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Methods

Primary samples

Normal donor blood was obtained from Research Blood Components, LLC; and mononuclear cells
(PBMCs) were isolated using Ficoll-Paque PLUS from GE Healthcare. Ayala Pharmaceuticals is
currently investigating AL101 (BMS-906024) in a Phase II open-label, single-arm, multicenter
study in ACC patients harboring known NOTCHI-4 activating mutations (ACCURACY;
NCT03691207).

In vitro inhibitor and cell proliferation assays

Cell proliferation was measured by CellTiter-Glo (Promega). Buparlisib (Selleckchem) and GSI
(Santa Cruz Biotechnology, Inc) were prepared in DMSO (Sigma-Aldrich). IC50 values were
calculated by fitting the dose-response curves to a three-parameter sigmoid dose-response
model using GraphPad. Error bars reflect standard deviation. Synergy of combination treatment
was calculated using CompuSyn (ComboSyn Inc., Paramus, NJ)!. Single cells were treated for 72h
with 1uM Buparlisib or DMSO control then sorted into 96-well round bottom plates and
continuously cultured with 1 uM GSI (Compound E) or DMSO control. The number of clones that
grew after 6 weeks of culture was determined using a Nikon eclipse TS100 ELWD 0.3/0D75 with
a 20x objective imaging system. A total of 480 wells were analyzed per condition.

Flow cytometry

Primary and PDX samples were stained with anti-CD45-FITC and DAPI, primary samples were
also stained with anti-CD3-PerCP-Cy5.5 (Thermo Fisher Scientific), anti-CD14-APC-Cy7 (BD
Biosciences), and anti-CD19-PE (BioLegend). Single cells were sorted into 96-well plates
containing TCL buffer (Qiagen) using a Sony SH800 sorter (Figures S23, S24). Other antibodies
used were anti-Galectin-9-APC (BioLegend), anti-phospho-4E-BP1 (Ser65) (Cell Signaling), anti-
phospho-AKT (Thr308) (BD Biosciences), or isotype control Mouse IgG1, k (Thermo Fisher
Scientific). Stained cells were analyzed on a BD LSRFortessa flow cytometer (BD)
using FlowJo software v10.

Targeted Sequencing

DNA was extracted using DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer’s
protocol. The panel of targeted genes with known mutations was designed according to previous
publications?. 10ng of input DNA was used to amplify amplicons using KAPA HiFi HotStart
ReadyMix PCR kit (Roche). PCR bands were purified using MinElute PCR purification according
to manufacturer’s protocol (Qiagen). Bands were pooled at equimolar concentration, following
library preparation. Products were quantified using Agilent High Sensitivity D5000, TapeStation
Systems (Agilent). Pooled libraries were sequenced on a NextSeq 500 instrument (Illumina).

Processing of scRNA-seq data

Sequencing reads were trimmed using trimmomatic and aligned to the hg19 version of the genome
using STAR aligner with following parameters ‘-- twopassMode Basic --alignlntronMax 100000
--alignMatesGapMax 100000 --alignSIDBoverhangMin 10 --alignSJstitchMismatchNmax 5 -
1 5 5’34 Raw counts and normalized TPM values were obtained from the aligned bam file
using HTSeq and RSEM, respectively™S.



Quality filtering of scRNA-seq data

In order to filter out low quality cells from our dataset, we used four different parameters — 1)
library size, ii) number of genes detected, iii) percentage of reads mapping to mitochondrial genes,
and iv) percentage of reads mapping to house-keeping genes (Figure S1A). Cells in the distribution
that were beyond three median absolute deviations (M.A.D’s) were flagged as low quality cells.
Poor quality cells were also identified without any predefined cut-offs using the R package
‘mvoutlier’ (Figure S1B). Cells that were detected as outliers by both MAD-based cut-offs and
mvoutlier predictions were filtered out from the dataset (Figure S1C). This resulted in retention of
3562 high-quality cells for further downstream analyses (Figure S1D). On average 3,330 genes
were detected in these cells (Figure S1E). The variance in the dataset was also used to
systematically investigate the contribution of various technical factors and batch effects. The
proportion of variance explained by the variables such as — individual patients, total number of
genes detected, sequencing run and library size were found to be low (Figure S1F). Similar quality
filtering thresholds were applied to the T-ALL and the ETP-ALL PDXs (1,118 of high-quality
cells, average of 4,463 genes per cell).

Clustering of scRNA-seq profiles and identification of cell-types

Clustering of high-quality cells was performed using PAGODA?2’. In order to rule out the
possibility of clusters being purely driven by cell-cycle, each individual cell was analyzed for
expression of G1, G2M and S phase markers to predict the cell-cycle phase using Seurat2®. The
observed clusters did not show high concordance with the cell-cycle stages as indicated by low
adjusted-rand index (0.0207; as calculated by adjustedRandIndex function of mclust package in
R), thus ruling out the possibility of cell-cycle being a major contributor to differences between
clusters. The marker genes for each of the clusters were determined using findMarker function in
the scran package’. Using the information of the marker genes, the individual clusters consisting
of normal cells were manually annotated to be either CD4" T-cells, CD8" T-cells, NK cells,
myeloid or B-cells (Figure 1).

Identification of pathogenic variants from scRNA-seq data

The workflow for detecting SN'Vs was adapted from GATK best practices!. In brief, the aligned
reads in BAM format were sorted, duplicate reads were flagged, read filters applied,
(SplitNCigarReads, GATK 4.0), local realignment performed to minimize the number of
mismatching bases across all reads (RealignerTargetCreator and IndelRealigner, GATK 4.0), base
scores were recalibrated (BaseRecalibrator, GATK 4.0), and finally mutect2!! was used for variant
calling and oncotator for annotation of called mutations'2. All of the mutations in expressed genes
with allele frequencies > 40% were detected, except for JAK1 p.S7031 in patient 3, which was
only supported by 16 reads in RapidHemePanel (Table 1).

Detection of copy number variations from scRNA-seq and cytogenetics

The copy number variants were inferred from the scRNA-seq data using InferCNV!3:14
(https://github.com/broadinstitute/inferCNV) and CONICSmat!® (https://github.com/diazlab/
CONICS). Binarized calls from CONICS (p >= 0.065) at single-cell level were used to call the
CNVs and each of the CNV calls at the chromosome-arm level were visually confirmed from the
heatmap output of inferCNV. T-cells from the normal donors were used as controls for both
methods. The detected CNVs were compared to the cytogenetics report obtained as clinical routine



(Table 1). The signals for copy-number variations through inferCNV could detect duplication of
chr21 that was in agreement for P1 and del7p for P2. The deletion of 1p, 4q, 6q and 11q could be
reliably identified for P4 and dell2p was specifically predicted for P5. No strong signals for copy
number variations could be identified from scRNA-seq for P3. In addition to these, we also could
capture additional copy number signals that were not reported by cytogenetics such as amp10q,
del4q for P1, amp9q for P2, del9p for P4 (Figure S5).

Comparison to bulk RNA-seq from ImmGen and BLUEPRINT datasets

The expression data from the purely sorted bulk populations of immune cells from the ImmGen'®
and BLUEPRINT!? datasets were used to define the identity of cell types. We used a multinomial
log-likelihood model reported by Zemmour et al.!® to determine the probability of each cell
belonging to a particular cell type. The bulk RNA-seq gene expression matrix was used to provide
prior probabilities (probability to express gene i in cell-type j = p;), and for each cell ¢ we
calculated the likelihood of it belonging to cell-type j (L.;). For normalization, the log posterior
probabilities were summed to one during calculation.

Ley= ) i % log (py)

L

Evaluating relative importance of transcription factors using random-forest model

We employed a random-forest model in order to evaluate the relative importance of transcription
factors in distinguishing between malignant and non-malignant cells. The relative expression of
all the transcription factors from the transcription factor database Animal TFDB!® were used as
features. The cells belonging to patient-specific clusters, having specific enrichment for pathogenic
variants and copy-number aberrations were defined as malignant. A random-forest classifier?® was
built in R using this definition of malignant and non-malignant as labels. Around 70% of the data
was used to build the model. The optimum parameters — mtry (39) and ntrees (400) for
randomforest were determined using tuneRF function. The best model had the OOB estimate of
error rate at 2.65% with 0.049 and 0.005 % class error rate. The relative importance of transcription
factors in classification was evaluated using varlmpPlot function. The process was repeated by
both including and excluding the GSI treated cells.

Determining the co-existing/mutually exclusive signatures in malignant cells

The signatures for the heamatopoietic stem cells (HSCs), multipotent-progenitors (MPP), common
lymphoid progenitors (CLP), common myeloid progenitor (CMP) and granulocyte-macrophage
progenitors (GMP) were derived from previously published literature comprising bulk RNA-seq
studies on purely sorted immune populations'’?!, The genes in each of these signatures were
scored using AUCell package??. All the malignant cells were observed to have high scores for
HSC-program. Few of these malignant cells were also observed to have high CLP-program score,
but more often also had high scores for other programs such as CMP, GMP and MPP within the
same malignant cell. The pre-thymic gene signatures were derived from ImmGen portal'®. The
population comparison app was used to identify the differentially expressed genes at specific stage
of thymic maturation by systematically comparing the pre- and post-stages, focusing on early T-
cell progenitor (ETP), double-negative 1 (DN1), double-negative 2 (DN2), double-negative 2-3
(DN2-3), double-negative 3A (DN3A), double-negative 3B (DN3B), double-negative 3-4 (DN3-
4), double-negative 4 (DN4) and double-positive (DP). For example, in order to specifically
determine the gene signature associated with ‘DN2A’, the genes had to be upregulated in ‘DN2A’
in comparison to earlier DN1 stage and the later DN2B population as well. In order to determine



the promiscuity of various programs in malignant cells, we analyzed the human cell atlas
(https://preview.data.humancellatlas.org/) consisting of 335,618 cells from bone marrow of eight
different donors using scanpy?. Louvain clustering of the single-cell profiles revealed 21 different
clusters in human immune cell atlas. The same genes signatures were used to score the normal
cells using scanpy.api.tl.score_genes function within scanpy. Clusters 8, 9 and 13 were observed
to have high scores for the HSC-program, CMP-program and CLP-program, respectively. These
signatures were further refined by obtaining the marker genes for cluster 8, 9 and 13 of the human
cell atlas. The scatterplot using these signatures revealed a mutually exclusive pattern with
negative correlation in normal condition at single-cell resolution. The trend was reversed with
positive correlation between these signatures observed in malignant cells confirming the
promiscuity of the gene expression programs.

Characterization of heterogeneity at single cell resolution

Monocle2 was employed to discover the subclusters within each of the patient-specific T-ALL cell
clusters using only the raw counts from single cells?*. The clusters derived using this approach for
P2 and P4 overlapped with the clusters derived from graph-based infomap clustering algorithm
applied on RNA velocity?. Finally, a perturbation-response based score for assessing the signaling
activity in each cell?® was also used to characterize the heterogeneous clusters.

Defining TCR-usage in CD8" T-cells

We defined TCR usage group has previously described!* by considering the frequency of the read
counts aligned to the V and the J locus of the alpha and the beta chains (Ve, Jo, Vp and Jg). The
sequences of different alleles for TCRs were downloaded from the IMGT database and aligned
using ncbi-magicblast?’. Each cell was assigned V and J allele for alpha and beta TCR chain based
on the number of reads uniquely aligned. Two cells were considered to belong to same clonotype
if three of the four alleles overlapped.

Exhaustion score and receptor-ligand interaction scores

T-cell exhaustion, naive and cytotoxic scores were calculated by average relative expression of
key marker genes from the literature'®. The exhaustion score was defined as difference between
average relative expression of exhaustion markers — PDCD1, TIGIT, LAG3, HAVCR2, CTLA4 and
naive markers — CCR7, TCF7, LEF1 and SELL. The cytotoxic score was defined as difference
between average relative expression of cytotoxic markers — NKG7, CCL4, CST7, PRF1, GZMA,
GZMB, IFNG, CCL3 and naive markers. The co-inhibitory ligand and receptor pairs that could
potentially result in exhaustion were derived from reviewed literature?®. The ligand-receptor pairs
were scored based on their expression levels as described?.

Supplementary Figure Legends

Figure S1. Quality filtering of scRNA-seq dataset. (A) Distribution of features in the unfiltered
dataset — (i) library size per cell, (ii) number of genes detected in each cell, (iii) percentage of
counts mapping to mitochondrial genes in each cell and (iv) percentage of counts mapping to
house-keeping genes (HKG) in all cells sequenced. (B) Scatter plot depicting the result of principal
component analyses using the top two dimensions. The PCA was performed on these four features
for all the 5,077 cells. The outliers were detected using mvoutlier package and are highlighted in



orange. (C) Venn diagram depicting the overlap between the outliers detected by mvoutlier (blue)
and manual cut-offs (red) using median absolute deviations (M.A.D’s). (D) Distribution of the
features after filtering out the cells detected to be outlier by both the methods. (E) Scatter plot
depicting the quality of data from the remaining 3,562 cells through expression frequency and
mean read counts per gene. (F) Density plot depicting the contribution of various technical factors
contributing to the total variation observed in entire dataset.

Figure S2. Confirming the identity of non-malignant immune cell clusters. (A) Heatmap
depicting the log-likelihood scores derived by comparison of scRNA-seq profile to the bulk RNA-
seq profile obtained from purely sorted immune populations. These bulk RNA-seq profiles were
obtained from BLUEPRINT. The identity of the non-malignant clusters was further validated by
confirming the expression of the specific marker genes of these clusters in all the immune cell-
types from ImmGen consortium. Marker genes obtained for (B) cluster 1 show specific expression
in CD8" T-cells; (C) cluster 7 show specific expression in the NK cell population; (D) cluster 8
show specific expression in the B-cell population; (E) cluster 10 show specific expression in CD4*
T-cell population and (F) cluster 11 show specific expression in the myeloid population from
ImmGen dataset.

Figure S3. Effect of cell-cycle on clustering of scRNA-seq data. (A) PCA plot derived by
considering all the genes involved in cell-cycle using SEURAT. (B) t-SNE plot of scRNA-seq
profiles. Each dot represents a cell and is colored based on the cell-cycle phase predicted by
SEURAT. (C) Scatterplot depicts G2M and S-score obtained for each of the cells. Cells are colored
based on the clusters obtained from PAGODAZ2. (D) Stacked bar plot depicting the relative
distribution of different cell-cycle phases in each of the clusters. Notably, the malignant clusters
from patients tend to have a greater fraction of cells in S and G2M phase.

Figure S4. Distribution of normal donor cells and pathogenic SNVs. (A) Distribution of
normal T-cells from four different normal donors. (B) Distribution of different pathogenic variants
detected using CLIA-certified next-generation sequencing panel (RHP) and confirmed through
scRNA-seq profiling using Mutect2. P1: ETV6 p.R369Q, ETV6 p.R369W, NOTCHI p.Q2391%*,
(C) P2: CSF3R p.T618l, NOTCHI p.F1592C, DNMT3A4 p.Q402*, (D) P3: IL7R p.J24IN,
GATA3 p.R276Q, NOTCHI p.R1598P, (E) P4: NOTCHI p L1574P, (F) P5: JAK3 p E958K,
JAKI p.R724H, NOTCHI p.L1593P.

Figure SS. Copy number variation (CNV) profile from scRNA-seq data. (A) Profile depicting
the amplifications and deletion signals from all patients’ cells using inferCNV. T-cells from
healthy donors (top panel) were used as control. (B) The Gaussian mixture model (GMM) fit to
distinguish between malignant and non-malignant cells by using CONICSMAT algorithm. The
model fit for five CNV events depicted in Figure 1 is shown here.

Figure S6. Known T-ALL transcription factor expression in ETP-ALL patients. t-SNE plot
depicting expression of various transcription factors known to be generally deregulated in T-ALL.
All five leukemias show expression of LMO2 and LYLI1 transcription factors. A subset of
leukemias also expresses TAL1 and HOX transcription factors.



Figure S7. Comparison to T-ALL subtypes identified in TARGET study. (A) t-SNE plot
colored based on the T-ALL classification obtained from the TARGET study*°. Each dot
represents the bulk-RNA seq profile from individual patient. (B) same t-SNE plot as in (A), colored
based on the clusters derived from SC3 tool. (C) Silhouette plot depicting the confidence of each
of the clusters obtained. (D) The data from single cell sequencing were collapsed for individual
ETP-ALL patients. All five patients in the study had five 96-well SMART-seq2 plates sequenced.
The sequencing reads from each of the plates were collapsed, hence five replicates were obtained
for each patient. Each of these replicates were compared to average expression profile of individual
T-ALL subtype clusters to obtain the log-likelihood score. The x-axis depicts the T-ALL subtypes
along with corresponding sc3 cluster. The similarity of collapsed patient-specific data to the
expression profile of each T-ALL subtype is depicted on y-axis (log-likelihood). All patients
showed high similarity to ETP-ALL subtype with deregulated expression of LMO2-LYL1. Only
patient P3 showed high transcriptional similarity to TLX3 subtype of T-ALL in 3/5 replicates.

Figure S8. Random forest model trained on transcription factors. (A) Plot depicting the
relationship between the error and number of trees used by random forest model on malignant
(green), non-malignant (red) and combined (black) by considering all the malignant and non-
malignant cells sequenced. The relative importance of each of the transcription factors in the model
is depicted below. (B) the same plots as (A), generated by training the model only on the untreated
cell population.

Figure S9. Random Forest ranked transcription factor expression in normal hematopoietic
progenitors and thymocytes. Heatmap demonstrates expression of highly ranked transcription
factors (SOX4, BCL11A, NFE2, NOTCHI, MYB, ERG, ETV6, TFDP2, KDM5B, ZMIZI) in
SC LTSL BM (long-term repopulating hematopoietic stem cell), SC_STSL BM (short-term
repopulating hematopoietic stem cell), SC_LTSL FL (long-term reconstituting stem cell, SLAM
series), SC_STSL FL (short-term reconstituting stem cell, SLAM series), SC_ MPP34F BM
(multipotent progenitor), SC_ST34F BM (multipotent progenitor), SC_ CMP_BM DR (common
myeloid progenitor), SC MEP BM (megakaryocyte-erythroid progenitor), SC _GMP BM
(granulocyte-monocyte progenitor), SC CDP_BM (common DC precursors (CDP)),
SC_MDP_BM (monocyte DC precursors (MDP)), MLP BM (multilineage progenitor), MLP_FL
(multilineage progenitor), proB_ CLP BM (common lymphoid progenitor), proB CLP FL
(common lymphoid progenitor), proB_ FrA BM (Fr. A (pre-pro-B), proB_FrA FL (Fr. A (pre-
pro-B), proB_FrBC BM (proB.FrBC.BM), proB_FrBC_FL (Fr. B/C (pro-B)), preB,FrC_BM (Fr.
Cprime (cycling pre-B)), preB_FrD BM (small pre-B population, Fr.D), preB_FrD_FL (Fr D (pre-
B)), preT ETP Th (Early T lineage precursor), preT ETP-2A Th (ETP to DN2a transitional),
preT DN2 Th (double negative 2 thymocytes), preT DN2A Th (double negative 2A
thymocytes), preT DN2B_Th (double negative 2B thymocytes), preT DN2-3 Th (DN2 to DN3
transitional), preT DN3A Th (double negative 3A thymocytes), preT DN3B Th (double
negative 3B thymocytes), preT DN3-4 Th (DN3 to DN4 transitional), T DN4 Th (double
negative 4 thymocytes), T 4Nve Sp (spleen naive CD4),T 4Mem_Sp (spleen memory-phenotype
CD4), T 8Nve sp (spleen naive CDS8) and T 8Mem Sp (spleen memory-phenotype CDS)
profiled by InmGen'®.

Figure S10. Random Forest ranked transcription factor expression in cancer cell lines.
Expression of random forest ranked transcription factors in cancer cell lines profiled by CCLE?!.



Arrow indicates T-ALL cell lines. (A) SOX4, (B) ERG, (C) MYB, (D) NFE2, (E) BCL11A4, (F)
ETV6, (G) ZMIZ1, (H) TFDP2, (I) KDM5B, (J) NOTCHI.

Figure S11. Expression of random forest ranked transcription factors in BLUEPRINT and
TARGET. Expression of SOX4, ERG, MYB, NFE2, BCL11A, ETV6, ZMIZ1, TFDP2, KDM5B,
NOTCHI and CD34 in (A) different types of human hematopoietic and immune cells from
BLUEPRINT!” and (B) National Cancer Institute TARGET study of T-ALL*.

Figure S12. Deranged developmental hierarchy with ineffectual commitment in ETP-ALL
compared to normal bone marrow cells. (A) Expression of HSC, CMP and CLP signatures in
single normal bone marrow cells from the human cell atlas (top), and ETP-ALL cells (bottom)
demonstrating lineage promiscuity in leukemic cells compared to normal BM cells (see methods).
(B) Expression of HSC, CMP and CLP signatures in single human thymocytes and mature T-cells
as profiled by the thymic human cell atlas®.

Figure S13. Distribution of co-existing root and endpoint cells in ETP-ALL. RNA-velocity
distribution of cells (%) in root or endpoint states across different Louvain clusters depicted as
stacked bar plot.

Figure S14. GSI treatment and its effect on cell-cycle, Notch target genes and oncogenic
signaling in leukemic cells. (A) t-SNE plot with treated leukemic cells colored according to days
of GSI treatment. (B) Scatter plot depicting the G2M and S-phase scores for all the leukemic cells
in root 1, root 2 and endpoint states. (C), (D), (E) Stacked barplots depicting the relative
distribution of different phases of cell cycle with treatment in patients P3, P4 and P5. (F) Heatmap
depicting the downregulation of Notch targets upon GSI treatment in patient P5. (G) Subclusters
identified in each of the patient-specific leukemic clusters using monocle2 are depicted on t-SNE.
(H) Violin plot depicting the PI3K activity score inferred by average relative expression of PI3K
targets as inferred by PROGENYy upon GSI treatment in all patients.

Figure S15. Co-existing root states with PI3K and Notch activation signatures in ETP and
T-ALL PDX samples. Deconvolution of distinct stem-like state signatures using CIBERSORT in
ETP (A) and T-ALL (G) PDX samples. t-SNE plots using genes involved in HSC, CLP and CMP
progenitor programs, colored by PDX model (ETP, B), (T-ALL, H) and clusters as identified by
Louvain algorithm in ETP (C), and T-ALL PDXs (I). RNA velocity projections onto t-SNE
identifying two root and endpoint states in ETP (D) and T-ALL PDXs. (J) t-SNE plots colored by
cell cycle phase in ETP (E) and T-ALL PDXs (K). Correlation plots of relative Notch and PI3K
activity in ETP (F) and T-ALL PDXs (L), based on NOTCHI mutation and PTEN deletion status.
* = NOTCHI mutation, # = PTEN deletion.

Figure S16. Deconvolution of root and endpoint signatures in bulk T-ALL RNA-seq data.
(A) Relative fractions of root 1, root 2 and endpoint expression signatures after deconvolution
ordered by endpoint fraction using CIBERSORT in bulk RNA-seq data from TARGET cohort.
(B) Relative fractions of root 1, root 2 and endpoint expression signatures in T-ALL subtypes in
TARGET cohort.

Figure S17. Correlation plots of signaling pathways in root 1 and root 2 ETP-ALL cells.



(A) EGFR, (B) Hypoxia, (C) JAK-STAT, (D) MAPK, (E) NFxB, (F) PI3K, (G) TGFb (H) TNFa,
(D Trail, (J) p53, (K) MYC, and (L) PIM.

Figure S18. Inferred signaling pathway activity in single cells of each patient before and after
GSI treatment. Heatmaps depict the relative activity of various signaling pathways as inferred by
PROGENYy and signatures for Notch, PIM and MYC, before and after treatment, cell cycle phase
and root and endpoint status. (A) Patient 1, (B) Patient 2, (C) Patient 3, (D) Patient 4, (E) Patient
5.

Figure S19. Inhibition of T-ALL proliferation by PI3K inhibitor is increased when combined
with GSI. DND-41, HPB-ALL and Jurkat T-ALL cell lines were treated with Buparlisib and GSI
alone or in combinations of 1uM Buparlisib with 1uM of GSI or 0.25uM Buparlisib with 1uM of
GSI, respectively, for 7 days. Dose response curves of cell viability normalized to DMSO
(datapoints are derived from 3 replicates each, error bars show standard deviation) and
corresponding synergy analyses are shown. (A) DND-41: IC50 = 1.01 uM for Buparlisib, 0.132
uM for Buparlisib and GSI. (B) HPB-ALL: IC50 = 0.34 uM for Buparlisib, 7.23e-006 uM for
Buparlisib and GSI. (C) Jurkat: IC50 = 0.72 uM for Buparlisib, 0.423 uM for Buparlisib and GSI.
(D) Flow cytometry demonstrating subpopulation of CD34+ population staining positive for p4E-
BP1 (S65) and pAKT (Thr308) in DND-41 cells (overlay histogram gated on CD34" or CD34"
cells, respectively).

Figure S20. Inhibitory receptor-ligand interactions. (A) t-SNE plots depicting the expression
of various inhibitory receptors and corresponding ligands on exhausted T-cells and T-ALL cells.
(B) Violin plot depicts the expression of LGALS9 across T-ALL subsets from TARGET study.

Figure S21. LGALS9 protein expression in T-ALL leukemia cell lines determined by flow
cytometry. Intracellular LGALS9 fluorescence (dark gray) compared to mouse IgGl1, x (light
gray) shown as histograms. (A) T-ALL cell lines, HPB-ALL, KOPT-K1, Loucy and MOLT-4. (B)
B-ALL cell lines, NALM-6 and SEM. (C) AML cell lines, KG-1 and HL-60.

Figure S22. Blockade of LGALSY with neutralizing antibody inhibits HAVCR2 expression.
HAVCR2 mRNA expression in activated CD8" T-cells cultured with T-ALL supernatant (from
DND-41 cells; orange) or control media (blue), in the presence/absence of anti-human Galectin-9
(10pg/mL) or recombinant Galectin-9 (2.5pg/mL). n.s. P>0.05, ** P <0.01 and *** P <0.001,
based on 3 technical replicates, using two-sided t-test, error bars reflect standard deviation.

Figure S23. Flow cytometry gating strategy of T-ALL leukemic blasts. ETP-ALL samples
were stained with anti-CD45 FITC and DAPI. CD45'"° expressing, DAPI negative single cells
were sorted.

Figure S24. Flow cytometry gating strategy of normal immune cells. PBMCs were stained with
DAPI, anti-CD45 FITC, anti-CD3 PerCP-Cy5.5, anti-CD19 PE, anti-CD14 APC-Cy7. CD45high
CD3" DAPI negative (T-cells), CD45"e" CD19" DAPI negative (B-cells), CD45"¢" CD14" DAPI
negative (monocytes) single cells were sorted.



Supplementary Table Legends
Table S1: Primer sequences used for qRT-PCR and targeted sequencing.

Table S2: Differential marker gene analysis for malignant clusters derived from PAGODA/t-SNE
analysis.

Table S3: Number of cells per patient and cluster (PAGODA).

Table S4: Differential marker gene analysis for patient 1 compared to high cycling leukemia cells
from cluster 9.

Table S5: Differential marker gene analysis for patient 3 compared to high cycling leukemia cells
from cluster 9.

Table S6: Differential marker gene analysis for patient 5 compared to high cycling leukemia cells
from cluster 9.

Table S7: Differential marker gene analysis for high cycling leukemia cells from cluster 9
compared to the remaining malignant clusters.

Table S8: List of mutation calls detected in single cells using Mutect2 and filtered for patient
specific SN'Vs.

Table S9: List of copy number variants (CNV) detected in single cells using CONICS for
amplifications of chromosomes 6p, 9p, 12p, 13q, 19p, 22q and deletions of 7p, 9q, 10q, 21q;
filtered for patient specific SNVs. (1=detected, O=not detected, N/A= not covered).

Table S10: Differential marker gene analyses in root 1 and root 2 cells.
Table S11: Differential marker gene analysis in endpoint cells.

Table S12: Results of GSEA analyses performed on ranked gene lists from root cells in
comparison to endpoint cells by using the hallmark gene sets (H), curated gene sets (C2),
oncogenic gene sets (C6) and immunologic gene sets (C7) signatures in MSigDB.

Table S13: Results of GSEA analyses performed on ranked gene list from endpoint cells in
comparison to root cells by using the hallmark gene sets (H), curated gene sets (C2), oncogenic
gene sets (C6) and immunologic gene sets (C7) signatures in MSigDB.

Table S14: Signaling pathway expression scores (EGFR, Hypoxia, JAK-STAT, MAPK, NFkB,
PI3K, TGFb, TNFa, Trail, VEGF, p53), inferred by PROGENy and expression signatures for
NOTCHI1, PIM, MYC) in single ETP-ALL cells.



Table S15: Targeted sequencing analyses of AKT1, AKT2, NOTCH1, PIK3CA, PIK3CB, PIK3CD,
PIK3RI1, PIKR3, PIKR6 and PTEN in ETP-ALL samples, including tumor purity, average
sequencing depth and coverage. Of note, patient 5 NOTCHI mutant allele frequency decreased
with treatment. ND = not detected.

Table S16: IHC staining results for LGALS9 in ETP and T-ALL patients.

References

1. Chou TC. Theoretical basis, experimental design, and computerized simulation of
synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621-681.

2. Bongiovanni D, Saccomani V, Piovan E. Aberrant Signaling Pathways in T-Cell Acute
Lymphoblastic Leukemia. Int J Mol Sci. 2017;18(9).

3. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15-21.

4, Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
data. Bioinformatics. 2014;30(15):2114-2120.

5. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput
sequencing data. Bioinformatics. 2015;31(2):166-169.

6. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
without a reference genome. BMC Bioinformatics. 2011;12:323.

7. Fan J, Salathia N, Liu R, et al. Characterizing transcriptional heterogeneity through
pathway and gene set overdispersion analysis. Nature methods. 2016;13(3):241-244.
8. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic

data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411-420.
9. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 2016;5:2122.

10. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence
variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics.
2013;43:11 10 11-33.

11. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations
in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213-219.
12. Ramos AH, Lichtenstein L, Gupta M, et al. Oncotator: cancer variant annotation tool. Hum

Mutat. 2015;36(4):E2423-2429.

13.  Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral
heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396-1401.

14. Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic
melanoma by single-cell RNA-seq. Science. 2016;352(6282):189-196.

15. Muller S, Cho A, Liu SJ, Lim DA, Diaz A. CONICS integrates scRNA-seq with DNA
sequencing to map gene expression to tumor sub-clones. Bioinformatics. 2018;34(18):3217-3219.
16.  Heng TS, Painter MW, Immunological Genome Project C. The Immunological Genome
Project: networks of gene expression in immune cells. Nat Immunol. 2008;9(10):1091-1094.

17. Fernandez JM, de la Torre V, Richardson D, et al. The BLUEPRINT Data Analysis Portal.
Cell Syst. 2016;3(5):491-495 e495.



18. Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. Single-cell gene
expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nature
Immunology. 2018;19(3):291.

19. Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. AnimalTFDB 3.0: a comprehensive
resource for annotation and prediction of animal transcription factors. Nucleic Acids Res.
2019;47(D1):D33-D38.

20.  Liaw A, Wiener M. Classification and Regression by RandomForest. Vol. 23; 2001.

21.  Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity
landscape. Genome Biol. 2017;18(1):220.

22. Aibar S, Gonzalez-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network
inference and clustering. Nat Methods. 2017;14(11):1083-1086.

23. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data
analysis. Genome Biol. 2018;19(1):15.

24. Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate
decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol.
2014;32(4):381-386.

25. La Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells. Nature.
2018;560(7719):494-498.

26. Schubert M, Klinger B, Klunemann M, et al. Perturbation-response genes reveal signaling
footprints in cancer gene expression. Nat Commun. 2018;9(1):20.

27.  Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. Magic-BLAST, an
accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. 2019;20(1):405.

28. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat
Rev Immunol. 2013;13(4):227-242.

29.  Kumar MP, DuJ, Lagoudas G, et al. Analysis of Single-Cell RNA-Seq Identifies Cell-Cell
Communication Associated with Tumor Characteristics. Cell Rep. 2018;25(6):1458-1468 e1454.
30.  The results published here are in whole or part based upon data generated by the
Therapeutically Applicable Research to Generate Effective Treatments
(https://ocg.cancer.gov/programs/target) initiative, phs000218. The data used for this analysis are
available at https://portal.gdc.cancer.gov/projects.

31. Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the
Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503-508.

32. Park JE, Botting RA, Dominguez Conde C, et al. A cell atlas of human thymic development
defines T cell repertoire formation. Science. 2020;367(6480).




Before Filtering (5077 cells)

(i) (i2 800 mvoutlier FALSE TRUE
» 2000 3 600
8 1500 % 400
S 1000 S 200
S 500 Z ~
o~
0 P PSS o
2”27 O
0.0 2.5 5.0 7.510.0 v AT &
Lib. size (millions) No. of genes E
o
iii) 1250 iv, <
(i) ( )1500 8
£ 1000 @
8 750 8 1000
°_ 500 9 500
2 250 2
0 0 -2.5 0.0 2.5 5.0 7.5
0 25 50 75100 0 20 40 60 c
. PCA Dim1 (50.8%
%Mito. Gene Counts %HKG Counts (50.8%)
C D o
After Filtering (3562 cells)
(M (i)
. (%)
MVOQutlier @ 900 3 300
[0}
« 200
o 600 5
o g 100
o
2 300 0
0 O P PO S
27 Q27 O
0.0 25 5.0 7.510.0 v o ATQ
Lib. size (millions) No. of genes
(iii) (iv)
«» 300 «» 300
MAD @ @
2 200 f;’ 200
Library size —> 3 M.A.Ds, lower o) o
M.A.D . .
No. of expressed genes —> 3 M.A.Ds, both © 100 o 100
Cut-offs: . ) z =z
% Mito counts —> 3 M.A.Ds, higher 0 0
% HKG counts —> 3 M.A.Ds, both 0 10 20 30 0 5 10
%Mito. Gene Counts %HKG Counts
E F
— Expression freq. vs Mean No batch effects observed
[2)
o 100 |
o
o |
3 0.9 |
(&}
5 7 3330 I !
2 ~ genes per ce > I
s 2 06 |
7 S0f —— — - - — - — - — - —— — )
o 1131 genes are expressed = y '
3 in at least 50% of cells 0.3 U\
o
5 25 ~
§ 44}86 genes are expressed 0.0 - : -
g in at least 25% of cells
g T 0.01 1 100
- 0 5 10 15
. % variance explained (log10-scale)
Mean normalised counts (all features; log2—scale)
individual total_features SeqDate total_counts

Figure S1



Expression of markers genes from Cluster 1 in Immgen dataset
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mMRNA expression (RNAseq): ERG
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Expression of TFs in T-ALL subtypes

B g o d e o o

$®ag®a®

L S g dag

P pobP
A B e g e e
B TPL e

KDM5B

—
N
.

10.04
7.5
5.0

25
0.0
10.0

SOX4

..-...l**&‘a

ERG

lbeea®dh

7.5
5.0
25
0.0
10.0

(sunoogboy)

7.5
5.0
25

c 00

10.04
7.5

MYB

oissaidxg

NFE2

5.0
2.5
0.0 4

BCL11A

| .6~m‘°6

10.01

ETV6

7.5
5.0
25
0.0
10.0
7.5
5.0
25
0.0
10.01
7.5
5.0
25
0.0
10.0
7.5
5.0
2.5
0.0

Q. . .*.m.&‘~.

.
o
ZMIZ1

.o ? .0
KDM5B

v..

NOTCH1

AR T R
PoPreop®

10.01
7.5
5.0
25

- 1--

CD34

(8148 3

0.0
10.0
7.5
5.0
25
0.0
10.0
7.5
5.0
2.5
0.0

| lydouisoaainjew

I 11807 O1lLIPUSP ™ [BUOIIUSAUOD
I s1f00u0W

L abeydoioew

- 1190 ewse|d

- 190_9_eAleu

|99~ L e1og—eydie”aAamsod-8a0

1190”1 "ejeg-eydje”eAsod-Q0

pajenualayip Ajleuiwsy |90 | —ejag—-eydieTsod-ggoAlowaw Ioyoaye
11997 | e19g—-eydieTaAnsod—-gqy Alowaw I008ye

119071 "el9g—-eydieTaAnsod-ggD Alowaw [esuad

119071 "elog-eydie aAisod—qDAlowawI0}08)e

119071 "e19g-eydieTaAnsod—q0 Alowaw [esuad

11901~ Aioyeinbal

Thymocytes

s e s sJoemers s o Y

T ————————

STASOWATT_e1eg—eqde_sAmNsod-8qo
ayfoowAy)ejag-eydie—aamsod-yqo
a1AoowAy)_aAisod_a|gnop_aAlsod—ggo _aAnsod—$g0_aAsod-eqo
21AoowAureAilisod”8|gnop—aAilisod— —aAllisod— gD aAiebau—£qD

= 3]

e
*
.73

,4‘\"00.

I lydosinau~ainyew

[ mollew—auoq Jo [iydolinau~pajuswbas
I mosurew auoqjo|iydosnau

I e1400j@Awo1ydosnau

Expression of TFs in normal cells

1

T
.
% .-tuoco--ooo"---l.

8

4
>
) P
S

Qﬂ:”’ poc @t LY 0*-&”16\'.
TFDP2

e s G¥e
Fewaw

I 1oyuaboid~plojpAw uowwod
[ 190 Jojuaboideykoouow—ajhoojnuelb

I JoyuaboidploydwA| uowwoo

[ 190 Joyuaboid jusjodnynw—onsiodoyewsay
[ 199" walsousiodojews

Progenitor-like
populations

owowno

Qunono OoOwwowno

(sunoogho) uoissaidxg

Qvwowno

ONOoNO OVOoOOo OQOOoNO OVOoo Qoo

ONLANO OMNBANO OMNWANO OMNWANO ONWAO
— — — — —

Figure S11



R=-0.11, p<2.2e-16

R=-0.38, p<2.2e-16

R=-0.67,p<2.2e-16

Figure S12

Clusters
0 o o CLP-like
g 50 § 50 g 50 CMP-like
7 2] (2]
Q 9] ) HSC-like
| o o
O 25 Tos T2s
© © ©
o [an [
0.0 0.0 0.0
-2 0 2 4 0.0 2.5 5.0 -2 0 2 4
Rel. CMP score Rel. CLP score Rel. CMP score
R=0.41,p<2.2e-16 R=0.53, p<2.2e-16 R=0.39, p<2.2e-16 Clusters
0 o o ® P1(2)
n:_’ 8 . 8 © P2(6)
&) I I ® P3(3)
— —25 — 25
[3) 0] [) P4(13
3 ° 2 © P4(13)
©® P5(5)
0.0 0.0
-2 0 2 4 0.0 2.5 5.0 -2 0 2 4
Rel. CMP score Rel. CLP score Rel. CMP score
HSC signature genes CMP signature genes CLP signature genes
AHSP AZU1 ADNP
ALAS2 cLC AIMP1
ATP8B4 CPA3 ASCC1
CA1 CRHBP ATPVIG1 9 9 0 0000000000000
ccoet2 CRYGD Cllorf57
CD34 CTSG COXCo000000000000000
CRHBP ELANE CAMgooee0e0c000000000
ERG EPX DNTT
EXD2 FLT3 DSTN eo0ocoo °
FAM124B HDC FAM76A
FLT3 HPGDS GPN3
GSTMS MPO HIVEP3
GYPA MS4A2 IDH3A
GYPE MS4A3 IGBP1 XX ° °
KLHL9 NAALADL1 METAP2 XK °
LAPTM4B PRG2 NGLY1
LsM2 « 0000 ¢ PRTN3 OXAI1L °
MMRN1 RNASE2 PLP2
MYCT1 RNASE3 PSMA6 eoeceo
PLS3 SERPINB10 PSMB3 o, c s o00@00@0o000o0 °
SCARF1 STAR RFC4
SLCAA1 N ARQE (\ FOTME SORAES SNRPD1 XN X KN ‘ °
TCEAL4 S %%gga"( <>$° “\/\i% s TOMM20 eoece oo °
XPO7 & VPREB1
ZMYM3 WDR33 eocoe
AN Q\\ @\@q@ (\\,}\(\ 99\ &\ &;\ &@ g\ Q@\(\ b\@
SE "3@0 R e TS S S i R



100
Cluster

[
m2
D
m4
W5

6
|7
s

80

60

% of cells

40

20

o | S
Endpoint Root

Figure S13



GSI Treatment
(10 days)
P3 .44
et P5
A
. 'r (8,15 days)
P4
(1 day)
\°b
1.00'
c 0.75]
o
£
2
o 0.50
o
°
T .25
0.004
Untreated GSI Treated

Rel. Proportion

Untreated
1D_GSI
3D_GSI
8D_GSI
10D_GSI
15D_GSI

1.00

0.75 |

0.50 |

0.25 4

0.00

0.75

0.50

S-score

0.25 .

0.00 et
.'

-0.25{ °

© Endpoint

©® Root1
© Root2

Untreated

GSlI Treated

2
__ Treatment

'“\..n.

i
".‘r,ﬁ'.".";. !

Figure S14

ot
IIII|IIII 1 Irl

NLGN4X
SCN7A 1
BEST3

GADD45A

NOTCH3

PFKFB2 0
HIRA

CD244

TWISTNB 1
MYO7B
PGRMC2
EPB41L5
B3GNT2
HECTD1
BLOC1S6
SLC19A1

-2

| FBXO21
Treatment

15D_GSI
8D_GSI
Untreated

CHI3L2
SEMA7A

0.2
G2M-score

E

Rel. Proportion
o IS
(o ~
2 b

o

N

[&)]
1

©

o

o
1

0.4

®G1
® Ga2Mm
®Ss

Untreated

GSlI Treated

Subclusters
2 o cluster10
L. clusterit
b 4 o cluster14
- v o cluster20
! cluster22
' cluster23
o Cluster24
o cluster4
clusters
clusteré
o cluster7
o cluster8
o —_—
3
Q2
2
3
=]
80
X
0 -1
a
22
=3
o . -
Untreated Treated



100+
€
Q
2
& =Root1
2 ] Root2
§ 50 [ Endpoint
[3)
o
SRS
gt S
&
Root cells Endpoints
MK MK
yg;\:%g . zﬁ;@g Endpoint
i
Sy S~ \SENEX =,
=N A s
= =2 Iy, \
% TS
2= .
A @ WOE UL
Root1

Relative Percent

2o
57 ST
o g
SEIN A
>
D I3 {; -
74
Root1

Figure S15

Root2

I Root1
I Root2

Endpoint

[ | Endpoint

Patients Clusters
® ETP-1* e 1
® ETP-12* ®2
® ETP-13* 3
® ETP-14 e 4
® ETP-27 e5
® ETP-5-XNE ®6
© ETP-8-KMG*
. .
l’. .‘..
o\.* :f
ETP PDX
Phase
G1 --0.28. p=8.3e~
ocam T2 .. Aro ey
®s 8 s
¥ 0
£ . ~ NOTCH1_wt
- ~ NOTCH1_mut
2 2
® . :
[0
c -4
-1 0 1 2 8
Relative Notch Activity
Patients ° . Clusters
©® TALL-06078-150
© TALL-x-12*
©® TALL-DFAT-28537*
® TALL-x-15
©® TALL-x-9*#
T-ALL PDX
2
Phase ’
®G1
: gZM . ~NOTCH1_mut_PTEN_del

Relative PI3K Activiy

10 1
Relative Notch Activity

2 3 4

+~NOTCH1_mut_PTEN_wt
~NOTCH1_wt_PTEN_wt



1.0

o

0.7

(&)

0.5

Relative Percent
o

0.2

&3]

0.0

o

Signature
. Root2
. Root1
. Endpoint

TARGET cohort

HOXA LMO1-2 LMO2_LYL1

100 - I
751
50
25
0-
75

NKX2-1 TALA TAL2
50

100 -

Signature

25

. Endpoint

Relative Percent

TLXA TLX3 Unknown

100 -
75-
50
25

0-

Figure S16



Cluster » Roott @ Aootz
4 R=-026,p=16006
.
.
. .
2
&
I
&
o
-2
025 000 025 050
Notch
Cluster » Roctt @ Roctz
.
R=068,p<220-16
. .
50
25
x
g
=
=
00
-25 .
025 0.00 025 050
Notch
Cluster » Roctt @ Aotz
00 R-066,p%220-16
75
.
.
.
50
2
£
<]
2
25
00
025 0.00 025 050
Notch
Cluster  Roctt @ Roctz
R=07,p<22016
50
25

Figure S17

0.25 0.50

5.0

25

Hyporia

0.0

NFkB

Cluster ®

Root1 ®  Rootz

o
#.075,p<22e16

0.00

Cluster ® Roct1 ® Rootz

R=057,p<22e-16

TNFa

Cluster » Roct1 ® Rootz

e
R=062,p<22e-16

Cluster ®

Roatl ®  Root2

025 050

JAKSTAT

PI3K

Trail

PIM

n
»

Cluster ® Roct1 ®  Rootz

.
R=052,p<22e-16

Cluster ® Root1 ® Rootz

R--069,p<220-16
2 .
o
-2
4 . .« .

025 0.00 0. 050
Notch
Cluster ® Root1 ® Rootz
o
. R=054,p<22016
4 .
2
o
. ®

2 . .

025 0.00 0. 050

Notch
Cluster ® Rootl ®  Root2
. R=065,p<22e-16
.

0.4
0.0
0.4

025
Noteh



Patient 1

AT T 1
UAREARE SRR ARCACE AR SCACHRCC G ACEMCRMCRNCTNCENCANININD Treatment [ 4
A A RN R AR

Phase

\ EGFR >

Hypoxia

JAK.STAT

\ MAPK

| NFkB
PI3K

| TGFb

|| TNFa
Trail
VEGF
p53

m Notch
PIM
MYC

-2

I-4

Patient 3

AT 0 T 00 AR B State
AR ALE OO HLIADUT T LIEVLE 1 Treatment
(0 I A U0 NI

|
Phase
\ EGFR
Hypoxia
\ JAK.STAT
| maPK
NFkB
PI3K
|| TGFb
| TNFa
\ Trail
\ VEGF
\ p53
Notch
PIM
MYC

[«

I-4

Patient 5
AN 000000000 000 S State
000 I

DN Treatment

Phase
1 | EGFR
Hypoxia
\ JAK.STAT
| | mAPK
| | NFkB
PI3K 2
| | TGRO
| TNFa
||| Trail
[ ][] | VEGF
| \ p53
|| Notch

| PIM
L omye

4

Figure S18

State

. Endpoint
Others

Root1
Root2

Treatment
. Untreated

Phase

G1
G2Mm
S

State
. Endpoint
Others

. Root1

Treatment
10D_GSI
3D_GSI
Untreated

Phase
G1
G2M
S

State

. Endpoint
Others

Root1
Root2

Treatment
15D_GSI
8D_GSI
Untreated

Phase
G1
Ga2M
S

Patient 2

AL U state
(I Treatment
D

Phase
\ EGFR
Hypoxia
JAK.STAT
MAPK
NFkB
PI3K
TGFb
TNFa
Trail
VEGF
| P53

Notch
\ PIM
MYC

Patient 4

A State
LT O LRI Treatment
O R D

Phase
| EGFR
‘ Hypoxia
| | JAK.STAT
MAPK
NFKkB
PI3K
| | TGRD
| TNFa
I | Trail
\ VEGF
\ p53
\| Notch
\ . PIM
| MYC

State
I4 . Endpoint
Others
2 Root1
Root2
0 Treatment
. Untreated
-2
Phase

I|_4 G1
G2M
S

State
4 . Endpoint
Others

2 Root1
Root2

0 Treatment

1D_GSI
-2 Untreated

Phase
-4
1 e
G2M
S



Buparlisib

[eS]]

Buparlisib + 1uM GSI

Gsl

LIRS )

2

= DND-41

o

2 -
g 10 . -
N : -
© =
£ 05

(<]

£ o

>

E OO T T T 1
5 -2 1 0 2
[1]

S [pM]

3

2 HPB-ALL

o

210

T

o

N

g o5

6

£

> 00 50

£ 2 A 0 2
s (M)

>

8 Jurkat

=

o

2

T

(]

N

g o

15

£

2> 004 ‘
= 2
e}

s

>

Figure S19

+ 0.25uM Buparlisib

Buparlisib

Gsl

Buparlisib + 1uM GSI
GSI + 0.25uM Buparlisib

Buparlisib

Gsl

Buparlisib + 1uM GSI
GSI + 0.25uM Buparlisib

DND-41 Buparlisib + 1uM GSI
2
Antagonistic

Oy Additive

Synergystic

0+ T 1
0.0 0.5 1.0

Fa

HPB-ALL Buparlisib + 1yM GSI

10° 10" 10° 10 10
pAKT (T308)

4

DND-41 GSI + 0.25uM Buparlisib

2
Antagonistic
51 Additive
Synergystic
0+ ; :
0.0 0.5 1.0
Fa

HPB-ALL GSI + 0.25uM Buparlisib

2- 2
Antagonistic Antagonistic
o 1J‘ Additive o1 Additive
‘ Synergystic Synergystic
ol ‘ ‘ ol ‘ ‘
0.0 05 1.0 0.0 g5 1.0
Fa Fa
DND-41 Ch34+
250K] cpaa-
200k | 919
<
& 150K
(7]
P 100K
50K |
0 50K 150K 250K 10' 102 10° 10* 10°
FSC-A CD34
o 1007 CD3s- CD34+ g 1997 cDas- CD34+| mmCD34-
2 g0 92.8 7.24 2 g 93.2 6.85 CD34+
2 60 2 60
T T
(7] [T}
N 40] N 40]
[} @
E 20] E 20]
2 2
0 0

10° 10" 10° 10° 10
p4E-BP1 (S65)

4



TIGIT PDCD1 CTLA4
/T\‘u s PE-
gt LR 4 \
,_st’\,.ti«, /."‘}g’ { e
"‘”"3‘/ L2505 D
Le 5 I “/ | /7
\N_7 \_7 N,
PVR/NECTIN2 CD274 CD86
-
- - - N
~ \ ~ ~ "\ ]
v - \ -_- b ,— /\ﬁg
~ ~ ; N ~
\\ . \\ / R b
AT t r°N PR
\ :f - (,, ‘ \ g, =T ‘l {‘
e ==7 == R Rk
L \ ! [} \
NV} <~/ \_J
LGALS9

HAVCR2
Inhibitory R s
receptors on AL e
T-cells " :‘:ﬁ}:
1 /
\N_7
LGALS9
-\
Inhibitory SURERS ";é
ligands on R SRITN
T-ALL cells g 1
= e
[ |
N
B
T4l
=
o
S
S
[
Qo
g
5 \
x
wooq)
N
\%
2
lold

Figure S20




[ | HPB-ALL
600 - 219G
M| Galectin-9
400 4
l_
=z
o]
o) APC %
o 82.1
200 - | |
0 L’_r—/ T Lk | L | ™
10" 102 1® 10t 10
LGALS9-APC
600 Loucy
Emm
M| Galectin-9
T
P
o)
o)
o APC %
] 25.7
200 R |
0 §
I T D SV DY
10 10 10 10 10
LGALS9-APC
800 | NALM-6
1 [®/1gG1
W[ Galectin-9
600
. ]
=z
5 ]
g 400
APC %
] 68.1
200 } ]
O -Ll/'T"l/" '|""| T '|""| T '|""| T '|""| T
101 102 10% 104  10°
LGALS9-APC
] KG1
600 H/IgG1
M| Galectin-9
= 4004
Pz
o)
8 APC %
] 95.0
200 ’ !
0 'Igf/'l L L B L BRI L
107 102 103 10%  10°

Figure S21

LGALS9-APC

COUNT

COUNT

COUNT

COUNT

KOPT-K1
B(igG1
| B/ Galectin-9
600
4004
APC %
] 71.8
200 :/ i
0 .\’l_|/1 LR | T T LA |
10" 102 1® 10t 10
LGALS9-APC
| MOLT-4
400 Elqm
| M| Galectin-9
300
] APC %
] 96.3
200- . \
| T 1
100-
0 - TT/_/ll LN b B L L L
100 102 108 10t 10°
LGALS9-APC
SEM
] H|1gG1
8004 M| Galectin-9
600-
400
] APC %
] 918
200+ :/ i
0] "_,I_/_//'I \'I AL e R L |
100 102 103 104 10%
LGALS9-APC
] HL-60
500+ HIgG1
| M| Galectin-9 |
4004
300
] APC %
200 46.4
] ! |
100
0

N AR P UL LA BRI LA
107 102 108 104 10%
LGALS9-APC




*%

2.5

c B Vedia
- | T-ALLsup
¥
Q.
5§ 15
<O
Z o0
m L
Eg 1.0_
(4] S
e 2
> 5]
> 05
I
0.0_

act. CD8+ anti-Gal9 rec.Gal9

Figure S22



Flow sorting strategy for leukemia blasts
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Flow sorting strategy for CD19+ B-cells, CD3+ T-cells and CD14+ monocytes
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