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Supplementary Figures 

 

Supplementary Fig. 1| Setup for acoustic manipulation and microindentation. 

a) A photograph of the manipulation device integrated into a CFM. The force sensor is 

moved using a 3D micropositioner. Once the sensor is positioned, the indentation process is 

performed via the high-precision piezo stage. A technical drawing of the sensor holder as 

well as the design of the acoustic device can be found on github (see Data Availability). 

Further information on individual components of the indentation system is provided in Vogler 

et al.1 b) Measurements on onion epidermal cells used to quantify the repeatability of our 

mechanical characterizations of biological specimens. The graph shows the apparent 

stiffness values for 5 independent onion cells with 10 measurements each. All 10 

measurements were performed on the same location of specimen to quantify the 

repeatability of our characterization method. The boxes represent the interquartile ranges, 

the center lines represents medians, and the whiskers denote the ranges of minima and 

maxima. The resulting average coefficient of variation CV is 4.8%. A detailed statistical 

evaluation is provided in Supplementary Note 2. c) A schematic showing the arrangement of 

the manipulation device with a pollen grain. The specimen is trapped and re-oriented to the 

sensor probe using acoustic excitation of microbubbles. d) A detailed visualization with a 

Caenorhabditis elegans nematode in the manipulation device. By exciting multiple parallel 

microbubbles, the same design as shown for pollen grains allows manipulation of the 

nematode.  
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Supplementary Fig. 2| Acoustic streaming and controllability. 

a) Counter-rotating, in-plane vortices near the bubble/liquid interface. The streaming is 

visualized using 1 µm fluorescent particles. b) A 3D schematic illustrating the two co-existing 

acoustic streaming patterns. The out-of-plane vortices are higher than the microbubble, while 

the in-plane vortices are limited to the height of the bubble. c) A graph showing the 

controllability of the out-of-plane rotation for a single lily pollen grain. Its rotational velocity 

depends on the voltage as well as the frequency used to drive the piezoelectric transducer. 

Each data point represents a single measurement for angular velocity of a pollen grain at a 

specific excitation frequency and voltage. For both data sets, i.e., at 23 and 24 kHz, the 

rotation of a single pollen was characterized to prevent noise based on biological variation. 
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Supplementary Fig. 3| Stiffness variations of lily pollen grains. 

a) No correlation between stiffness and shape or size of the pollen grains was observed. The 

hydrated pollen grains in a1) and a2) are both comparable in dimension; however, their 

mechanical properties vary strongly (intine, brown; exine, green). The pollen grains were 

characterized on the same date using the same force sensor and were taken from the same 

flower sample. A violin plot containing the apparent stiffness values for intine and exine (m = 

300) measured on 30 biologically independent lily pollen grains in CaCl2 solution. On each 

sample, 10 independent measurements to quantify the different surface regions. The box 

represents the interquartile range, the center line represents the median, and the whiskers 

represent the 5th and 95th percentiles. The maxima and minima are denoted by the start and 

end of the violin plots. c) A violin plot containing the stiffness values characterized through 50 

independent single indentations on 50 biologically independent dehydrated lily pollen grains. 

The indentations have only been made on the exine, as the intine was inaccessible due to 

the folded state of the pollen. An average apparent stiffness value of 194.2 N/m (95% 

confidence interval [166.7 N/m, 222.7 N/m]) was detected for the exine of non-hydrated 

pollen grains. The box represents the interquartile range, the center line represents the 

median, and the whiskers represent the 5th and 95th percentiles. The maxima and minima are 

denoted by the start and end of the violin plots. Scale bars = 50 µm. 
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Supplementary Fig. 4| FEM simulation of mechanical pollen characterization. 

a) Simulated unpressurized lily pollen grain next to the inflated version with turgor pressure P 

= 0.2 MPa. b) FEM mesh of an unpressurized lily pollen grain as well as, for comparison, the 

outline of an inflated pollen grain with turgor pressure P = 0.2 MPa, Poisson’s ratio ν = 0.3, 

Young’s modulus of intine Ei  = 10 MPa, and Young’s modulus of exine Ee = 100 MPa. c) 

Indentation simulation on the exine and intine of an inflated pollen grain. The position of the 

indentation is indicated by black lines. d) Indentation of intine for different combinations of 

turgor pressure P and intine Young’s moduli Ei. The dashed line denotes the maximum force 

applied during experimental characterization. e) Indentation of the exine for varying turgor 

pressure P and exine Young’s moduli Ee. For each measurement, the intine Young’s 

modulus Ei is half of the corresponding exine Young’s modulus Ee. f) Indentation of the 

colpus (intine) for varying exine Young’s moduli Ee. The calculated apparent stiffness for 

each configuration in d), e), and f) can be found in Supplementary Table 1. g) Indentation of 

a spherical shell model (diameter = 100 µm, Poisson’s ratio ν = 0.3, Young’s modulus E = 50 

MPa, turgor pressure P = 0.1 MPa) to investigate the source of the simulated sublinear 

indentation curves for the pollen grain. The shell thickness was varied across 0.5 and 1.5 µm 

(wedges simulation) and set to 0.2 µm for the membrane simulation. As can be seen, for the 

same material properties (pink star and blue plus), decreasing material thickness can affect 

the indentation curve, shifting it from a sublinear to superlinear behavior. Each linear fit has 

been performed in an indentation depth range of 0.1 to 0.5 µm. Scale bars = 25 µm. 
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Supplementary Fig. 5| A schematic showing the fabrication steps for microcavities. 

a) Microchannels are fabricated using SU-8-based photolithography. b) The microchannels 

are transferred into PDMS by molding. c) The PDMS is cut perpendicular to the 

microchannels to create microcavities. d) By oxygen plasma bonding, the PDMS is 

chemically fixed to a glass slide to seal the bottom of the microcavities. Thus, one side 

remains open allowing for the trapping of microbubbles and subsequent manipulation of the 

specimen. 
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Supplementary Tables 

 

Supplementary Table 1| Simulated intine and exine stiffness for varying turgor pressure and 

Young’s moduli. 

All simulations assume a constant poisson ratio of 0.3 as well as constant cell wall 

thicknesses, i.e., 1.5 µm for the intine and 0.5 µm for the exine. The apparent stiffness values 

ki and ke have been calculated through linearization between indentation distance 1.5 and 

1.8 µm and 0.4 and 0.8 µm, respectively. Please note that combinations of higher pressure 

and lower material stiffness (for the intine) led to numerical failure of the model. However, we 

do not consider such combinations as likely because Young’s moduli smaller than 1 MPa 

have never been reported for plant tissues and the induced stretch would have been high 

and would produce very distinct curvatures for such layers. 1 denotes the apparent stiffness 

for the simulations shown in Supplementary Fig. 4d. 2 denotes the apparent stiffness values 

of the indentation simulations shown in Fig. 2j.  

Model Parameters Apparent Stiffness (N/m) 

Turgor Pressure P 

(MPa) 

Young’s Modulus 

Intine Ei (MPa) 

Young’s Modulus 

Exine Ee (MPa) 

Intine ki 

@ 1.65 µm 

Exine ke 

@ 0.6 µm 

0.1 5 10 4.26 3.98 

0.1 10 20 4.36 5.62 

0.2 10 20 8.52 1 7.98  

0.2 10 50 8.23 10.6 

0.2 10 100 7.9 1, 2 12.7 2 

0.1 50 100 7.82 13.69 

0.2 50 100 11.03 17.96 

0.3 50 100 12.17 21.7 

0.2 100 200 15.65 27.37 

0.3 100 200 19.29 31.82 

0.3 200 400 26.93 49.95 
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Supplementary Notes 

 

Supplementary Note 1| Reynolds number for an oscillating microbubble 

According to P. Marmottant and S. Hilgenfeldt,2 the Reynolds number for an acoustically 

excited microbubble can be calculated as:  

Re =  𝜀2 (
2𝜋𝑓𝑎2

𝜈
)

1
2

≈ 0.35, 

with the normalized oscillation amplitude ε = 0.10, the bubble radius 𝑎 ≈ 100 µm, the 

excitation frequency 𝑓 = 20 kHz, and the kinematic viscosity of water 𝜈 = 1.0𝑥10−6 m^2/s. 

The actual value may differ given the requirement of sphericity. 

 

Supplementary Note 2| Repeatability of mechanical characterization of biological specimens 

To quantify the repeatability of our indentation-based mechanical characterizations, 50 

measurements were performed on 5 onion epidermal cells, i.e., 10 repeated indentations per 

cell (see Supplementary Fig. 1b). Onion epidermal cells were chosen as they have a 

homogeneous cell wall and prevent possible measurement artifacts through realignment or 

slippage. Repeatability for each sample was derived through the coefficient of variation (CV) 

according to B. Carstensen.3 The individual CVs for the cells 1 – 5 are 6%, 3%, 5.1%, 3.5%, 

and 6.6%, respectively, which leads to an average CV of 4.8%. 

It is crucial to highlight that the reproducibility of mechanical characterizations is also affected 

by changes in the biological specimen, such as local cell wall weakening, induced through 

the repeated indentations or changes in turgor pressure due to the hydration state of the 

sample. 

 

Supplementary Note 3| Detailed statistical normality test 

Given the near bimodal nature of the obtained apparent stiffness values for pollen grains, all 
data has been tested for normality using a D’Agostino omnibus K2 prior to the statistical 
evaluation through t-tests. Intine apparent stiffness (K2 = 14.2, p = 0.0008) as well as exine 
apparent stiffness (K2 = 11.47, p = 0.0032) from pollen in deionized water were found to 
show a non-normal distribution. Combined intine as well as exine measurements obtained 
from lily pollen grains in deionized water have been detected as not normally distributed (K2 
= 17.95, p = 0.0001). Combined intine as well as exine measurements obtained from lily 
pollen grains in CaCl₂ solution were found to show a non-normal distribution (K2 = 33.85, p < 
0.0001). Normality tests for apparent stiffness ratios ki/ke from lily pollen grains in deionized 
water (K2 = 0.3949, p = 0.8208) and pollen grains in CaCl2 solution (K2 = 2.189, p = 0.3347) 
are not significant, i.e., the data can be treated as normally distributed. Measurements from 
folded lily pollen grains have been found normally distributed (K2 = 5.703, p = 0.0578), albeit 
the near-significance of the result leaves room for discussion. 

Please note that t-tests have only been applied to stiffness ratios, which do not display 
bimodality and can be assumed as sampled from a Gaussian distribution.  
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Supplementary Note 4| Detailed statistical comparison of stiffness ratios 

A two-tailed t-test for independent-samples and unequal variances (F = 4.79, p = 0.03) was 

performed to compare the stiffness ratios in deionized water (M = 0.56, SD = 0.12) and 

calcium chloride solution (M = 0.66, SD = 0.08). The difference, -0.1, BCa 95% with a 

confidence interval [-0.15, -0.05], was significant t[58] = -3.84, p = 0.000312. 

 

Supplementary Note 5| Detailed statistical comparison of stiffness regions in C. elegans 

The stiffness values of the two regions were compared with a two-tailed t-test for 

independent samples with equal variances (F = 2.85, p = 0.09) and the difference, 0.22, BCa 

95% confidence interval [0.16, 0.28], was reported significant with t[48] = 7.89 and p = 3.14e-

10.  

 

Supplementary Note 6| Numerical simulation of pollen grain indentation 

Indentation simulations were performed with the software MorphoMechanX 

(www.morphomechanx.org) and used the finite element method (FEM) to model pollen grain 

mechanics.  

 

The pollen mesh was generated by extruding to four wedge layers (each of 0.5 µm 

thickness) a rotation ellipsoid represented by a membrane mesh whose major and minor 

axes were, respectively, 128 µm and 97 µm. To represent the colpus region, where only the 

intine layer is present, a portion of the outer layer of wedges was manually selected and 

eliminated to produce the final mesh represented in Supplementary Fig. 4a. The average in-

plane element length is 2 µm. 

 

We used a hyperelastic Sant-Venant Kirchhoff isotropic material law for the whole grain, 

characterized by a Young’s modulus E (connected to the material stiffness) and a Poisson 

ratio 𝜈 (defining the tendency of the material to preserve its volume; in our case, this 

parameter was 𝜈 = 0.3, making the material quite incompressible). The three inner wedge 

layers represent the intine and are assigned the same material properties, while the outer 

layer, where present, represents the exine and is assigned different material properties as 

described in the main text. 

 

The turgor pressure P was assigned on the internal faces of the grain and, when mechanical 

equilibrium is computed, this will inflate the pollen grain (see Supplementary Fig. 4a, b).  

To compute the mechanical equilibrium, for both the inflation and indentation processes, a 

FEM-based simulaltion was used. The nodal displacement over the mesh coordinates was 

obtained through an iterative semi-implicit Euler method (see Vetterling et al.4): 
 

𝐮𝜇𝑖(𝑡𝑘 + 1) = 𝐮𝜇𝑖(𝑡𝑘) + 𝑑𝑡𝑘 (1 − 𝑑𝑡𝑘
∂𝛱

∂𝐮𝜇𝑖 ∂𝐮𝜃𝑗
)

−1
∂𝛱

∂𝐮𝜃𝑗
                                                            (6.1) 

 

where 𝐮𝜇𝑖 indicates the nodal displacement of the mesh node 𝜇 from the reference 

configuration in the 3D space coordinate 𝑖 (Greek letter indicates always nodal indexes, Latin 

letter the space coordinate). 𝛱(𝒖) indicates the total potential energy function, which is 

composed of the strain energy function and the external forces function. For an isotropic 

Saint Venant-Kirchhoff material, Π(𝐮) can be represented as follows: 
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𝛱(𝐮) = ∫
𝜆

2𝛺0
 Tr (𝛜(𝐮))

2
+ 𝜇 Tr (𝛜(𝐮)2) 𝑑𝑥𝑑𝑦𝑑𝑧  + 𝑃 ∫ 𝑑𝑥

�̃�
𝑑𝑦𝑑𝑧                                           (6.2) 

 

The first integral refers to the strain energy component and is given by the body deformation 

(but it is invariant for rigid body deformations), 𝜆 and 𝜇 are the Lamé coefficients, which are 

related to the Youngs Modulus E and the Poison ratio ν in the following way: 

 

𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
,   𝜇 =

𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)
                                                                                      (6.3) 

 

The Green-Lagrange strain tensor is represented by 𝛜, Tr indicates the trace of the tensor 

and the integral is to be intended over the whole continuum body volume. The second 

integral refers to the contribution of pressure to the total potential energy, the volume integral 

refers to the empty space enclosed by the surface of the body exposed to pressure (for a 

pollen grain, this refers to the hollow volume inside the grain). This formulation is valid for 

large strains and large deformations. 

 

In the forces equilibrium computation (which dictates the body deformation as in Eq. 6.1), the 

first and second derivatives of the total potential energy are computed with respect to the 

nodal coordinates. Such computation is performed element-wise and then the resulting 

contribution on each node is assembled globally. With respect to a single element, the 

continuous displacement variable 𝐮(𝑥, 𝑦, 𝑧) is, through multi-linear basis functions, 

represented as: 

 

𝐮(𝑥, 𝑦, 𝑧) = ∑ �̂�μ ϕμ(𝜉, 𝜂, 𝜁)6
μ=1                                                                                               (6.4) 

 

where �̂�μ stands for the vectorial nodal displacement at the element node μ, while the multi-

linear basis functions ϕμ are expressed with respect to the wedge-isoparametric coordinates, 

which represent a wedge made by two parallel isosceles right-angled trianglular faces 

connected by three squares of side length 1 unit.  

 

𝜉 = 𝜉(𝑥, 𝑦, 𝑧),  𝜂 = 𝜂(𝑥, 𝑦, 𝑧),  𝜁 = 𝜁(𝑥, 𝑦, 𝑧)                                                                      (6.5) 

 

𝜉 and 𝜂 define the wedge triangular faces, so that 0 ≤ (𝜉, 𝜂) ≤ 1 and (𝜉 + 𝜂) ≤ 1, while 

−1 ≤  𝜁 ≤  1. A representation of the multilinear basis function can be found at:5 

https://help.febio.org/FEBio/FEBio_tm_2_7/FEBio_tm_2-7-Subsection-4.1.2.html and integral 

quantities are computed using a six-point Gaussian quadrature rule as again shown at the 

above mentioned website. 

 

For a more detailed derivation, see Mosca et al.6 Convergence is reached when the residual 

(given in our case by the average of the minimum and maximum of the norm of the derivative 

of the total potential energy as computed at each mesh node) is below the threshold 10e-6. 

  

After pressurization convergence is achieved, the indentation process occurs. This has been 

modeled in a way analogous to that described in Mosca et al.7 The only difference being that 

the indented node belongs to a wedge and not a membrane element.  

 

The model supports an automated indentation cycle where material parameters for the pollen 

grain (independently for exine and intine) and the turgor pressure can be varied as 

prescribed in a list and the respective indentation curves are saved. The stiffness is 

computed from these curves and recorded into a csv file by a python script available on 

Github (see Code Availability).  

https://help.febio.org/FEBio/FEBio_tm_2_7/FEBio_tm_2-7-Subsection-4.1.2.html
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