1	Supplementary Information
2	
3	
3	
4	
5	Identification and characterization of a SARS-CoV-2 specific CD8 T cell
6	response with immunodominant features
7	
8	Anastasia Gangaev ¹ , Steven L. C. Ketelaars ¹ , Olga I. Isaeva ¹ , Sanne Patiwael ¹ , Anna Dopler ¹ ,
9	Kelly Hoefakker ¹ , Sara De Biasi ² , Lara Gibellini ² , Cristina Mussini ² , Giovanni Guaraldi ² ,
10	Massimo Girardis ² , Cami M. P. Talavera Ormeno ³ , Paul J. M. Hekking ³ , Neubury M. Lardy ⁴ ,
11	Mireille Toebes ¹ , Robert Balderas ⁵ , Ton N. Schumacher ¹ , Huib Ovaa ³ , Andrea Cossarizza ² ,
12	Pia Kvistborg ^{1*}
13	¹ Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute,
14	Amsterdam, North Holland, 1066 CX, The Netherlands
15	² Department of Medical and Surgical Sciences for Children and Adults, University of Modena
16	and Reggio Emilia School of Medicine, Modena, Emilia Romagna, 41125, Italy
17	³ Department of Cell and Chemical biology, Leiden University Medical Center, Leiden, South
18	Holland, 2300 RC, The Netherlands
19	⁴ Department of Immunogenetics, Sanquin Diagnostics B.V., Amsterdam, North Holland, 1066
20	CX, The Netherlands
21	⁵ Department of Biological Sciences, BD Bioscience, San Jose, CA 95131, USA.
22	
23	*Address correspondence to Pia Kvistborg (<u>p.kvistborg@nki.nl</u>)
24	
25	These authors contributed equally to this work: Anastasia Gangaev, Steven L. C. Ketelaars
26	These authors jointly supervised this work: Andrea Cossarizza, Pia Kvistborg
27	

28 Supplementary Figures

Supplementary Fig. 1: Representative gating strategy to identify SARS-CoV-2-specific CD8
T cell responses presented in Fig. 1c-e and Fig. 5a and b. Step 1: Gating strategy used to identify
live CD8⁺ cells. Step 2: Gating strategy used to identify pHLA⁺ cells within the live CD8⁺ cell
population. Step 3: Representative overview of all 75 pHLA dual color code combinations.
Boolean gating. Was used to identify SARS-CoV-2-specific CD8 T cells (double-positive
pHLA⁺ CD8⁺ cells, green) and bulk CD8 T cells (pHLA⁻ CD8⁺ cells, grey). pHLA: peptidehuman leukocyte antigen.

39 Supplementary Fig. 2: Flow cytometry plots of the TTD-specific CD8 T cell responses 40 presented in Fig. 2a-c. a Dot plots of TTD-specific CD8 T cell responses detected in HLA-A*01:01-positive donors. Magnitude of TTD-specific CD8 T cell responses is represented as 41 the percentage of double-positive pHLA⁺ cells (green) of total CD8⁺ cells (grey). 42 Representative gating strategy is provided in Supplementary Fig. 1. **b** Dot plots representing 43 44 the negative control for the detected TTD-specific CD8 T cell responses in HLA-A*01:01negative donors. The magnitude of the TTD-specific CD8 T cell responses is represented as 45 the percentage of double-positive pHLA⁺ cells (green) of total CD8⁺ cells (grey). 46 Representative gating strategy is provided in Supplementary Fig. 1. pHLA: peptide-human 47 48 leukocyte antigen, TTD: TTDPSFLGRY, HD: healthy donor.

49

50 **Supplementary Fig. 3:** Representative gating strategy used for the functional assessment of 51 SARS-CoV-2-specific CD8 T cells presented in Fig. 3a and b and Fig. 5g and h. **a** Gating 52 strategy used to identify live CD8⁺ cells. **b** Representative gating strategy used to assess the 53 expression of IFN γ , TNF, IL-2 and IL-17 in CD8 T cells from patient COVID-131 after

54 stimulation with PMA/IO (technical control, top row), DMSO (negative control, middle row) 55 and the SARS-CoV-2 epitope TTD (bottom row). Percentages represent the frequency of 56 cytokine producing cells. The gates were set relative to the DMSO and adjusted for the 57 PMA/IO control if needed. c Representative flow cytometry plots illustrating the gating 58 strategy used to assess the expression of IFNy, TNF, IL-2 and IL-17 production in CD8 T cells 59 from COVID-143 after stimulation with PMA/IO (technical control, top row), DMSO 60 (negative control, middle row) and the SARS-CoV-2 epitope TTD (bottom row). Percentages 61 represent the frequency of cytokine producing cells. The gates are based on the DMSO control 62 and adjusted for the PMA/IO control if needed. **d** Representative gating strategy used to assess 63 the expression of IFNy, TNF, IL-2 and IL-17 in CD8 T cells from patient COVID-131 after 64 stimulation with VTE (HLA-A*01:01-restricted CMV epitope, bottom row), DMSO (negative control, top row). Percentages represent the frequency of cytokine producing cells. The gates 65 were set relative to the DMSO and adjusted for the PMA/IO control if needed. e Expression of 66 IFNy, TNF, IL-2 and IL-17 in CD8 T cells from COVID-131 with acute disease after 67 68 stimulation with VTEHDTLLY (HLA-A*01:01-restricted CMV epitope) for 12h. Percentages 69 represent the frequency of cytokine producing cells after subtracting the percentages of the 70 DMSO control. f Expression of IFNy, TNF, IL-2 and IL-17 in CD8 T cells from COVID-19 71 patients (n=5) with acute disease after stimulation with PMA/IO (technical control) for 12h. 72 Percentages represent the frequency of cytokine producing cells after subtracting the 73 percentages of the DMSO control. TTD: TTDPSFLGRY, VTE: VTEHDTLLY.

Supplementary Fig. 4: Gene expression analysis of CD8 T cells from COVID-19 patients 75 76 presented in Fig. 4. a Representative gating strategy used to sort on live CD8⁺ cells for single-77 cell RNA and TCR sequencing. b UMAP representations of single-cell gene expression data 78 of CD8 T cells (batch I: n=1180 and batch II: n=1884) isolated from COVID-19 patients (batch 79 I: n=5 and batch II: n=1). Detailed information about the number of patients and cells for each 80 individual patient/batch is provided in Table 2. c Number of differentially expressed genes in TTD-specific CD8 T cells compared to bulk naïve CD8 T cells. Proportional Venn diagrams 81 82 illustrate the overlap and differences in the number of genes that were found to be differentially 83 expressed in batch I (light blue) compared to batch II (dark blue). d Number of differentially 84 expressed genes in TTD-specific CD8 T cells compared to bulk non-naïve CD8 T cells. 85 Proportional Venn diagram illustrate the overlap and differences in the number of genes that 86 were found to be differentially expressed batch I (light blue) compared to batch II (dark blue). 87

Supplementary Fig. 5: Representative gating strategy used for phenotypic characterization presented in Fig. 5c-f. a Gating strategy used to identify live CD8⁺ cells. b Gating of pHLA⁺ cells within the live CD8⁺ cell population to identify SARS-CoV-2-specific CD8 T cells as shown in Supplementary Fig. 1. c Representative gating on live CD8⁺ cells that were used to assess expression levels of phenotypic markers on SARS-CoV-2-specific CD8 T cells.

Supplementary Fig. 6: Prediction quality of selected SARS-CoV-2 epitopes. a Violin plots 95 96 representing the distribution of the proteasomal processing scores predicted by Netchop-3.1 97 for the 50 selected SARS-CoV-2 epitopes per HLA allele included in this study. Colored dots 98 represent CD8 T cell recognized epitopes (n=18) and provide information about their protein 99 origin. **b** Violin plots representing the distribution of the percentile rank binding affinity as 100 predicted by NetMHCpan-4.0 for the 50 selected SARS-CoV-2 epitopes per HLA allele 101 included in this study. Colored dots represent CD8 T cell recognized epitopes (n=18) and 102 provide information about their protein origin. ORF: open reading frame, S: spike, N: 103 nucleoprotein, M: membrane.

105 Supplementary Tables

Supplementary Table 1: Characteristics of COVID-19 patients and healthy donors included in the study. Covered HLA alleles are indicated (*).
Patients were excluded from the analysis of SARS-CoV-2 CD8 T cells if: (1) none of the HLA alleles were covered, (2) <1000 CD8 T cells were acquired, and (3) HLA typing failed.

Patient	Disease Status	Gender	Age range	Treatment	Hospitalization (weeks)	Outcome	Treatment prior to sampling (days)	Hospitalization prior to sampling (days)	HLA-A	HLA-A	HLA-B	HLA-B	Analysis of SARS-CoV-2 CD8 T cell responses
COVID-024	Critical	Male	70-80	Anakinra	4	Discharged	2	2	01:01*	30:02	18:01*	57:02	Yes
COVID-040	Critical	Male	60-70	N/A	6	Deceased	N/A	3	02:01*	66:01	18:01*	41:02	No (2)
COVID-042	Critical	Female	50-60	Anakinra	11	Transferred	2	-2	03:01*	24:02*	35:02	-	Yes
COVID-084	Critical	Male	60-70	Tocilizumab	3	Discharged	18	17	02:01*	03:01*	08:01*	35:02	Yes
COVID-094	Critical	Female	70-80	Tocilizumab	2	Deceased	13	17	02:01*	32:01	51:08	56:01	Yes
COVID-112	Critical	Male	70-80	Tocilizumab	5	Discharged	12	20	01:01*	26:01	35:02	35:03	Yes
COVID-121	Critical	Male	30-40	Tocilizumab	3	Discharged	8	9	03:01*	74:01	07:02*	42:01	Yes
COVID-123	Critical	Male	70-80	Tocilizumab	6	Deceased	13	14	03:01*	32:01	27:05	51:01*	Yes
COVID-127	Critical	Male	70-80	Tocilizumab	3	Deceased	2	2	29:02	31:01	35:01	44:03	No (1)
COVID-129	Critical	Male	70-80	Tocilizumab	20	Transferred	15	18	02:01*	29:02	15:01*	44:03	Yes
COVID-131	Critical	Male	40-50	Tocilizumab	3	Discharged	7	10	01:01*	68:01	15:17	41:01	Yes
COVID-140	Critical	Male	50-60	Tocilizumab	5	Deceased	6	24	11:01*	68:02	35:01	53:01	Yes
COVID-141	Critical	Male	70-80	Tocilizumab	28	Discharged	6	11	11:01*	68:01	35:03	50:01	Yes
COVID-143	Critical	Male	70-80	Tocilizumab	2	Discharged	10	12	01:01*	02:01*	44:03	51:01*	Yes
COVID-147	Critical	Male	70-80	Tocilizumab	18	Discharged	6	10	02:01*	26:01	38:01	44:02	Yes
COVID-150	Critical	Male	70-80	Anakinra	13	Deceased	14	14	24:02*	29:01	13:02	35:03	Yes
COVID-152	Critical	Male	60-70	Tocilizumab	2	Deceased	1	22	01:01*	30:01	13:02	53:01	No (2)
COVID-180	Critical	Male	40-50	Tocilizumab	4	Deceased	5	8	24:07	24:07	35:05	35:05	No (1)
COVID-007	Severe	Female	30-40	Tocilizumab	4	Deceased	1	5	01:01*	32:01	39:01	57:01	Yes
COVID-009	Severe	Male	60-70	Tocilizumab	3	Discharged	3	6	02:05	32:01	13:02	14:02	No (1)
COVID-015	Severe	Male	50-60	Tocilizumab	14	Discharged	2	1	02:01*	24:02*	18:01*	35:03	Yes
COVID-033	Severe	Female	70-80	Tocilizumab	3	Discharged	0	1	02:01*	68:01	35:01	49:01	Yes
COVID-087	Severe	Female	50-60	Tocilizumab	12	Discharged	8	8	02:01*	03:02	39:01	50:01	Yes
COVID-096	Severe	Male	40-50	Tocilizumab	4	Discharged	7	7	01:01*	23:01	49:01	57:01	Yes
COVID-111	Severe	Male	60-70	Tocilizumab	9	Discharged	7	9	02:01*	30:02	18:01*	51:01*	Yes
COVID-116	Severe	Male	80-90	Tocilizumab	4	Discharged	1	5	01:01*	26:01	13:02	44:02	No (2)
COVID-117	Severe	Male	60-70	Tocilizumab	2	Discharged	1	2	01:01*	31:01	15:17	38:01	Yes
COVID-153	Severe	Male	50-60	Tocilizumab	3	Discharged	7	9	01:01*	02:01*	35:01	35:02	Yes
COVID-166	Severe	Male	70-80	Tocilizumab	l	Discharged	15	29	02:01*	32:01	27:05	35:02	Yes
COVID-174	Severe	Male	80-90	Tocilizumab	16	Discharged	8	15	02:01*	24:02*	08:01*	44:02	Yes
COVID-002	Moderate	Male	80-90	None	3	Deceased	0	2	03:02	32:01	18:01*	44:02	Yes
COVID-004	Moderate	Male	30-40	None	I N/A	Discharged	0	3	03:01*	24:02*	07:02*	35:01	Yes
COVID-218	Asymptomatic	Male	30-40	None	N/A	N/A	N/A	N/A	03:01*	26:01	18:01*	38:01	Yes
COVID-219	Asymptomatic	Male	20-30	None	N/A	N/A	N/A	N/A	02:01*	03:01*	18:01*	41:01	res
COVID-220	Asymptomatic	Male	20-30	None	N/A	N/A	N/A	N/A	-	-	-	-	N0 (3)
COVID-221	Asymptomatic	Male	30-40	None	IN/A N/A	IN/A N/A	N/A N/A	N/A N/A	30:01	74:01	18:01*	51:01*	res Vac
COVID-222	Asymptomatic	Male	50.60	None	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	24:02*	20:01	15.17	38:01	Ies
COVID-225	Asymptomatic	Male	20.40	None	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	52:01	32:01	13.17	49:01	NO (1)
UD 01	Haalthy	Male	70.80	None	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	02:01*	02:01*	15:01*	39:01	I US Vac
HD-01	Healthy	Male	70-80	None	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	02:01*	02:01*	07:02*	40:01	I US Vac
HD-02	Healthy	Female	70-80	None	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	01:01*	05:01*	35:01	40:01	I US Vac
HD-05	Healthy	Melo	70-80 50,60	None	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	01:01*	- 11:01*	08:01*	28.01	I US Vac
HD-05	Healthy	Male	60-70	None	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	02:05	11:01*	40:01	50:01	I US Vac
HD-08	Healthy	Female	60-70	None	N/A N/A	N/A	N/A N/A	N/A N/A	01:01*	23.01	40.01	41:02	Vac
HD 10	Healthy	Fomala	60.70	None	IN/A N/A	N/A	IN/A N/A	IN/A N/A	01:01*	25:01	25:01	41:02	I ES Vac
HD-10	пеанну	remaie	00-70	none	IN/A	IN/A	IN/A	IN/A	01:01*	-	55:01	44:05	Ies

- 111 Supplementary Table 2: Detected SARS-CoV-2-specific CD8 T cell responses. Magnitude
- 112 represents the percentage of pHLA⁺ cells of total CD8 T cells. ORF: open reading frame, S:
- 113 spike, N: nucleoprotein, M: membrane.

Patient	Disease status	Epitope	Epitope origin	HLA restriction	Magnitude (% of pHLA+ cells of
COVID 024	Critical	TTDRELCDY	ODE 1-1	A *01.01	total CD8+ cells)
COVID-024	Critical	I I DPSFLGK I	ORF Tab	A*01:01	0.320
COVID-042	Critical	QYIKWPWYI	ORF S	A*24:02	0.006
COVID-094	Critical	YLQPRIFLL	ORF S	A*02:01	0.085
COVID-112	Critical	TTDPSFLGRY	ORF Tab	A*01:01	0.720
COVID-131	Critical	ATSRTLSYY	ORF M	A*01:01	0.021
COVID-131	Critical	CTDDNALAYY	ORF 1ab	A*01:01	0.017
COVID-131	Critical	FTSDYYQLY	ORF 3a	A*01:01	0.377
COVID-131	Critical	LTDEMIAQY	ORF S	A*01:01	0.020
COVID-131	Critical	PTDNYITTY	ORF 1ab	A*01:01	0.390
COVID-131	Critical	TTDPSFLGRY	ORF 1ab	A*01:01	19.000
COVID-143	Critical	CTDDNALAYY	ORF 1ab	A*01:01	0.210
COVID-143	Critical	DTDFVNEFY	ORF 1ab	A*01:01	0.270
COVID-143	Critical	PTDNYITTY	ORF 1ab	A*01:01	0.580
COVID-143	Critical	TTDPSFLGRY	ORF 1ab	A*01:01	13.300
COVID-007	Severe	FTSDYYQLY	ORF 3a	A*01:01	0.062
COVID-007	Severe	TTDPSFLGRY	ORF 1ab	A*01:01	0.074
COVID-087	Severe	RLNEVAKNL	ORF S	A*02:01	0.017
COVID-087	Severe	YLOPRTFLL	ORF S	A*02:01	0.038
COVID-096	Severe	PTDNYITTY	ORF 1ab	A*01:01	0.057
COVID-096	Severe	TTDPSFLGRY	ORF 1ab	A*01:01	3.100
COVID-096	Severe	TVATSRTLSY	ORF M	A*01:01	0.100
COVID-111	Severe	LPYPDPSRI	ORF 1ab	B*51:01	0.220
COVID-111	Severe	YLOPRTFLL	ORF S	A*02:01	0.210
COVID-117	Severe	TTDPSFLGRY	ORF 1ab	A*01:01	2.340
COVID-153	Severe	PTDNYITTY	ORF 1ab	A*01:01	0.085
COVID-153	Severe	TTDPSFLGRY	ORF 1ab	A*01:01	18.400
COVID-004	Moderate	KTFPPTEPK	ORF N	A*03:01	0.038
COVID-219	Asymptomatic	KTEPPTEPK	ORF N	A*03:01	0.125
COVID-221	Asymptomatic	IPTNFTISV	ORES	B*51:01	0.018
COVID-222	Asymptomatic	IPRRNVATI	ORE 1ab	B*07:02	0.009
COVID-222	Asymptomatic	NYNYLYRLF	ORF S	A*24:02	0.009
COVID-222	Asymptomatic	OYIKWPWYI	ORES	A*24:02	0.011
COVID-222	Asymptomatic	VOSTOWSLE	ORF 1ab	A*24:02	0.005
COVID-224	Asymptomatic	LTGHMLDMY	ORF 1ab	A*01:01	0.010
COVID-224	Asymptomatic	TTDPSFLGRY	ORF 1ab	A*01:01	0.010
HD-01	Healthy	ILMTARTVY	ORF 1ab	B*15:01	0.008
110 01	incurry			D 15.01	0.000

	1	Dentile	TTT A	Definition with definition of the CD9 T	CADC	HC-M	UC-V	UC-V	UC-V	1	1		Alterneting								
Epitope	AA length	replide	FILA	ratients with detectable CD8 1	CoV 1	NI 62	220E	OC42	HCOV-	AA location	NT location	Mutation	Anternative	SNV frequency							
ATSPTI SVV	0	OREM	A*01:01	1/9 (11%)	Vec	No	No	No No	No	171,179	27033-27059	T175M	ATSPMI SVV	0.332							
AISKILSTT	,	OKI M	A 01.01	1/2 (11/0)	103	110	110	No	No	4163-4172	21033-21039	T4164I	CIDDNALAVY	0.051							
CTDDNALAYY	10	ORF1ab	A*01:01	2/9 (22%)	Ves	No	No				12752-12781	T4164A	CADDNALAYY	0.017							
CIDDIMENTI	10	Old Tub	11 01:01	2/7 (2270)	103	110	110	110	110		12/52-12/01	D4165G	CTGDNALAYY	0.052							
												D5130Y	YTDEVNEEY	0.052							
DTDEVNEEY	9	ORF1ab	A*01:01	1/9 (11%)	No	No	No	No	No	5130-5138	15652-15678	T51311	DIDEVNEEY	0.398							
DIDIVILLI		Old Tub	11 01:01	1/2 (11/0)	110	110	110		110	5150 5150	15052 15070	E5136D	DTDEVNDEY	0.103							
								1				E207L	LTSDYYOLY	0.032							
									No			D210Y	FTSYYYOLY	0.032							
FTSDYYQLY	9	ORF3a	A*01:01	2/9 (22%)	No	No	No	No		207-215	26011-26037	0213K	FTSDYYKLY	0.080							
												0213H	FTSDYYHLY	0.010							
												A5922S	IPRRNVSTL	1 730							
IPRRNVATI	9	ORF1ab	B*07.02	1/3 (33%)	Yes	No	No	No	No	5916-5924	18010-18036	A5922V	IPRRNVVTL	0.100							
Induttin		Old Tub	B 07.02	1/5 (5570)	103	110		110	110	5510 5524	10010 10050	T5923I	IPRRNVAIL	0.182							
												T716I	IPINETISV	8 439*							
IPTNFTISV	9	ORF S	B*51:01	1/4 (25%)	No	No	No	No	No	714-722	23702-23728	T719I	IPTNFIISV	0.022							
												T362K	KKFPPTEPK	0.015							
												T362I	KIFPPTEPK	0.114							
												P364S	KTESPTEPK	0.031							
												P364L	KTFLPTEPK	0.063							
												P365L	KTFPLTEPK	0.062							
KTEPPTEPK	9	ORF N	A*03:01	2/7 (28%)	Ves	No	No	No	No	361-369	29354-29380	P365S	KTFPSTEPK	2.051							
	<i>.</i>											T366R	KTFPPREPK	0.014							
												T366I	KTEPPIEPK	0.087							
												E367D	KTFPPTDPK	0.022							
												P368L	KTFPPTELK	0.012							
												P368S	KTFPPTESK	0.028							
I DI IDD D GD I		0054	D+#1.01									L5221F	FPYPDPSRI	0.041							
LPYPDPSRI	9 7 9	ORF1ab B*51:01 ORF S A*01:01	B*51:01	1/4 (25%)	Yes	Yes	Yes	No	Yes	5221-5229	15925-15951	P5222S	LSYPDPSRI	0.021							
														I870V	LTDEMVAQY	0.029					
LTDEMIAQY			A*01:01	1/9 (11%)	No	No	No	No	No	865-873	24155-24181	A871V	LTDEMIVQY	0.014							
											. ,								A871S	LTDEMISOY	0.026
LTGHMLDMY	9	ORF1ab	A*01:01	1/9 (11%)	Yes	No	No	No	No	5287-5295	16123-16149	-	-	-							
				, , ,								L452M	NYNYMYRLF	0.024							
	9	9 ORF S	ORF S A*24:02	1/6 (160())	N.	No	No	N.	N.	448-456	22904-22930	L452R	NYNYR YRLF	0.327							
NYNYLYKLF				1/6 (16%)	INO	INO		INO	INO			Y453F	NYNYLFRLF	0.342							
												L455F	NYNYLYRFF	0.014							
																	P1321S	STDNYITTY	0.170		
							1					T1322I	PIDNYITTY	0.013							
PTDNYITTY	9	ORF	A*01:01	4/9 (44%)	No	No	No	No	No	1321-1329	4226-4252	T1322P	PPDNYITTY	0.010							
												D1323Y	PTYNYITTY	0.040							
												N1324S	PTDSYITTY	0.014							
QYIKWPWYI	9	ORF S	A*24:02	2/6 (33%)	No	No	No	No	No	1208-1216	25184-25210	Q1208H	HYIKWPWYI	0.037							
DINEVAZNI	0	ODES	4*02.01	1/12 (70())	Vaa	Ne	No	Ne	No	1195 1102	25115 25141	N1187Y	RLYEVAKNL	0.036							
KLINEVAKINL	9	UKF 5	A*02:01	1/13 (7%)	ies	INO	INO	INO	INO	1185-1195	23113-23141	K1191N	RLNEVANNL	0.095							
												T1637I	ITDPSFLGRY	0.140							
					1			1	1		1	T1638I	TIDPSFLGRY	0.020							
TTDPSFLGRY	10	O ORF1ab	ORF1ab A*01:01	:01 9/9 (100%)	No	No	No	No	No	1637-1646	5174-5203	P1640L	TTDLSFLGRY	0.105							
								1	1			P1640S	TTDSSFLGRY	0.229							
															P1640H	TTDHSFLGRY	0.090				
TVATSRTLSY	10	ORF M	A*01:01	1/9 (11%)	Yes	No	No	No	No	169-178	27027-27056	T175M	TVATSRMLSY	0.332							
VOSTOWELE	0	OPELab	A*24.02	1/6 (16%)	Vac	No	No	No	No	3505 2602	11048 11074	V3595G	GQSTQWSLF	0.010							
VQ31QW3LF	9	OKFIAD	A 24:02	1/0 (10%)	1 05	INO	INO	INO	INO	3373-3005	11040-11074	L3602F	VQSTQWSFF	0.016							
YLQPRTFLL	9	ORF S	A*02:01	3/13 (23%)	No	No	No	No	No	269-277	22367-22393	P272L	YLQLRTFLL	0.820							

115 Supplementary Table 3. Characteristics of CD8 T cell recognized SARS-CoV-2 epitopes. Epitopes with reported hotspot mutations (SNV

116 frequency cutoff: 2.5%) are indicated (*). AA: amino acid, NT: nucleotide, ORF: open reading frame, S: spike, N: nucleoprotein, M: membrane.

corresponding UV-sensitive pHLA monomers. 'J' indicates the UV-sensitive amino acid. Conditional ligand HLA allele STAPG-J-LEY1 A*01:01 KILGFVF-J-V² A*02:01 A*03:01 RIYR-J-GATR¹ A*11:01 AIFQSS-J-TK1 A*24:01 VYG-J-VRACL3 B*07:02 AARG-J-TLAM1 FLRGRA-J-GL² B*08:01

B*15:01

B*18:01

B*51:01

Supplementary Table 4: Overview of UV-sensitive peptides used for generating the corresponding UV-sensitive pHLA monomers. 'J' indicates the UV-sensitive amino acid.

Supplementary Table 5: Streptavidin reagents used to generate fluorescent pHLA multimers.

ILGP-J-GSVY² SELE-J-KRY

IPT-J-FSISI

Florochrome / DNA oligo	Manufacturer	Cat. No.	Lot. No.	Dilution
APC	Invitrogen	S868	1876191	1/16
APC-R700	BD	565144	9023546	1/10
BB630	BD	custom	0091407	1/10
BB790	BD	custom	0091415	1/10
BUV395	BD	564176	9078721	1/5
BUV563	BD	567655	9227337	1/6
BUV615	BD	613013	9193969	1/10
BV421	BD	563259	9197684	1/5
BV480	BD	564876	9115527	1/5
BV605	BD	563260	9119807	1/5
BV650	BD	563855	9197600	1/5
BV711	BD	563262	0007729	1/8
BV750	BD	custom	0091421	1/10
PE	Invitrogen	S866	1736956	1/9
Total-Seq-C0971	Biolegend	405271	B295732	1/50
Total-Seq-C0972	Biolegend	405273	B295731	1/50
Total-Seq-C0973	Biolegend	405275	B304487	1/50
Total-Seq-C0974	Biolegend	405277	B304481	1/50

Supplementary Table 6: Antibodies used in this study. pHLA: peptide HLA multimer assay, PC: phenotypic characterization by flow cytometry, PS: peptide stimulation assay, RNA-seq: sc-RNA- and TCR-seq assay, N/A: not applicable.

Antibody	Fluorochrome / DNA oligo	Company	Cat. No.	Clone	Lot. No.	Dilution	Assay
CCR7	BV711	BD	563712	150503	9022605	1/133	PC
CD14	APC-H7	BD	560180	ΜφΡ9	85600	1/100	pHLA, PS, PC, RNA-seq
CD14	FITC	BD	345784	MqP9	156613	1/100	pHLA, RNA-seq
CD16	APC-H7	BD	560715	3G8	9309425	1/100	pHLA, PS, PC, RNA-seq
CD16	BUV496	BD	612944	3G8	9213597	1/100	pHLA
CD16	FITC	BD	335035	NKP15	7003932	1/100	RNA-seq
CD19	APC-H7	BD	560177	SJ25C1	140610	1/100	pHLA, PS, PC, RNA-seq
CD19	BUV661	BD	750536	SJ25C1	288444	1/100	pHLA
CD27	BV421	BD	562514	M-T271	5051571	1/100	PC
CD28 and β2m	Total-Seq-C0251	BioLegend	394661	N/A	B282243	1/100	RNA-seq
CD28 and β2m	Total-Seq-C0253	BioLegend	394665	N/A	B282244	1/100	RNA-seq
CD28 and β2m	Total-Seq-C0254	BioLegend	394667	N/A	B282246	1/100	RNA-seq
CD28 and β2m	Total-Seq-C0255	BioLegend	394669	N/A	B282245	1/100	RNA-seq
CD28 and B2m	Total-Seq-C0257	BioLegend	394673	N/A	B306454	1/100	RNA-seq
CD4	APC-H7	BD	641398	SK3	35560	1/100	pHLA, PS, PC, RNA-seq
CD4	BB700	BD	566393	SK3	8248607	1/100	pHLA
CD4	FITC	BD	345768	SK3	6313547	1/100	RNA-seq
CD45RA	BUV563	BD	612926	HI100	7219651	1/400	PC
CD69	BUV395	BD	564364	FN50	7108931	1/50	PC
CD73	BB700	BD	746000	4D2	8229890	1/100	PC
CD8	BUV805	BD	612889	SK1	86704	1/50	pHLA_PS_PC
CD8	BV421	BD	562428	PPA-T8	0254861	1/50	PNA-sea
CD95	BUV737	BD	612790	DY2	7032582	1/50	PC
CYCP3	APC	BioLegend	353708	G025H7	7121023	1/100	PS
CYCP5	PV786	DioLegend BioLegend	256026	1252D4	P245255	1/200	PC
	BV780	BIOLEgenu	612080	J2J2D4	7240026	1/200	PC
IILA-DK IENa	APC	BD	554702	P27	21197	1/400	PC DC
II 17	DE	Biologond	512206	D1 169	P206020	1/100	15
IL-17 IL-2	PV750	PD	566261	MO1 17H12	64251	1/100	PS PS
IL-2 I AG 2	BV750	BD	745160	T47 520	9222745	1/200	PC
NKC2A	DF Cv7	Bookmon	P10246	7100	200051	1/100	
PD 1	PE-Cy/ PUV/727	PD	612701	EU12 1	200031	1/100	phLA pHLA
PD-1	DE Cv7	BD	561272	EII12.1	9212298	1/100	PC
PD-1	APC	BD N/A	J01272	EH12.1 N/A	0022949 N/A	1/100	PC pHLA
pillA	APC P700	N/A N/A	N/A N/A	N/A N/A	N/A N/A	1/100	phiLA pHLA
pillA	AFC-K/00	N/A N/A	N/A N/A	N/A N/A	N/A N/A	1/100	- pricA
phLA nULA	BB030	IN/A N/A	N/A N/A	IN/A N/A	IN/A	1/100	PHLA
PHLA	BB/90	IN/A	IN/A	IN/A	IN/A	1/100	DHLA
PILA	BUV542	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	1/100	PHLA
phLA nULA	BUV305	IN/A N/A	N/A N/A	IN/A N/A	IN/A	1/100	THA DC
PILA	BUV013	IN/A N/A	IN/A N/A	IN/A N/A	IN/A N/A	1/100	phla, PC
phLA nULA	BV421	IN/A N/A	N/A N/A	IN/A N/A	IN/A	1/100	THA DC
PHLA	BV480	IN/A	IN/A	IN/A	IN/A	1/100	phla, PC
PHLA	BV003	IN/A	IN/A	IN/A	IN/A	1/100	DHLA
PHLA	BV050	IN/A	N/A	IN/A	IN/A	1/100	PHLA
PHLA	BV/11 DV/750	N/A	N/A	N/A	N/A	1/100	PHLA
PHLA	B V / 20	IN/A	IN/A	IN/A	IN/A	1/100	PHLA
phLA	PE	IN/A	IN/A	IN/A	IN/A	1/100	DNA SUS
PHLA	Total-Seq-C0971	N/A	N/A	N/A	N/A	1/100	KNA-seq
PHLA	Total-Seq-C0972	N/A	N/A	N/A	N/A	1/100	KNA-seq
pHLA	Total-Seq-C09/3	N/A	N/A	N/A	N/A	1/100	KNA-seq
pHLA	Total-Seq-C09/4	N/A	N/A	N/A	N/A	1/100	KNA-seq
TIGIT	PerCP-eF710	eBioscience	46-9500-42	MBSA43	4318928	1/100	PC
TIM3	BV650	BD	565564	7D3	7241582	1/200	PC
TNF	FITC	BD	554512	MAb11	15360	1/50	PS

Supplementary References

- 1. Bakker, A. H. *et al.* Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 3825–3830 (2008).
- 2. Toebes, M. *et al.* Design and use of conditional MHC class I ligands. *Nat Med* **12**, 246–251 (2006).
- 3. Chang, C. X. L. *et al.* Conditional ligands for Asian HLA variants facilitate the definition of CD8+ T-cell responses in acute and chronic viral diseases. *Eur. J. Immunol.* **43**, 1109–1120 (2013).