessary. 
 
We have added these necessary details in their representative methods sections: 
 
We acquired all cell images using an Opera Phenix High Content Imaging Instrument 
(PerkinElmer) with a 20X water objective (a numerical aperture (NA) of 1.0), in confocal mode  (a 
pinhole size of 50µm). The effective pixel size was 0.65µm/pixel. We acquired images in four 
channels using default excitation / emission combinations: for the blue channel (Hoechst) 
405/435-480; for the green channel (Alexa 488 and CellEvent) 488/500-550; for the orange 
channel (Alexa 568 and CellRox Orange) 561/570-630 and for the far-red channel (Alexa 647 
and DRAQ7) 640/650-760. We applied the Cell Health reagents for cell viability and for cell 
cycle in two separate plates. 
 
The legends for the different parts of Fig S10 are transposed which makes the figure quite 
confusing.The authors should amend or clarify the language of "guide perturbation" and "guide 
profile". 
 
Wow! We thank the reviewers for pointing out this oversight, and for their careful attention to 
detail. This figure is now completely different after the restructuring of the Drug Repurposing 
Hub results/discussion section. The legends for all figures are now correct. 
 
EdU is defined after it is abbreviated in methods 
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We thank the reviewers for noting this. We’ve now fixed where these acronyms are abbreviated 
in the methods section and removed their definition in later sections where redundant: 
 
The authors should address the following image processing reproducibility concerns: 
 
Segmentation and feature extraction parameters are not included in the Supplementary 
Information. Either attach the CellProfiler pipeline or add a table with parameters and settings 
used for each module. 
 
CellProfiler and Harmony versions are missing. 
 
We thank the reviewers for pointing out these very important omissions. We have since rectified 
in the methods section: 
 
We built a CellProfiler image analysis and illumination correction pipeline (version 2.2.0) to 
extract these image-based features (McQuin et al., 2018). We include the CellProfiler pipelines 
in our github repository. 
 
We developed and ran two distinct image analysis pipelines in Harmony software  (version 4.1; 
PerkinElmer) for each of the Cell Health plates. 
 
We also add the CellProfiler pipelines to our GitHub repository. A pull request introducing this 
change can be viewed here: https://github.com/broadinstitute/cell-health/pull/149 
 
Subpopulation definition (page 14) should be defined in a way that the algorithms (pipelines) 
could be reproduced, e.g.: "unusually high intensity of Hoechst max" requires a stricter 
definition. 
 
These definitions are subjective by nature. Gating decisions will be different depending on the 
scientist performing the image analysis. We feel that the sentence: “We excluded outlier nuclei 
with unusually high intensity of Hoechst max” conveys this subjectivity well. One of the strengths 
of the proposed approach to predict cell health phenotypes directly from the Cell Painting 
images is the removal of gating subjectivity. 
 
Why is the nucleus roundness calculated in PE Harmony and not in the CellProfiler pipeline 
itself? 
 
We used the nucleus roundness measurements as calculated in PE Harmony to define the 
“cells selected for cell cycle” subpopulation in the first panel of the Cell Health assay. I.e. this 
measurement was integral to the Cell Health assay itself. We believe that the addition of 
example gates (in supplementary figure 2) clears up this confusion. 
 
Reviewers: 
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Jason Swedlow 
Melpi Platani 
Erin Diel 
Emil Rozbicki 

Reviewer #2 (Significance (Required)): 
 
Nature and Significance: This study aims to demonstrate how phenotypic studies using different 
markers can be combined and linked to deliver wider application and value. 
 
Relationship to Published Work: This study extends previous work from the same group and 
attempts a novel extension. The approach is a useful concept and potentially important. 
 
Audience: The method this paper proposes will be of interests to scientists involved with drug 
discovery and/or computational biology. 
 
Reviewer's Expertise: Cell Biology, Imaging, Imaging Informatics, Machine Learning, Computer 
Vision 
 
We would like to again express thanks to these reviewers for their careful read, very helpful 
comments, and encouraging remarks. 

Reviewer #3 (Evidence, reproducibility and clarity (Required)): 
 
The authors present a novel idea on predicting various cell health readouts based on a general 
set of markers and cell painting assay. The cell health readouts are based on more specific 
markers performed in different assays measuring cell proliferation and death. The authors 
suggest that such an approach can reduce the number of experiments needed. The paper is 
well written, and the figures are clear and comprehensive. 
 
We thank the reviewer for their helpful comments and encouragement! 
 
**Major comments:** 
 
Some of the health readouts are based on general morphology (cell and nucleus) which can be 
obtained based on cell painting assay. Although some of these models perform well, it is 
surprising that the model of nuclear roundness did not perform very well especially for HCC4 
(R-square reaching zero). This is surprising as these data can be extracted from cell painting 
assays. Can the author elaborate on why this is the case? 
 
We agree that the performance of the live cell roundness and nucleus roundness models were 
unexpectedly low. One would expect that these shape features as measured by PerkinElmer 
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Harmony software, would be easily predicted from CellProfiler readouts from the Cell Painting 
assay. 
 
The roundness property was used in Harmony versions, <=4.9 and calculated with an empirical 
formula:  
 
2*sqrt(π)*sqrt(Area-BorderArea/2.0)/BorderArea-0.1) 
 
where Area is object area in pixels and BorderArea is border area in pixels (we thank Joe Trask, 
Olavi Ollikainen, Hartwig Preckel, and Kaupo Palo at PerkinElmer for this information.) 
 
No single feature in the CellProfiler readouts measures roundness directly; instead, CellProfiler 
will measure a combination of shape features that together could synthesize the idea of 
“roundness”. However, given that the elastic net approach is well-suited for this type of 
synthesis, it remains unclear why roundess is not predicted well. 
 
One possible explanation is that shape features are the most different measurements across 
cell lines and they are measured precisely in both assays. Precise measurements coupled with 
our training strategy of using all three lines together, might lead to poor performance in 
predicting certain cell-line intrinsic features. 
 
We tested this shape result directly (and also generally to the other cell health features) in a 
“cell line holdout” analysis, which we describe in more detail in response to the next comment. 
In this analysis, we tested how well models generalized to cell lines not encountered in the 
training process. In this analysis, we trained on every combination of two cell lines and applied 
the trained models to the third. We observed that cell line intrinsic features, like shape, are 
predicted poorly if a model was not trained using the cell line. 
 
Using elastic net regression models is well-suited to the problem due to the low number of 
observations. However, there is a significant difference between the performance of different 
cell lines. Does the performance of the models improve if different models were trained for every 
cell line? Leave one out approach can be used to accommodate the scarcity of samples. 
 
We thank the reviewer for this important question. We also appreciate how different certain 
models behaved with certain cell lines. We would like to stress that the results presented here 
represent a small pilot study that is not meant to optimize model performance. Instead, the 
motivation of the manuscript is to demonstrate proof-of-concept of the approach to predict 
specific cell health phenotypes directly from Cell Painting images. We believe that the current 
results demonstrate positive proof, which warrants an expansion of data collection and an 
improvement of the classification methodology. 
 
Nevertheless, with our current data, we can answer an important question about the feasibility 
of signal transfer between cell lines. Therefore, we performed an additional “cell line holdout” 
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analysis. We believe that the cell line holdout analysis tells us that signals can be transferred 
across contexts, but that any leading observations must be followed up with experiments 
performed directly in the cell line of interest. This signal transfer is diluted compared to the 
original test set performance, but it is also worth noting that the models presented in 
Supplementary Figure 11 (pasted below) were trained on only 66% of the data in the holdout 
cell line analysis and 85% of the data in the original analysis. 
 

 
Supplementary Figure S11: Results from a cell line holdout analysis. We trained and 
evaluated all 70 cell health models in three different scenarios using each combination of two 
cell lines to train, and the remaining cell line to evaluate. For example, we trained all 70 models 
using data from A549 and ES2 and evaluated performance in HCC44. We bin all cell health 
models into 14 different categories (see Supplementary Table S3 and 
https://github.com/broadinstitute/cell-health/6.ml-robustness for details about the categories and 
scores). We also provide the original test set (15% of the data, distributed evenly across all cell 
types) performance in the last row, as well as results after training with randomly permuted data. 
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This cross-cell-type analysis yields worse performance overall. Nevertheless, despite the 
models never encountering certain cell lines, and having fewer training data points, many 
models still have predictive power across cell line contexts. Note that we truncated the y axis to 
remove extreme outliers far below -1. The raw scores are available on 
https://github.com/broadinstitute/cell-health. 
 
And we add the following text to the results section: 
 
We performed a series of analyses to determine certain parameters and options that are likely 
to improve models in the future. First, we performed a “cell line holdout” analysis, in which we 
trained models on two of three cell lines and predicted cell health readouts on the held out cell 
line. We observed that certain models including those based on viability, S phase, early mitotic 
and death phenotypes could be moderately predicted in cell lines agnostic to training 
(Supplementary Figure 11 ). Not surprisingly, shape-based phenotypes could not be predicted 
in holdout cell lines, which emphasizes the limitations of transferring certain cell-line specific 
measurements across cell lines. 
 
All software updates introducing this analysis can be viewed at 
https://github.com/broadinstitute/cell-health/pull/143 
 
The authors chose to validate based on the number of live cells as it is one of the best models. 
However, this readout can be obtained using simple viability assays. It would be more 
convincing to validate on a more complex phenotype that can only be attained using imaging 
such as #gH2AX spots. 
 
It is worth noting that we do also show generalizability in the Drug Repurposing Hub for two 
other models: ROS and G1 cell count. We show that proteasome inhibitors significantly induce 
high ROS and PLK inhibitors restrict entry to G1. We have also added enrichment tests 
demonstrating high statistical significance for these compound mechanisms. 
 
While we recognize that these two examples provide anecdotal evidence, they suggest the 
ability and power of the approach to assign phenotypes to Cell Painting images. 
 
Nevertheless, we thank the reviewer for bringing up this critical point and certainly appreciate 
the benefit of validating a gH2AX model. Therefore, we’ve added a similar analysis in which we 
demonstrate generalizability of the top performing gH2Ax model: Number of gH2AX spots in G1 
cells. We discuss these changes in an updated section: 
 
We also chose to validate three additional models: ROS, G1 cell count, and Number of gH2AX 
spots in G1 cells. We observed that the two  proteasome inhibitors (bortezomib and MG-132) i n 
the Drug Repurposing Hub set yielded high ROS predictions (OR = 76.7; p < 1 x 10 -15) (Figure 
4C). Proteasome inhibitors are known to induce ROS (Han and Park, 2010; Ling et al., 2003). 
As well, PLK inhibitors yielded low G1 cell counts (OR = 0.035; p = 3.9 x 10 -8) (Figure 4C). The 
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PLK inhibitor HM-214 showed an appropriate dose response (Figure 4D). PLK inhibitors block 
mitotic progression, thus reducing entry into the G1 cell cycle phase (Lee et al., 2014). Lastly, 
we observed that aurora kinase and tubulin inhibitors yielded high Number of gH2AX spots in 
G1 cells predictions (OR = 11.3; p < 1e-15) (Figure 4E). In particular, we observed a strong 
dose response for the aurora kinase inhibitor barasertib (AZD1152) (Figure 4F). Aurora kinase 
and tubulin inhibitors cause prolonged mitotic arrest, which can lead to mitotic slippage, G1 
arrest, DNA damage, and senescence (Orth et al. 2011; Cheng and Crasta 2017; Tsuda et al. 
2017). 
 
We also modify the abstract summarizing this result: 
 
For Cell Painting images from a set of 1,500+ compound perturbations across multiple doses, 
we validated predictions by orthogonal assay readouts, and by confirming mitotic arrest, ROS, 
and DNA damage phenotypes via PLK, proteasome, and aurora kinase/tubulin inhibition , 
respectively. 
 
And we add this analysis to an updated Figure 4: 
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Figure 4: Validating  Cell Health models applied to Cell Painting data from The Drug 
Repurposing Hub. The models were not trained using the Drug Repurposing Hub data. (a) The 
results of the dose alignment between the PRISM assay and the Drug Repurposing Hub data. 
This view indicates that there was not a one-to-one matching between perturbation doses. (b) 
Comparing viability estimates from the PRISM assay to the predicted number of live cells in the 
Drug Repurposing Hub. The PRISM assay estimates viability by measuring barcoded A549 cells 
after an incubation period. (c) Drug Repurposing Hub profiles stratified by G1 cell count and 
ROS predictions. Bortezomib and MG-132 are proteasome inhibitors and are used as positive 
controls in the Drug Repurposing Hub set; DMSO is a negative control. We also highlight all 
PLK inhibitors in the dataset. (d) HMN-214 is an example of a PLK inhibitor that shows strong 
dose response for G1 cell count predictions. (e) Tubulin and aurora kinase inhibitors are 
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predicted to have high Number of gH2AX spots in G1 cells compared to other compounds and 
controls. (f) Barasertib (AZD1152) is an aurora kinase inhibitor that is predicted to have a strong 
dose response for Number of gH2AX spots in G1 cells predictions. 
 
All software updates required to update these figures can be viewed at 
https://github.com/broadinstitute/cell-health/pull/145 
 
It is also worth noting that collecting more data for this manuscript is not currently feasible given 
the amount of projects backlogged from COVID. We feel that given that the motivation of the 
project is to demonstrate feasibility of the approach, with our current training/testing machine 
learning framework and the application to Drug Repurposing Hub data is sufficient. 
 
The text would benefit from expanding the discussion to include the advantages and limitations 
of their approach. 
 
We thank the reviewer for bringing up this concern, and we agree that it is worth an increased 
discussion about advantages and limitations of the approach. Indeed, we’ve added a full new 
results/discussion subsection directly testing many of the assumptions for why some models 
performed well and others didn’t. The new section introduces many model limitations: 
 
We performed a series of analyses to determine certain parameters and options that are likely 
to improve models in the future. First, we performed a “cell line holdout” analysis, in which we 
trained models on two of three cell lines and predicted cell health readouts on the held out cell 
line. We observed that certain models including those based on viability, S phase, early mitotic 
and death phenotypes could be moderately predicted in cell lines agnostic to training 
(Supplementary Figure 11 ). Not surprisingly, shape-based phenotypes could not be predicted 
in holdout cell lines, which emphasizes the limitations of transferring certain cell-line specific 
measurements across cell lines. We also performed a systematic feature removal analysis, in 
which we retrained cell health models after dropping features that are measured from specific 
groups, compartments, and channels. We observed that many models were robust to dropping 
entire feature classes during training (Supplementary Figure 12 ). This result demonstrates that 
many Cell Painting features are highly correlated, which might permit prediction “rescue” even if 
the directly implicated morphology features are not measured. Because of this, we urge caution 
when generating hypotheses regarding causal relationships between phenotypes and individual 
Cell Painting features. Lastly, we performed a sample size titration analysis in which we 
randomly removed a decreasing amount of samples from training. For the high and mid 
performing models we observed a consistent performance drop, suggesting that increasing 
sample size would result in better overall performance (Supplementary Figure 13 ). 

**Minor comments** 
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Page 8: The authors visualize the predicted G1 cell count and ROS when overlayed on a UMAP 
based on cell painting data from Drug Repurposing Hub. How these visualisations look like if 
applied to the original CRISPR training data. 
 
We address this comment by adding a supplementary figure showing ground truth G1 cell count 
and ROS readouts. 
 
We applied  uniform manifold approximation (UMAP) to observe the underlying structure of the 
samples as captured by morphology data (McInnes et al., 2018). We observed that the UMAP 
space  captures gradients in predicted G1 cell count (Supplementary Figure S14A) and in 
predicted ROS (Supplementary Figure S14B). We also observed similar gradients in the 
ground truth cell health readouts in the CRISPR Cell Painting profiles used for training cell 
health models (Supplementary Figure S15 ). Gradients in our data suggest that cell health 
phenotypes manifest in a continuum rather than in discrete states.  
 
Where Supplementary Figure 15 is pasted below: 

 

 
Supplementary Figure S15 : Applying a Uniform Manifold Approximation (UMAP) to the Cell 
Painting consensus profile data of CRISPR perturbations. UMAP coordinates visualized by (a) 
cell line, (b) ground truth G1 cell counts, and (c) ground truth ROS counts. (d) Visualizing the 
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distribution of ground truth ROS compared against G1 cell count. The two outlier ES2 profiles 
are CRISPR knockdowns of GPX4, which is known to cause high ROS. 
 
We have also added the option to explore the CRISPR profile Cell Health ground truth in our 
shiny app https://broad.io/cell-health  (screenshot pasted below)  
 

 
 
Modifications to the software introducing these changes can be viewed at 
https://github.com/broadinstitute/cell-health/pull/141 .  
 
The second part of the last paragraph on page 8 is confusing as it is not related to the first part 
using the PRISM data. 
 
We thank the reviewer for noting this. We agree that the clarity of this section could be 
improved. We have now completely reworked the final section of applying the cell health models 
to the Drug Repurposing Hub data. 
 
In particular, we’ve moved the PRISM data section as the first, most simple model to validate, 
and moved these results to Figure 4. We then describe validation for three other models: ROS, 
G1 cell count and Number of gH2Ax spots in G1 cells. And we end with the UMAP discussion, 
which is the original second part of the last paragraph on page 8.  
 
The PRISM section now reads: 
 
We first chose a simple, high-performing model to validate. The number of live cells model 
captures the number of cells that are unstained by DRAQ7. We compared model predictions to 
orthogonal viability readouts from a third dataset: Publicly available PRISM assay readouts, 
which count barcoded cells after an incubation period (Yu et al., 2016). Despite measuring 
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perturbations with slightly different doses and being fundamentally different ways to count live 
cells (Figure 4A), the predictions correlated  with the assay readout (Spearman's Rho = 0.35, p 
< 1 x 10 -3; Figure 4B). 

Reviewer #3 (Significance (Required)): 
 
This approach can be of wide interest as it is easy to implement, cost-effective and lead to 
interpretable models. It would be interesting to see if the results improve when increasing the 
sample size. Another aspect that can be useful to investigate in the future is whether including a 
separate marker that indicates infected cells only in the more detailed assays would result in 
better accuracies. 
 
We thank the reviewer for their enthusiasm and for this concluding idea. Indeed, we also feel 
that including a separate marker to indicate infected cells could lead to improved accuracy. We 
add this thought to the concluding section as a future direction. The full updated conclusion 
reads as follows: 
 
We have demonstrated feasibility that information in Cell Painting images can predict many 
different Cell Health indicators even when trained on a small dataset. The results motivate 
collecting larger datasets for training, with more perturbations and multiple cell lines. These new 
datasets would enable the development of more expressive models, based on deep learning, 
that can be applied to single cells. Including orthogonal imaging markers of CRISPR infection 
would also enable us to isolate cells with expected morphologies. More data and better models 
would improve the performance and generalizability of Cell Health models and enable 
annotation of new and existing large-scale Cell Painting datasets with important mechanisms of 
cell health and toxicity. 
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I am pleased to accept your manuscript  for publicat ion in Molecular Biology of the Cell. 
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