A comprehensive library of bulk chalcogenides: structural, electronic, optical and elastic properties using first-principles calculations

Sahib Hasan¹, Khagendra Baral¹, Neng Li², and Wai-Yim Ching¹*

- 1. Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri, 64110 USA
- 2. School of Materials Science and Engineering, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan, 430070, China
- * Corresponding Author e-mail: Chingw@umkc.edu; lineng@whut.edu.cn

1. Optical properties

We can use OLCAO method to calculate the optical properties of crystalline chalcogenides based on the theory of inter-band optical absorptions within the random phase approximation. According to this approach, the optical conductivity is given by:

$$\sigma_1(\hbar w) = \frac{2\Pi e\hbar^2}{3m^2 \omega \Omega} \sum_{n,l} |\langle n|\vec{p}|l\rangle^2 f_l [1 - f_n] \delta(E_n - E_l - \hbar \omega) \tag{1}$$

 f_l is the Fermi-Dirac function of the occupied band state ι and δ function makes sure that the energy is conserved in the transition process between occupied state and unoccupied state with energy Eu and En respectively. Ω is the volume of the unit cell.

There is no intra-band transitions for the materials with an energy gap in their band structure, so that the optical properties can be described by the complex dielectric function which is related to the $\sigma_1(\hbar w)$ by:

$$\varepsilon_2(w) = 4\pi \frac{\sigma_1(w)}{w} \tag{2}$$

By transforming the summation over the unit cell in the equation (3) to an integral over the BZ in **k** space, $\varepsilon_2(w)$ can be given by:

$$\varepsilon_{2}(\hbar\omega) = \frac{e^{2}}{\pi m \omega^{2}} \int dk^{3} \sum_{n,l} |\langle \Psi_{n}(\vec{k},\vec{r})| - i\hbar \vec{\nabla} |\Psi_{l}(\vec{k},\vec{r})\rangle|^{2} f_{l}(\vec{k}) [1 - f_{n}(\vec{k})] \delta(E_{n}(\vec{k}) - E_{l}(\vec{k}) - \hbar\omega)$$
(3)

The real part of the dielectric function can be derived from ε_2 by using Kramers-Kronig relation:

$$\varepsilon_1(\hbar\omega) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{s\varepsilon_2(\hbar\omega)}{s^2 - \omega^2} \, ds \tag{4}$$

In OLCAO method, the momentum matrices in the Eqs (2) and (4) for the optical transitions can be easily calculated as sums of two –center integrals between GTOs[1].

2. Mechanical properties

Ab initio calculation method within DFT for the mechanical properties is very powerful method these days. In this section, and to calculate the mechanical properties for the seven crystals, we followed the method of the Hongzhi Yao. et al. work[2]. In this work, a scheme has been applied to calculate the elastic constants of crystals. Starting with the simple Hook's famous law that can relate the stress components σ_i with the strain components ϵ_i by relation:

$$\sigma_i = \sum_{j=1}^6 C_{ij} \varepsilon_j \tag{5}$$

 C_{ij} is the elastic constants of the crystals. From knowing the elastic constants, we could calculate other mechanical properties like compliance tensor S_{ij} , Young's modulus (E), Bulk modulus (K), Shear modulus (G), and Poisson's ratio (η). Here, Voigt – Reuss –Hill (VRH)[3, 4] approximation has been used to derive the above mechanical properties. According to this approximation, the upper and lower bounds for the structural parameters, like bulk and shear modulus are respectively given by:

$$K_V = \frac{(C_{11} + C_{22} + C_{33})}{9} + \frac{2(C_{12} + C_{13} + C_{23})}{9}$$
(6)

$$K_R = \frac{1}{(S_{11} + S_{22} + S_{33}) + 2(S_{12} + S_{13} + S_{23})}$$
(7)

$$G_V = \frac{(C_{11} + C_{22} + C_{33} - C_{12} - C_{13} - C_{23})}{15} + \frac{(C_{44} + C_{55} + C_{66})}{5}$$
(8)

$$G_R = \frac{15}{4(S_{11}+S_{22}+S_{33})-4(S_{12}+S_{13}+S_{23})+3(S_{44}+S_{55}+S_{66})}$$
(9)

So, the average values of the mechanical properties are given by:

$$K = \frac{(K_V + K_R)}{2} \tag{10}$$

$$G = \frac{(G_V + G_R)}{2} \tag{11}$$

$$E = \frac{9KG}{(3K+G)} \tag{12}$$

$$\eta = \frac{(3K - 2G)}{2(3K + G)} \tag{13}$$

3. The Supplementary Tables

Table S1 The symmetry, lattice parameters after full VASP relaxation, and the experimental lattice parameters data of the 99 crystals used in our calculations, where GGA has been used as an exchange and correlation potential. (M for monoclinic, T for triclinic, Tr for Trigonal, Tet for tetragonal, O for orthorhombic. The full relaxed crystal structure data are available upon request with a corresponding author. They can also be found on the web site of our research group: https://info.umkc.edu/ching-esg/?page_id=152

#	Crystal	Space group	Lattice parameters(our calculations) Lattice parameters(experimental)	
	-		a, b, c(Å) in 4 decimal points, α , β , γ (deg.)	a, b, c(Å) in 4 decimal points, α , β , γ (deg.) in 2
			in 2 decimal points	decimal points
1	Cu2ZnSiS4	O, Pmn2 ₁ (31)	7.3849, 6.4683, 6.1669, 90.00, 90.00, 90.00	7.4374, 6.4001, 6.1394, 90.00, 90.00, 90.00[5]
2	Cu2ZnSiSe4	O, Pmn2 ₁ (31)	7.8439, 6.8452, 6.5190, 90.00, 90.00, 90.00	7.8287, 6.7342, 6.4568, 90.00, 90.00, 90.00[6]
3	Cu2ZnSiTe4	Tet, I -4 2 m(121)	6.0501, 6.0501, 11.982, 90.00, 90.00, 90.00	5.9612, 5.9612, 11.7887, 90.00, 90.00, 90.00[7]
4	Cu2ZnGeS4	O, Pmn2 ₁ (31)	7.5152, 6.5574, 6.2375, 90.00, 90.00, 90.00	7.5090, 6.4790, 6.1920, 90.00, 90.00, 90.00[8]
5	Cu2ZnGeSe4	Tet, I -4(82)	5.6726, 5.6726, 11.2758, 90.00, 90.00, 90.00	5.6112, 5.6112, 11.0473, 90.00, 90.00, 90.00[9]
6	Cu2ZnSnS4	Tet, I -4(82)	5.4704, 5.4704, 10.9424, 90.00, 90.00, 90.00	5.4280, 5.4280, 10.8640, 90.00, 90.00, 90.00[10]
7	Cu ₂ ZnSnSe ₄	Tet, I -4(82)	5.7674, 5.7674, 11.5315, 90.00, 90.00, 90.00	5.6920, 5.6920, 11.3400, 90.00, 90.00, 90.00[11]
8	Cu ₂ ZnSnTe ₄	Tet, I -4(82)	6.1880, 6.1880, 12.3655, 90.00, 90.00, 90.00	6.1300, 6.1300, 12.2071, 90.00, 90.00, 90.00[12]
9	Cu2CdSiS4	O, Pmn2 ₁ (31)	7.6707, 6.5086, 6.2901, 90.00, 90.00, 90.00	7.5980, 6.4860, 6.2580, 90.00, 90.00, 90.00[13]
10	Cu2CdSiSe4	O, Pmn2 ₁ (31)	8.1096, 6.8922, 6.6344, 90.00, 90.00, 90.00	7.9900, 6.8240, 6.2640, 90.00, 90.00, 90.00[14]
11	Cu2CdGeS4	O, Pmn2 ₁ (31)	7.7804, 6.6253, 6.3608, 90.00, 90.00, 90.00	7.6920, 6.5550, 6.2990, 90.00, 90.00, 90.00[15]
12	Cu2CdGeSe4	Tet, I -4 2 m(121)	5.8449, 5.8449, 11.2495, 90.00, 90.00, 90.00	5.7482, 5.7482, 11.0533, 90.00, 90.00, 90.00[16]
13	Cu2CdGeTe4	Tet, I -4 2 m(121)	6.2531, 6.2531, 12.1218, 90.00, 90.00, 90.00	6.1270, 6.1270, 11.9190, 90.00, 90.00, 90.00[17]
14	Cu2CdSnS4	Tet, I -4(82)	5.5763, 5.5763, 11.2449, 90.00, 90.00, 90.00	5.4870, 5.4870, 10.8450, 90.00, 90.00, 90.00[18]
15	Cu2CdSnSe4	Tet, I -4(82)	5.8715, 5.8715, 11.8107, 90.00, 90.00, 90.00	5.8320, 5.8320, 11.3900, 90.00, 90.00, 90.00[18]
16	Cu2CdSnTe4	Tet, I -4(82)	6.2917, 6.2917, 12.5987, 90.00, 90.00, 90.00	6.1980, 6.1980, 12.2560, 90.00, 90.00, 90.00[18]
17	Cu ₂ HgGeS ₄	Tet, I -4 2 m(121)	5.5658, 5.5658, 10.6581, 90.00, 90.00, 90.00	5.4930, 5.4930, 10.5510, 90.00, 90.00, 90.00[19]
18	Cu ₂ HgGeSe ₄	Tet, I -4 2 m(121)	5.8695, 5.8695, 11.2322, 90.00, 90.00, 90.00	5.7445, 5.7445, 11.0824, 90.00, 90.00, 90.00[20]
19	Cu ₂ HgGeTe ₄	Tet, I -4 2 m(121)	6.2629, 6.2629, 12.1144, 90.00, 90.00, 90.00	6.12940, 6.12940, 11.9374, 90.00, 90.00, 90.00[21]
20	Cu2HgSnS4	Tet, I -4(82)	5.6439, 5.6439, 11.0670, 90.00, 90.00, 90.00	5.5749, 5.5749, 10.8820, 90.00, 90.00, 90.00[22]
21	Cu ₂ HgSnSe ₄	Tet, I -4 2 m(121)	5.9393, 5.9393, 11.6174, 90.00, 90.00, 90.00	5.8288, 5.8288, 11.4179, 90.00, 90.00, 90.00[23]
22	Cu ₂ HgSnTe ₄	Tet, I -4 2 m(121)	6.3310, 6.3310, 12.4851, 90.00, 90.00, 90.00	6.1957, 6.1957, 12.2874, 90.00, 90.00, 90.00[24]
23	Cu2BaGeS4	Tr, P 3 ₁ (144)	6.5328, 6.5328, 15.2783, 90.00, 90.00, 119.99	6.2150, 6.2150, 15.5340, 90.00, 90.00, 120.00[25]
24	Cu2BaGeSe4	Tr, P 3 ₁ (144)	6.6141, 6.6141, 16.4332, 90.00, 90.00, 119.99	6.4900, 6.4900, 16.3550, 90.00, 90.00, 120.00[26]
25	Cu ₂ SrSiS ₄	Tr, P 3 ₁ (144)	6.1049, 6.1049, 15.1617, 90.00, 90.00, 120.00	6.0687, 6.0687, 15.1373, 90.00, 90.00, 120.00[27]
26	Cu ₂ SrGeS ₄	Tr, P 3 ₂ (145)	6.2025, 6.2025, 15.3469, 90.00, 90.00, 120.00	6.1430, 6.1430, 15.2820, 90.00, 90.00, 120.00[25]
27	Cu ₂ SrGeSe ₄	O, Ama2(40)	10.9140, 10.8817, 6.6361, 90.00, 90.00, 90.00	10.8070, 10.7350, 6.5410, 90.00, 90.00, 90.00[26]
28	Cu2BaSnS4	Tr, P 3 ₁ (144)	6.8386, 6.8386, 16.0392, 90.00, 90.00, 120.00	6.3660, 6.3660, 15.8280, 90.00, 90.00, 120.00[25]
29	Cu2BaSnSe4	O, Ama2(40)	11.2245, 11.4509, 6.8533, 90.00, 90.00, 90.00	11.1110, 11.2270, 6.7440, 90.00, 90.00, 90.00[25]
30	Cu ₂ SrSnS ₄	Tr, P 3 ₁ (144)	6.3616, 6.3616, 15.6245, 90.00, 90.00, 119.99	6.367, 6.367, 15.833, 90.00, 90.00, 120.00[28]
31	Cu ₂ SrSnSe ₄	O, Ama2(40)	11.1162, 10.9248, 6.7886, 90.00, 90.00, 90.00	10.9670, 10.7540, 6.6950, 90.00, 90.00, 90.00[25]
32	Cu ₂ MgSiS ₄	O, Pmn2 ₁ (31)	7.5952, 6.4612, 6.2147, 90.00, 90.00, 90.00	7.5630, 6.4480, 6.1790, 90.00, 90.00, 90.00[29]
33	Cu ₂ MgSiSe ₄	O, Pmn2 ₁ (31)	8.0300, 6.8564, 6.5743, 90.00, 90.00, 90.00	7.9530, 6.7970, 6.5070, 90.00, 90.00, 90.00[30]
34	Cu ₂ MgGeS ₄	O, Pmn2 ₁ (31)	7.6930, 6.5724, 6.2865, 90.00, 90.00, 90.00	7.6380, 6.5150, 6.2250, 90.00, 90.00, 90.00[29]
35	Cu ₂ MgSnS ₄	Tet, I -4(82)	5.5091, 5.5091, 11.1542, 90.00, 90.00, 90.00	5.4360, 5.4360, 11.0180, 90.00, 90.00, 90.00[31]
36	Cu2MgSnSe4	Tet, I -4(82)	5.8184, 5.8184, 11.7249, 90.00, 90.00, 90.00	5.7260, 5.7260, 11.5600, 90.00, 90.00, 90.00[32]
37	Cu2MgSnTe4	Tet, I -4(82)	6.2692, 6.2692, 12.5476, 90.00, 90.00, 90.00	6.1730, 6.1730, 12.3398, 90.00, 90.00, 90.00[32]
38	Ag ₂ ZnSiS ₄	M, Pn(7)	6.6957, 7.7129, 8.1202, 90.00, 90.52, 90.00	6.4052, 6.5484, 7.9340, 90.00, 90.45, 90.00[33]
39	Ag ₂ ZnSnS ₄	Tet, I -4(82)	5.8408, 5.8408, 11.0654, 90.00, 90.00, 90.00	5.8126, 5.8126, 10.7788, 90.00, 90.00, 90.00[34]
40	Ag ₂ ZnSnSe ₄	Tet, I -4(82)	6.1106, 6.1106, 11.6683, 90.00, 90.00, 90.00	6.0442, 6.0442, 11.3065, 90.00, 90.00, 90.00[34]
41	Ag ₂ CdGeS ₄	O, Pna2 ₁ (33)	13.9844, 8.1157, 6.6928, 90.00, 90.00, 90.00	13.7415, 8.0367, 6.5907, 90.00, 90.00, 90.00[35]
42	Ag ₂ CdSnS ₄	Tet, I -4(82)	5.9150, 5.9150, 11.5511, 90.00, 90.00, 90.00	5.9180, 5.9180, 11.5520, 90.00, 90.00, 90.00[36]
43	Ag ₂ CdSnSe ₄	Tet, I -4(82)	6.1844, 6.1844, 12.1072, 90.00, 90.00, 90.00	6.1780, 6.1780, 12.1080, 90.00, 90.00, 90.00[37]
44	Ag ₂ CdSnTe ₄	Tet, I -4(82)	6.5545, 6.5545, 12.9953, 90.00, 90.00, 90.00	6.5630, 6.5630, 12.9940, 90.00, 90.00, 90.00[37]
45	Ag ₂ HgSnS ₄	O, Pmn2 ₁ (31)	8.1896, 7.2620, 6.8447, 90.00, 90.00, 90.00	8.2074, 7.0330, 6.7180, 90.00, 90.00, 90.00[38]
46	Ag ₂ HgSnSe ₄	O, $Pmn2_1(31)$	8.6148, 7.5571, 7.1617, 90.00, 90.00, 90.00	8.4610, 7.3400, 6.9901, 90.00, 90.00, 90.00[39]

17	Ag_BaGeS	Tet I -4.2 m(121)	6 8499 6 8499 8 3308 90 00 90 00 90 00	6 8 2 8 0 6 8 2 8 0 8 0 1 7 0 9 0 0 9 0 0 9 0 0 1 2 5 1
47	Ag ₂ BaGeSe ₄	0.1222(23)	7 0516 7 5208 8 4835 90 00 90 00 90 00	7 0580 7 2630 8 2630 90 00 90 00 90 00[25]
40	Ag.BaSnS	0.1222(23)	7 3760 8 3261 6 8488 90 00 90 00 90 00	7 1270 8 1170 6 8540 90 00 90 00 90 00[25]
49 50	Ag BaSnSa	0, 1222(23)	7 1503 7 7114 8 5929 90 00 90 00 90 00	7 1160 7 4990 8 3370 90 00 90 00 90 00[25]
51	Ag2DaShSe4	0, 1222(23)	7.0422 7.7720 6.8062 00.00 00.00 00.00	6 8200 6 0720 7 6000 00 00 00 00 00 00[25]
51	Ag_2SIGeS_4	0, 1222(23)	7.0432, 7.7739, 0.8002, 90.00, 90.00, 90.00	0.8200, 0.9750, 7.0900, 90.00, 90.00, 90.00[25]
52	Ag ₂ SrGeSe ₄	0, 1222(23)	7.1171, 7.4129, 8.0634, 90.00, 90.00, 90.00	7.1150, 7.3890, 7.9510, 90.00, 90.00, 90.00[25]
53	Ag ₂ SrSnS ₄	0, 1222(23)	7.2909, 7.8802, 6.8971, 90.00, 90.00, 90.00	6.9100, 7.2100, 7.8310, 90.00, 90.00, 90.00[25]
54	$Ag_2SrSnSe_4$	0,1222(23)	7.1924, 7.6542, 8.1501, 90.00, 90.00, 90.00	7.1930, 7.6570, 8.0340, 90.00, 90.00, 90.00[25]
55	$Ag_2In_2S_1S_6$	M, Clcl(9)	12.4013, 7.2787, 12.3814, 90.00, 109.43, 90.00	12.1481, 7.1726, 12.1263, 90.00, 109.25, 90.00[40]
56	$Ag_2In_2GeS_6$	M, Clcl(9)	12.4988, 7.3491, 12.4713, 90.00, 109.50, 90.00	12.2316, 7.2190, 12.2124, 90.00, 109.50, 90.00[40]
57	$Ag_2In_2S_1Se_6$	M, Clcl(9)	12.9619, 7.6205, 12.9006, 90.00, 109.39, 90.00	12.6683, 7.4565, 12.6133, 90.00, 109.29, 90.00[41]
58	$Ag_2In_2GeSe_6$	M, C1c1(9)	13.0354, 7.6909, 12.9695, 90.00, 109.47, 90.00	12.6920, 7.4920, 12.6440, 90.00, 109.50, 90.00[41]
59	Ag ₂ SiS ₃	M, P12 ₁ /c1(14)	6.6871, 6.6825, 13.4925, 90.00, 118.21, 90.00	6.6709, 6.6567, 13.1748, 90.00, 118.66, 90.00[42]
60	Ag_2GeS_3	O, Cmc21(36)	11.9886, 7.0452, 6.5496, 90.00, 90.00, 90.00	11.7895, 7.0751, 6.3420, 90.00, 90.00, 90.00[43]
61	Cu ₂ GeS ₃	M, C1c1(9)	6.5056, 11.3409, 6.5456, 90.00, 109.20, 90.00	6.4490, 11.3190, 6.4280, 90.00, 108.37, 90.00[44]
62	Cu ₂ GeSe ₃	O, I mm2(44)	11.8886, 4.0560, 5.5967, 90.00, 90.00, 90.00	11.8540, 3.9540, 5.4890, 90.00, 90.00, 90.00[45]
63	Ag_2SnSe_3	M, P12 /m1(10)	8.3969, 9.2348, 12.9899, 90.00, 105.61, 90.00	7.9770, 7.9120, 13.0230, 90.00, 101.73, 90.00[46]
64	Ag ₂ SnTe ₃	M, C1c1(9)	7.9259, 13.8274, 7.9704, 90.00, 109.03, 90.00	7.4420, 12.8377, 7.4025, 90.00, 109.54, 90.00[47]
65	$Ag_4P_2S_6$	O, P2 ₁ 2 ₁ 2 ₁ (19)	14.3859, 11.2296, 6.3246, 90.00, 90.00, 90.00	13.9010, 11.0730, 6.3030, 90.00, 90.00, 90.00[48]
66	$Ag_4P_2Se_6$	M, C1c1(9)	14.6566, 11.7643, 6.6156, 90.00, 90.00, 90.00	14.1690, 11.5980, 6.5850, 90.00, 90.00, 90.00[49]
67	BaZnSiSe ₄	O, Ama2(40)	11.5432, 11.4761, 6.2595, 90.00, 90.00, 90.00	11.3055, 11.2344, 6.1994, 90.00, 90.00, 90.00[50]
68	BaZnGeSe ₄	O, Ama2(40)	11.5889, 11.5015, 6.3670, 90.00, 90.00, 90.00	11.3255, 11.2527, 6.2917, 90.00, 90.00, 90.00[50]
69	BaHg ₂ As ₂ S ₆	O, Cmca(64)	8.3779, 8.4205, 16.5401, 90.00, 90.00, 90.00	8.1304, 7.9417, 16.3280, 90.00, 90.00, 90.00[51]
70	BaCd ₂ As ₂ S ₆	O, Cmca(64)	8.1111, 8.1509, 17.1184, 90.00, 90.00, 90.00	7.9544, 7.8649, 16.9790, 90.00, 90.00, 90.00[51]
71	Ba ₂ AlSbS ₅	O, Pnma(62)	12.3352, 8.9488, 9.1673, 90.00, 90.00, 90.00	12.1400, 8.8911, 8.9552, 90.00, 90.00, 90.00[52]
72	Ba2GaBiSe5	O, Pnma(62)	12.9159, 9.2489, 9.5312, 90.00, 90.00, 90.00	12.6910, 9.1900, 9.2450, 90.00, 90.00, 90.00[52]
73	Ba2AsGaSe5	O. Pnma(62)	12.9076, 9.1005, 9.4202, 90.00, 90.00, 90.00	12.6320, 8.9726, 9.2029, 90.00, 90.00, 90.00[53]
74	Ba2LaGaSe5	O, Pnma(62)	12.7079, 9.5926, 8.9275, 90.00, 90.00, 90.00	12.5049, 9.6288, 8.7355, 90.00, 90.00, 90.00[54]
75	Ba ₂ LuGaSe ₅	T. P-1(2)	7.3981, 8.7027, 9.5441, 103.29, 102.87, 107.25	7.2829, 8.6120, 9.3681, 103.36, 103.05, 107.31[54]
76	Ba ₂ LuInSe ₅	O. Cmc21(36)	4.2872, 19.1369, 13.4878, 90.00, 90.00, 90.00	4.2345, 18.7530, 13.2854, 90.00, 90.00, 90.00[54]
77	Ba ₄ AgInS ₆	M. $P12_1/c1(14)$	8.8287, 9.0183, 18.0285, 90.00, 104.12, 90.00	8.7241, 8.8799, 17.7930, 90.00, 104.14, 90.00[55]
78	CsC115S2	O Pmma(51)	9 6935, 3 9345, 9 1146, 90 00, 90 00, 90 00	9 6365, 3 9547, 8 9490, 90 00, 90 00, 90 00[56]
70	CsCu ₅ S ₅	O Pmma(51)	10 1783 4 0949 9 1844 90 00 90 00 90 00	9 9909 4 0978 9 0071 90 00 90 00 90 00[56]
80	K ₂ Cu ₂ GeS	M P 1 2 / c 1(13)	7 1652 5 3974 11 2903 90 00 113 07 90 00	7.0630.5.4350.11.0370.90.00.112.83.90.00[57]
80	Li-In-SiS	$M, \Gamma \Gamma 2 / C \Gamma(13)$ M C1c1(9)	12 2913 7 1458 12 2786 90 00 110 12 90 00	12 0727 7 0213 12 0788 90 00 110 06 90 00[58]
82	LiJn-SiSe	M, C1c1(9)	12 8785 7 5352 12 8327 90 00 109 86 90 00	12.6727, 7.6213, 12.6766, 90.00, 116.00, 90.00[58]
82	Li In GeS	M, C1c1(0)	12.4239 7.2505 12.3802 90.00 110.10 90.00	12.1650 7.0840 12.1310 90.00 110.26 90.00[58]
83	Li In GeSe	M, C1c1(0)	12,920, 7,6221, 12,9263, 90,00, 109,92, 90,00	12.1050, 7.0040, 12.1510, 90.00, 110.20, 90.00[58]
04		T = P = 1(2)	7 7011 10 1081 10 2244 106 20 100 20 101 80	7,7350, 10,0320, 10,1200, 106,20, 100,18, 101,05[50]
0.5	SrCdCoS	1, 1-1(2)	10 5500 10 4122 6 5080 00 00 00 00 00 00	10 2252 10 2225 6 4408 00 00 00 00 00 00[60]
00	SICuGeS ₄	O, Ama2(40)	10.5509, 10.4152, 0.5080, 90.00, 90.00, 90.00	10.8345, 10.6012, 6.6702, 00.00, 00.00, 00.00[00]
8/	TIL-C-S	O, Alla2(40)	11.0/51, 10.91/4, 0.7548, 90.00, 90.00, 90.00	10.8243, 10.0912, 0.0792, 90.00, 90.00, 90.00[60]
88	THE G S	IF, P3(143)	10.1605, 10.1605, 9.2651, 90.00, 90.00, 120.00	9.7710, 9.7710, 8.9195, 90.00, 90.00, 120.00[61]
89	TInGe ₂ Se ₆	Ir, P3(143)	10.6304, 10.6304, 9.6646, 90.00, 90.00, 120.00	10.1798, 10.1798, 9.2872, 90.00, 90.00, 120.00[62]
90	TIGaSn ₂ Se ₆	Ir, R 3(146)	10.6768, 10.6768, 9.7721, 90.00, 90.00, 119.99	10.3289, 10.3289, 9.4340, 90.00, 90.00, 120.00[63]
91	11_2 PbZrS ₄	M, C12/c1(15)	15.5773, 8.2886, 6.8722, 90.00, 108.79, 90.00	15.4550, 8.2140, 6.7510, 90.00, 109.09, 90.00[64]
92	11_2 PbZrSe ₄	M, C12/c1(15)	16.07/8, 8.57/6, 7.1514, 90.00, 108.75, 90.00	15.9060, 8.4720, 7.0160, 90.00, 109.01, 90.00[64]
93	Tl ₂ PbHfS ₄	M, C12 /c1(15)	15.61/1, 8.2820, 6.8136, 90.00, 108.90, 90.00	15.4700, 8.2260, 6.7103, 90.00, 109.26, 90.00[64]
94	Tl ₂ PbHfSe ₄	M, C12 /c1(15)	16.1215, 8.5728, 7.0959, 90.00, 108.89, 90.00	15.9480, 8.4720, 6.9733, 90.00, 109.12, 90.00[64]
95	Tl ₂ CdGeSe ₄	Tet, I -4 2 m(121)	8.1791, 8.1791, 6.8532, 90.00, 90.00, 90.00	8.0145, 8.0145, 6.7234, 90.00, 90.00, 90.00[65]
96	Tl ₂ CdSnSe ₄	Tet, I -4 2 m(121)	8.2291, 8.2291, 6.9925, 90.00, 90.00, 90.00	8.0490, 8.0490, 6.8573, 90.00, 90.00, 90.00[65]
97	Tl ₂ HgGeSe ₄	Tet, I -4 2 m(121)	8.1699, 8.1699, 6.9259, 90.00, 90.00, 90.00	7.9947, 7.9947, 6.7617, 90.00, 90.00, 90.00[66]
98	Tl ₂ HgSiSe ₄	Tet, I -4 2 m(121)	8.1599, 8.1599, 6.8546, 90.00, 90.00, 90.00	8.0032, 8.0032, 6.6879, 90.00, 90.00, 90.00[67]
99	Tl_2HgSnS_4	Tet, I -4 2 m(121)	7.9589, 7.9589, 6.8578, 90.00, 90.00, 90.00	7.8571, 7.85716.6989, 90.00, 90.00, 90.00[68]

Table S2 The results for the energy gap (E_g). The third column is our results, while the fourth column is the other's results. (T) is for calculations and (E) for experimental results. (D) Stands for direct band gap, while (ID) stands for indirect band gap. The reference **74** represents the result from "materials project" website: <u>https://materialsproject.org/</u>

•

#	Crystal	Eg(eV), our	Eg(eV), other experimental and
		calculations	calculated data
1	Cu ₂ ZnSiS ₄	1.380(D)	1.370(D-T)[69]
2	Cu ₂ ZnSiSe ₄	0.653(D)	0.560(D-T)[69]
3	Cu ₂ ZnSiTe ₄	0.483(ID)	0.150(T)[70]
4	Cu ₂ ZnGeS ₄	0.518(D)	0.500(T)[71]
5	Cu ₂ ZnGeSe ₄	0.125(D)	0.060(T)[72], 0.640(T)[73]
6	Cu ₂ ZnSnS ₄	0.390(D)	0.030(T)[74]
7	Cu ₂ ZnSnSe ₄	0.136(D)	0.820(T)[75]
8	Cu ₂ ZnSnTe ₄	0.324(ID)	0.960(T)[12]
9	Cu ₂ CdSiS ₄	1.233(D)	0.980(T)[76]
10	Cu ₂ CdSiSe ₄	0.710(D)	*
11	Cu ₂ CdGeS ₄	0.541(D)	0.640[77]
12	Cu ₂ CdGeSe ₄	0.120(D)	0.020(T)[16]
13	Cu ₂ CdGeTe ₄	0.163(ID)	0.000(T)[76]
14	Cu ₂ CdSnS ₄	0.300(D)	0.000(T)[78]
15	Cu ₂ CdSnSe ₄	0.120(D)	0.800(T)[79]
16	Cu ₂ CdSnTe ₄	0.267(ID)	*
17	Cu ₂ HgGeS ₄	0.400(D)	0.307(T)[19]
18	Cu ₂ HgGeSe ₄	0.005(D)	0.006(T)[20]
19	Cu ₂ HgGeTe ₄	0.151(ID)	0.380(T)[80]
20	Cu ₂ HgSnS ₄	0.103(D)	0.191(T)[22]
21	Cu2HgSnSe4	0.000	0.127(T)[23], 0.0(T)[81]
22	Cu ₂ HgSnTe ₄	0.432(D)	0.390(T)[80]
23	Cu2BaGeS4	0.778(D)	1.800(D-T)[82]
24	Cu2BaGeSe4	0.654(D)	1.000(D-T)[82]
25	Cu2SrSiS4	2,200(D)	$3.30(ID_F)[27]$ $3.04(F)[83]$ $2.32(T)[83]$
25	Cu2010104	2.200(D)	$5.50(1D^{-}E)[27], 5.04(E)[65], 2.52(1)[65]$
26	Cu ₂ SrGeS ₄	1.184(D)	1.050(T)[76]
26 27	$\frac{Cu_2SrGeS_4}{Cu_2SrGeSe_4}$	1.184(D) 0.880(ID)	1.050(T)[76] 0.592(T)[76]
26 27 28	$\begin{array}{c} Cu_2SrGeS_4\\ Cu_2SrGeSe_4\\ Cu_2SrGeSe_4\\ Cu_2BaSnS_4 \end{array}$	1.184(D) 0.880(ID) 0.632(D)	3.30(10-2)[27], 3.04(2)[03], 2.32(1)[03] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25]
26 27 28 29	Cu ₂ SrGeS ₄ Cu ₂ SrGeSe ₄ Cu ₂ BaSnS ₄ Cu ₂ BaSnSe ₄	1.184(D) 0.880(ID) 0.632(D) 0.930(D)	1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25]
26 27 28 29 30	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D)	3.30(11-12)[27], 3.04(12)[83], 2.32(17][83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84]
26 27 28 29 30 31	$\begin{array}{c} Cu_2OrShO_4\\ Cu_2SrGeSe_4\\ Cu_2SrGeSe_4\\ Cu_2BaSnSe_4\\ Cu_2BaSnSe_4\\ Cu_2SrSnSe_4\\ Cu_2SrSnSe_4\\ \end{array}$	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D)	3.30(1D-L)[27], 3.04(L)[83], 2.32(1)[83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25]
26 27 28 29 30 31 32	Cu2orSh54 Cu2SrGeS4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D)	3.30(1D-L)[27], 3.04(L)[03], 2.32(1)[03] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30]
23 26 27 28 29 30 31 32 33	Cu2ofSh54 Cu2SrGeS4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnSe4 Cu2MgSiS4 Cu2MgSiSe4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D)	3.30(1D-L)[27], 3.04(L)[03], 2.32(1)[03] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30]
26 27 28 29 30 31 32 33 34	Cu2015134 Cu2SrGeS4 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnS4 Cu2BaSnS4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgGeS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D)	3.30(1D-L)[27], 3.04(L)[03], 2.32(1)[03] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30]
26 27 28 29 30 31 32 33 34 35	Cu2015134 Cu2SrGeS4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgGeS4 Cu2MgSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D)	3.30(1D-L)[27], 3.04(L)[03], 2.32(1)[03] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85]
26 27 28 29 30 31 32 33 34 35 36	Cu2015134 Cu2SrGeS4 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgGeS4 Cu2MgSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D)	3.30(1D-L)[27], 3.04(L)[03], 2.32(1)[03] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85]
26 27 28 29 30 31 32 33 34 35 36 37	Cu2ofSh54 Cu2SrGeS4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgSiSe4 Cu2MgSnS4 Cu2MgSnTe4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID)	3.30(11-12)[27], 3.04(12)[83], 2.32(17](83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] *
26 27 28 29 30 31 32 33 34 35 36 37 38	Cu2ofSh54 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgGeS4 Cu2MgSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D)	3.30(11-12)[27], 3.04(12)[83], 2.32(17](83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33]
26 27 28 29 30 31 32 33 34 35 36 37 38 39	Cu2ofSh54 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2SrSnSe4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgSnS4 Ag2ZnSiS4 Ag2ZnSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D)	3.30(1D-L)[27], 3.04(L)[83], 2.32(1)[83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Cu2015134 Cu2SrGeS4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSiS4 Ag2ZnSnS4 Ag2ZnSn54	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.500(D)	3.30(11-12)[27], 3.04(12)[83], 2.32(17](83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Cu2ofSh54 Cu2SrGeSe4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnSe4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSiS4 Ag2ZnSnSe4 Ag2CdGeS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.998(D)	3.30(11-12)[27], 3.04(12)[83], 2.32(17](83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Cu2010104 Cu2SrGeS4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSiS4 Ag2ZnSnS4 Ag2ZnSnS4 Ag2CdGeS4 Ag2CdSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.998(D) 0.801(D)	3.30(1D-L)[27], 3.04(L)[83], 2.32(1)[83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88] 0.974(T)[36]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Cu2010104 Cu2SrGeS4 Cu2SrGeSe4 Cu2BaSnS4 Cu2BaSnSe4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiSe4 Cu2MgSnSe4 Cu2MgSnSe4 Cu2MgSnSe4 Cu2MgSnSe4 Cu2MgSnSe4 Cu2MgSnSe4 Ag2ZnSiS4 Ag2ZnSiS4 Ag2ZnSnSe4 Ag2CdGeS4 Ag2CdSnSe4 Ag2CdSnSe4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.998(D) 0.801(D) 0.600(D)	3.30(1D-L)[27], 3.04(L)[83], 2.32(1)[83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88] 0.974(T)[36] 0.577(T)[37]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Cu2015134 Cu2SrGeS4 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnS4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSiS4 Ag2ZnSnS4 Ag2ZnSnS4 Ag2CdGeS4 Ag2CdSnS4 Ag2CdSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.998(D) 0.801(D) 0.600(D) 0.680(D) 0.680(D)	3.30(1D-L)[27], 3.04(L)[83], 2.32(1)[83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88] 0.974(T)[36] 0.577(T)[37] 0.586(T)[37]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Cu2015134 Cu2SrGeS4 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnS4 Cu2BaSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSiS4 Ag2ZnSnS4 Ag2ZnSnS4 Ag2CdGeS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2HgSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.998(D) 0.600(D) 0.528(D) 0.528(D)	3.30(10-12)[27], 3.04(12)[83], 2.32(17](83] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88] 0.974(T)[36] 0.577(T)[37] 0.586(T)[37] 0.170(T)[89]
$\begin{array}{c} 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 44\\ 45\\ 46\\ 6\end{array}$	Cu2015134 Cu2SrGeS4 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnS4 Cu2DaSrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSnS4 Ag2ZnSnS4 Ag2CdGeS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2HgSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.998(D) 0.801(D) 0.680(D) 0.528(D) 0.310(D)	3.30(1D-L)[27], 3.04(L)[03], 2.32(1)[03] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88] 0.974(T)[36] 0.577(T)[37] 0.586(T)[37] 0.170(T)[89] 0.484(T)[39], 0.23(T)[89]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Cu2015134 Cu2SrGeS4 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnS4 Cu2SrSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSnS4 Ag2ZnSnS4 Ag2CdGeS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2HgSnS4 Ag2HgSnS4 Ag2HgSnS64 Ag2HgSnS64	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.500(D) 0.600(D) 0.680(D) 0.528(D) 0.310(D) 1.100(D)	3.30(11-12)[27], 3.04(12)[05], 2.32(17]05] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.000-0.580(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88] 0.974(T)[36] 0.577(T)[37] 0.586(T)[37] 0.170(T)[89] 0.484(T)[39], 0.23(T)[89]
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Cu2015134 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnS4 Cu2BaSnS4 Cu2DaSnS4 Cu2BaSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSnS4 Ag2ZnSnS4 Ag2CdGeS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2HgSnS4 Ag2HgSnS4 Ag2BaGeS4 Ag2BaGeS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.500(D) 0.600(D) 0.680(D) 0.528(D) 0.310(D) 1.100(D) 0.700(D)	$\begin{array}{c} 3.30(119-12)[27], 3.04(12)[05], 2.32(17)[05]\\ 1.050(T)[76]\\ 0.592(T)[76]\\ 1.460(T)[25]\\ 1.500(D-T)[25]\\ 0.46(T)[28], 0.38(T)[84], 1.62(T)[84]\\ 1.460(D-E)[25]\\ 2.010(T)[30]\\ 1.017(T)[30]\\ 1.017(T)[30]\\ 1.249(T)[30]\\ 0.781(T)[31], 0.35(T)[85]\\ 0.000-0.580(T)[85]*\\ 1.800(D-T)[33]\\ 1.150(D-T)[86]\\ 0.900-0.580(T)[85]*\\ 1.800(D-T)[87]\\ 1.060(T)[88]\\ 0.974(T)[36]\\ 0.577(T)[37]\\ 0.586(T)[37]\\ 0.170(T)[89]\\ 0.484(T)[39], 0.23(T)[89]\\ 1.380(T)[25]\\ 0.850(T)[25]\\ 0.850($
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Cu2015134 Cu2SrGeS4 Cu2BaSnS4 Cu2BaSnS4 Cu2BaSnS4 Cu2BaSnS4 Cu2SrSnS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSiS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Cu2MgSnS4 Ag2ZnSiS4 Ag2ZnSnS4 Ag2CdGeS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2CdSnS4 Ag2HgSnS4 Ag2HgSnS4 Ag2BaGeS4 Ag2BaGeS4 Ag2BaSnS4	2.200(D) 1.184(D) 0.880(ID) 0.632(D) 0.930(D) 1.03(D) 0.785(D) 1.689(D) 1.047(D) 0.855(D) 0.626(D) 0.381(D) 0.389(ID) 0.463(D) 0.750(D) 0.500(D) 0.500(D) 0.680(D) 0.528(D) 0.528(D) 0.310(D) 1.100(D) 1.010(D)	3.30(11-12)[27], 3.04(12)[05], 2.32(17]05] 1.050(T)[76] 0.592(T)[76] 1.460(T)[25] 1.500(D-T)[25] 0.46(T)[28], 0.38(T)[84], 1.62(T)[84] 1.460(D-E)[25] 2.010(T)[30] 1.017(T)[30] 1.249(T)[30] 0.781(T)[31], 0.35(T)[85] 0.781(T)[31], 0.35(T)[85] * 1.800(D-T)[33] 1.150(D-T)[86] 0.940(D-T)[87] 1.060(T)[88] 0.974(T)[36] 0.577(T)[37] 0.586(T)[37] 0.484(T)[39], 0.23(T)[89] 1.380(T)[25] 0.850(T)[25]

C 1			
51	Ag ₂ SrGeS ₄	0.630(D)	1.330(T)[25]
52	Ag ₂ SrGeSe ₄	0.310(D)	0.680(T)[25]
53	Ag ₂ SrSnS ₄	0.550(D)	1.080(T)[25]
54	Ag ₂ SrSnSe ₄	0.410(D)	0.660(T)[25]
55	Ag ₂ In ₂ SiS ₆	1.404(D)	1.570(T)[40]
56	Ag ₂ In ₂ GeS ₆	1.333(D)	1.880(T)[40]
57	Ag ₂ In ₂ SiSe ₆	1.403(D)	0.472(T)[76]
58	Ag ₂ In ₂ GeSe ₆	1.040(D)	0.432 (T)[76]
59	Ag ₂ SiS ₃	1.600(ID)	1.420(T)[42]
60	Ag ₂ GeS ₃	0.663(ID)	0.469(T)[76]
61	Cu ₂ GeS ₃	0.025(ID)	0.110(T)[76]
62	Cu ₂ GeSe ₃	0.000	0.000(T)[90]
63	Ag ₂ SnSe ₃	0.906(ID)	0.059(T)[76]
64	Ag ₂ SnTe ₃	0.390(D)	_*
65	$Ag_4P_2S_6$	1.620(D)	1.437(T)[76]
66	Ag ₄ P ₂ Se ₆	1.200(D)	_*
67	BaZnSiSe ₄	2.494(D)	2.710(T)[50]
68	BaZnGeSe ₄	1.708(D)	2.460(T)[50]
69	BaHg ₂ As ₂ S ₆	1.541(D)	_*
70	BaCd ₂ As ₂ S ₆	1.377(D)	1.770(D-T)
71	Ba ₂ AlSbS ₅	2.069(D)	2.400(ID-T)[52]
72	Ba ₂ GaBiSe ₅	1.475(D)	1.890(ID-T)[52]
73	Ba ₂ AsGaSe ₅	2.031(D)	1.862(T)[76]
74	Ba ₂ LaGaSe ₅	1.799(ID)	*
75	Ba2LuGaSe5	1.375(ID)	*
76	Ba ₂ LuInSe ₅	1.244(D)	*
77	Ba ₄ AgInS ₆	1.956(D)	1.686(T)[76]
78	CsCu ₅ S ₃	0.390(D)	0.325(T)[76]
			1.010(T)[f(t)]
79	CsCu ₅ Se ₃	0.235(D)	1.010(1)[50]
79 80	CsCu5Se3 K2Cu2GeS4	0.235(D) 1.150(ID)	1.457[91]
79 80 81	CsCu ₅ Se ₃ K ₂ Cu ₂ GeS ₄ Li ₂ In ₂ SiS ₆	0.235(D) 1.150(ID) 2.062(D)	1.457[91] 3.240[58], 2.116(T)[76]
79 80 81 82	CsCu ₅ Se ₃ K ₂ Cu ₂ GeS ₄ Li ₂ In ₂ SiS ₆ Li ₂ In ₂ SiSe ₆	0.235(D) 1.150(ID) 2.062(D) 1.600(D)	1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76]
79 80 81 82 83	CsCu5Se3 K2Cu2GeS4 Li2In2SiS6 Li2In2SiSe6 Li2In2GeS6	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76]
79 80 81 82 83 84	CsCu5Se3 K2Cu2GeS4 Li2In2SiS6 Li2In2SiSe6 Li2In2GeS6 Li2In2GeSe6	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76]
79 80 81 82 83 84 85	CsCu5Se3 K2Cu2GeS4 Li2In2SiS6 Li2In2SiSe6 Li2In2GeS6 Li2In2GeSe6 Li2In2GeSe6 Li2GaS9	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.422(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59]
79 80 81 82 83 84 85 86	$\begin{array}{c} CsCu_5Se_3\\ \hline K_2Cu_2GeS_4\\ \hline Li_2In_2SiS_6\\ \hline Li_2In_2SiSe_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline Lu_5GaS_9\\ \hline SrCdGeS_4\\ \hline SrC$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.000(E)[60]
79 80 81 82 83 84 85 86 87 80	$\begin{array}{c} CsCu_5Se_3\\ \hline K_2Cu_2GeS_4\\ \hline Li_2In_2SiS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline SrCdGeS_9\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline \end{array}$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.777(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60]
79 80 81 82 83 84 85 86 87 88	$\begin{array}{c} CsCu_5Se_3\\ \hline K_2Cu_2GeS_4\\ \hline Li_2In_2SiS_6\\ \hline Li_2In_2SiSe_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeSe_6\\ \hline Lu_5GaS_9\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline TlInGe_2S_6\\ \hline TV_2C_2\\ \hline TV_2$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61]
79 80 81 82 83 84 85 86 87 88 89 82	$\begin{array}{c} CsCu_5Se_3\\ K_2Cu_2GeS_4\\ Li_2In_2SiS_6\\ Li_2In_2SiSe_6\\ Li_2In_2GeS_6\\ Li_2In_2GeS_6\\ Lu_5GaS_9\\ SrCdGeS_4\\ SrCdGeS_4\\ SrCdGeSe_4\\ TlInGe_2S_6\\ TlInGe_2Se_6\\ \end{array}$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62]
79 80 81 82 83 84 85 86 87 88 89 90	$\begin{array}{c} CsCu_5Se_3\\ K_2Cu_2GeS_4\\ Li_2In_2SiS_6\\ Li_2In_2SiSe_6\\ Li_2In_2GeS_6\\ Li_2In_2GeS_6\\ Lu_5GaS_9\\ SrCdGeS_4\\ SrCdGeS_4\\ SrCdGeSe_4\\ TlInGe_2S_6\\ TlInGe_2Se_6\\ TlGaSn_2Se_6\\ TlGaSn_2Se_6\\ \end{array}$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 1.100(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 2.001 T [61]
79 80 81 82 83 84 85 86 87 88 89 90 91 92	$\begin{array}{c} CsCu_5Se_3\\ K_2Cu_2GeS_4\\ Li_2In_2SiS_6\\ Li_2In_2SiSe_6\\ Li_2In_2GeS_6\\ Li_2In_2GeS_6\\ Lu_5GaS_9\\ SrCdGeS_4\\ SrCdGeS_4\\ SrCdGeSe_4\\ TlInGe_2S_6\\ TlInGe_2Se_6\\ TlGaSn_2Se_6\\ Tl_2PbZrS_4\\ Th Deg Se_6\\ \end{array}$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 1.100(D) 0.590(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.500(D) TE(2)
79 80 81 82 83 84 85 86 87 88 87 88 89 90 91 92	$\begin{array}{c} CsCu_5Se_3\\ \hline K_2Cu_2GeS_4\\ \hline Li_2In_2SiS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline Lu_5GaS_9\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline SrCdGeSe_4\\ \hline TlInGe_2S_6\\ \hline TlInGe_2Se_6\\ \hline TlGaSn_2Se_6\\ \hline Tl_2PbZrS_4\\ \hline Tl_2PbZrS_4\\ \hline Tl_2PbZrS_4\\ \hline TL2PbZrS_4\\ \hline TL2P$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 1.100(D) 0.590(D) 0.470(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.529(ID-T)[92], 1.0190 (T)[76]
79 80 81 82 83 84 85 86 87 88 87 88 89 90 91 92 93 93	$\begin{array}{c} CsCu_5Se_3 \\ \hline K_2Cu_2GeS_4 \\ \hline Li_2In_2SiS_6 \\ \hline Li_2In_2GeS_6 \\ \hline Li_2In_2GeS_6 \\ \hline Li_2In_2GeS_6 \\ \hline Lu_5GaS_9 \\ \hline SrCdGeS_4 \\ \hline SrCdGeS_4 \\ \hline SrCdGeS_4 \\ \hline TlInGe_2S_6 \\ \hline TlInGe_2S_6 \\ \hline TlGaSn_2Se_6 \\ \hline Tl_2PbZrS_4 \\ \hline Tl_2PbZrS_4 \\ \hline Tl_2PbHfS_4 \\ \hline Tl_2PbHfS_4 \\ \hline \end{array}$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 1.100(D) 0.590(D) 0.470(D) 0.580(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.529(ID-T)[92], 1.0190 (T)[76] 0.911(ID-T)[92] 0.660(D) TD[00] 0.062 (T)[76]
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	$\begin{array}{c} CsCu_5Se_3\\ \hline K_2Cu_2GeS_4\\ \hline Li_2In_2SiS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2In_2GeS_6\\ \hline Li_2GaS_9\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline SrCdGeS_4\\ \hline TIInGe_2S_6\\ \hline TIInGe_2S_6\\ \hline TIInGe_2S_6\\ \hline TIGaSn_2Se_6\\ \hline Tl_2PbZrS_4\\ \hline Tl_2PbZrS_4\\ \hline Tl_2PbHfS_4\\ \hline TL_2PbHfS_4$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 1.100(D) 0.590(D) 0.470(D) 0.580(D) 0.690(D) 0.690(D)	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.529(ID-T)[92], 1.0190 (T)[76] 0.911(ID-T)[92] 0.062 (T)[76]
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 95	$\begin{array}{c} CsCu_5Se_3 \\ \hline K_2Cu_2GeS_4 \\ \hline Li_2In_2SiS_6 \\ \hline Li_2In_2GeS_6 \\ \hline Li_2In_2GeS_6 \\ \hline Li_2In_2GeS_6 \\ \hline Lu_5GaS_9 \\ \hline SrCdGeS_4 \\ \hline SrCdGeS_4 \\ \hline SrCdGeS_4 \\ \hline TIInGe_2S_6 \\ \hline TIInGe_2S_6 \\ \hline TIGaSn_2Se_6 \\ \hline Tl_2PbZrS_4 \\ \hline Tl_2PbZrS_4 \\ \hline Tl_2PbHfS_4 \\ \hline Tl_2PbHfS_4 \\ \hline Tl_2CdGeS_4 \\ \hline TIGGS_6 \\ \hline \end{array}$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 1.100(D) 0.590(D) 0.470(D) 0.580(D) 0.690(D) 0.000	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.529(ID-T)[92], 1.0190 (T)[76] 0.911(ID-T)[92] 0.659(ID-T)[92], 0.962 (T)[76]
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 1.100(D) 0.590(D) 0.470(D) 0.580(D) 0.690(D) 0.000 0.000	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.529(ID-T)[92], 1.0190 (T)[76] 0.659(ID-T)[92], 0.962 (T)[76] * *
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 92	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 0.590(D) 0.470(D) 0.580(D) 0.690(D) 0.000 0.000 0.000	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.529(ID-T)[92], 1.0190 (T)[76] 0.911(ID-T)[92] 0.659(ID-T)[92], 0.962 (T)[76] * * * * * *
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 90	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.235(D) 1.150(ID) 2.062(D) 1.600(D) 1.949(D) 1.146(D) 1.759(D) 2.423(D) 1.777(D) 1.526(D) 1.130(D) 0.590(D) 0.470(D) 0.580(D) 0.690(D) 0.000 0.000 0.000 0.000	1.010(1)[56] 1.457[91] 3.240[58], 2.116(T)[76] 2.350[58], 1.497(T)[76] 2.990[58], 2.033 (T)[76] 1.920[58], 1.199 (T)[76] 1.920[58], 1.199 (T)[76] 1.890(ID-T)[59] 2.600(E)[60] 1.900(E)[60] 2.001(T)[61] 1.299(T)[62] 1.143(T)[63] 0.983(ID-T)[92], 1.240(T)[76] 0.529(ID-T)[92], 0.962 (T)[76] * * * * * * 0.959(T)[76]

Table S3 Our results for the 99 crystals: the average effective charge on each atoms (Q*), total bond order density (TBOD), and the plasma frequency (ω_p). All numbers here are with three decimal point, except for TBOD, which have four significant figures.

#	Crystal	Q [*] (in e ⁻)	TBOD	ω _p (eV)
	-		(e ⁻ /Å ³)	
1	Cu ₂ ZnSiS ₄	11.017(Cu), 11.611(Zn), 3.098(Si), 6.314(S)	0.0248	19.500
2	Cu ₂ ZnSiSe ₄	11.039 (Cu), 11.703 (Zn), 3.368 (Si), 6.212 (Se)	0.0205	18.100
3	Cu ₂ ZnSiTe ₄	11.262 (Cu), 11.932 (Zn), 3.788 (Si), 5.938 (Te)	0.0180	17.250
4	Cu ₂ ZnGeS ₄	10.992 (Cu), 11.605 (Zn), 3.372 (Ge), 6.259 (S)	0.0228	19.100
5	Cu ₂ ZnGeSe ₄	11.023 (Cu), 11.702 (Zn), 3.573 (Ge), 6.169 (Se)	0.0189	18.100
6	Cu ₂ ZnSnS ₄	11.029 (Cu), 11.631 (Zn), 3.030 (Sn), 6.319 (S)	0.0211	18.900
7	Cu2ZnSnSe4	11.046 (Cu), 11.714 (Zn), 3.239 (Sn), 6.238 (Se)	0.0180	18.100
8	Cu ₂ ZnSnTe ₄	11.258 (Cu), 11.954 (Zn), 3.555(Sn), 5.993 (Te)	0.0163	16.800
9	Cu2CdSiS4	11.078 (Cu), 11.138 (Cd), 3.092 (Si), 6.403 (S)	0.0213	19.800
10	Cu2CdSiSe4	11.077 (Cu), 11.194 (Cd), 3.368 (Si), 6.320 (Se)	0.0177	18.100
11	Cu2CdGeS4	11.046(Cu), 11.145 (Cd), 3.371 (Ge), 6.348 (S)	0.0195	19.600
12	Cu2CdGeSe4	11.061(Cu), 11.188 (Cd), 3.572(Ge), 6.279 (Se)	0.0164	19.100
13	Cu ₂ CdGeTe ₄	11.264 (Cu), 11.289 (Cd), 3.925 (Ge), 6.064(Te)	0.0147	17.100
14	Cu2CdSnS4	11.065 (Cu), 11.161 (Cd), 3.070 (Sn), 6.409 (S)	0.0181	19.100
15	Cu ₂ CdSnSe ₄	11.066 (Cu), 11.201 (Cd), 3.268 (Sn), 6.349 (Se)	0.0155	17.400
16	Cu ₂ CdSnTe ₄	11.263 (Cu), 11.296 (Cd), 3.573 (Sn), 6.151(Te)	0.0141	16.300
17	Cu ₂ HgGeS ₄	11.027 (Cu), 11.456(Hg), 3.316 (Ge), 6.293 (S)	0.0132	20.100
18	Cu ₂ HgGeSe ₄	11.049(Cu), 11.551(Hg), 3.522(Ge), 6.207 (Se)	0.0112	19.400
19	Cu ₂ HgGeTe ₄	11.316 (Cu), 11.816 (Hg), 3.883(Ge), 5.917 (Te)	0.0103	17.100
20	Cu ₂ HgSnS ₄	11.045(Cu), 11.496(Hg), 3.056 (Sn), 6.339 (S)	0.0126	19.100
21	Cu ₂ HgSnSe ₄	11.059 (Cu), 11.578 (Hg), 3.264 (Sn), 6.259 (Se)	0.0109	18.500
22	Cu ₂ HgSnTe ₄	11.314 (Cu), 11.826 (Hg), 3.622 (Sn), 5.980 (Te)	0.0102	16.500
23	Cu ₂ BaGeS ₄	11.200 (Cu), 8.103 (Ba), 3.367(Ge), 6.532 (S)	0.0133	21.200
24	Cu ₂ BaGeSe ₄	11.199(Cu), 8.117(Ba), 3.544(Ge), 6.485 (Se)	0.0123	20.500
25	Cu ₂ SrS ₁ S ₄	11.168(Cu), 6.811(Sr), 3.084(Si), 6.442(S)	0.0193	24.000
26	Cu_2SrGeS_4	11.141 (Cu), 6.854 (Sr), 3.361 (Ge), 6.375 (S)	0.01//	23.900
27	Cu ₂ SrGeSe ₄	11.138 (Cu), 6.891 (Sr), 3.541 (Ge), 6.322 (Se)	0.0145	23.500
20	Cu2DaSIIS4	11.149 (Cu), 8.109(Ba), 5.150 (Sii), 0.014 (S) 11.184 (Cu), 8.125 (Ba), 2.200 (Su), 6.576 (Sa)	0.0110	19.900
29	Cu ₂ DaSiiSe4	11.164 (Cu), 6.125 (Ba), 5.200 (SII), 6.576 (Se) 11.176 (Cu) 6.776 (Sr) 3.041 (Sp) 6.457 (S)	0.0111	20.100
31	Cu ₂ SISIIS ₄	11.170(Cu), 6.770(SI), 5.041(SII), 0.457(S) 11.147(Cu), 6.800(Sr), 3.225(Sr), 6.307(Sr)	0.0135	23.100
32	Cu ₂ SISIISe ₄	11.147 (Cu), 6.890 (S1), 5.225 (S1), 6.597 (Se) 11.069 (Cu), 6.973 (Mg), 3.095 (Si), 6.448 (S)	0.0143	19.400
33	Cu ₂ MgSiSe ₄	11.009 (Cu), 7.065 (Mg), 3.363 (Si), 6.353 (Se)	0.0186	18 200
34	Cu ₂ MgGeS ₄	11.054 (Cu), 6.983(Mg), 3.369 (Ge), 6.385(S)	0.0206	19.400
35	Cu2MgSnS4	11.076(Cu), 7.019 (Mg), 3.053 (Sn), 6.444(S)	0.0191	18.100
36	Cu2MgSnSe4	11.071 (Cu), 7.077 (Mg), 3.256 (Sn), 6.381 (Se)	0.0162	16.900
37	Cu ₂ MgSnTe ₄	11.260 (Cu), 7.156 (Mg), 3.569 (Sn), 6.188 (Te)	0.0143	16.100
38	Ag ₂ ZnSiS ₄	10.822 (Ag), 11.506(Zn), 3.133 (Si), 6.429 (S)	0.0145	17.200
39	Ag ₂ ZnSnS ₄	10.939 (Ag), 11.604(Zn), 2.980 (Sn), 6.384 (S)	0.0167	18.200
40	Ag ₂ ZnSnSe ₄	10.954 (Ag), 11.684(Zn), 3.192 (Sn), 6.303 (Se)	0.0145	18.100
41	Ag ₂ CdGeS ₄	10.953 (Ag), 11.138 (Cd), 3.314 (Ge), 6.410 (S)	0.0153	18.400
42	Ag2CdSnS4	11.065 (Ag), 11.161 (Cd), 3.070 (Sn), 6.409 (S)	0.0144	18.900
43	Ag2CdSnSe4	10.973(Ag), 11.178 (Cd), 3.206(Sn), 6.417 (Se)	0.0125	17.500
44	Ag ₂ CdSnTe ₄	11.100 (Ag), 11.278 (Cd), 3.533 (Sn), 6.247(Te)	0.0115	16.800
45	Ag_2HgSnS_4	10.950 (Ag), 11.470 (Hg), 2.98 (Sn), 6.412(S)	0.0101	18.600
46	Ag ₂ HgSnSe ₄	10.965 (Ag), 11.546 (Hg), 3.198 (Sn), 6.331 (Se)	0.0088	16.500
47	Ag ₂ BaGeS ₄	11.071 (Ag), 8.138 (Ba), 3.308 (Ge), 6.603(S)	0.0120	20.900
48	Ag2BaGeSe4	11.027 (Ag), 8.155(Ba), 3.494 (Ge), 6.574(Se)	0.0100	20.100
49	Ag ₂ BaSnS ₄	11.035(Ag), 8.145 (Ba), 2.998 (Sn), 6.696 (S)	0.0106	20.500
50	Ag ₂ BaSnSe ₄	11.018 (Ag), 8.157 (Ba), 3.169 (Sn), 6.659 (Se)	0.0100	19.900
51	Ag2SrGeS4	$\frac{11.018}{11.022} (Ag), 0.808(Sr), 3.318 (Ge), 6.444 (S)$	0.0144	23.500
52	Ag2SIGeSe4	$\frac{11.022}{11} (Ag), 0.8/2(SI), 5.515 (Ge), 0.592 (Se)$	0.0123	23.300
55	A22010104	11.013 (Ag), 0.001 (SI), 3.007 (SI), 0.323 (S)	0.0133	23.230

-	-			
54	Ag ₂ SrSnSe ₄	11.014(Ag), 6.866(Sr), 3.196 (Sn), 6.477 (Se)	0.0110	23.700
55	Ag ₂ In ₂ SiS ₆	10.921 (Ag), 12.171 (In), 3.141(Si), 6.446(S)	0.0159	17.400
56	Ag ₂ In ₂ GeS ₆	10.911 (Ag), 12.172 (In), 3.377(Ge), 6.409 (S)	0.0149	17.500
57	Ag ₂ In ₂ SiSe ₆	10.951 (Ag), 12.317(In), 3.393(Si), 6.345 (Se)	0.0137	17.100
58	Ag ₂ In ₂ GeSe ₆	10.940 (Ag), 12.314 (In), 3.588 (Ge), 6.317 (Se)	0.0130	16.900
59	Ag ₂ SiS ₃	10.889(Ag), 3.042 (Si), 6.393 (S)	0.0168	19.500
60	Ag ₂ GeS ₃	10.901 (Ag), 3.310 (Ge), 6.295 (S)	0.0159	18.600
61	Cu ₂ GeS ₃	10.981 (Cu), 3.388 (Ge), 6.216 (S)	0.0222	19.500
62	Cu ₂ GeSe ₃	11.017 (Cu), 3.591(Ge), 6.125(Se)	0.0183	19.100
63	Ag ₂ SnSe ₃	10.921 (Ag), 3.496(Sn), 6.221(Se)	0.0062	15.500
64	Ag ₂ SnTe ₃	11.089 (Ag), 3.529 (Sn), 6.097 (Te)	0.0119	15.900
65	$Ag_4P_2S_6$	10.888 (Ag), 4.338(P), S = 6.294 (S)	0.0155	18.900
66	Ag ₄ P ₂ Se ₆	10.939 (Ag), 4.577(P), 6.182(Se)	0.0134	18.700
67	BaZnSiSe ₄	8.160(Ba), 11.665 (Zn), 3.343(Si), 6.708(Se)	0.0096	20.500
68	BaZnGeSe ₄	8.158 (Ba), 11.655 (Zn), 3.521 (Ge), 6.666 (Se)	0.0088	20.200
69	BaHg ₂ As ₂ S ₆	8.815(Ba), 11.514 (Hg), 4.540 (As), 6.512 (S)	0.0064	20.100
70	BaCd ₂ As ₂ S ₆	8.181(Ba), 11.164 (Cd), 4.559 (As), 6.729(S)	0.0077	20.500
71	Ba2AlSbS5	8.171 (Ba), 2.242 (Al), 4.246 (Sb), 7.033 (S)	0.0063	21.300
72	Ba2GaBiSe5	8.165 (Ba), 12.733 (Ga), 14.341(Bi), 6.919 (Se)	0.0053	20.600
73	Ba2AsGaSe5	8.171 (Ba), 4.644(As), 12.675 (Ga), 6.867 (Se)	0.0054	20.900
74	Ba ₂ LaGaSe ₅	8.165 (Ba), 9.897(La), 12.683 (Ga), 7.018(Se)	0.0065	22.900
75	Ba ₂ LuGaSe ₅	8.951 (Ba), 15.864(Lu), 12.737(Ga), 6.699 (Se)	0.0061	20.500
76	Ba ₂ LuInSe ₅	8.989 (Ba), 15.902(Lu), 12.428 (In), 6.738 (Se)	0.0118	20.450
77	Ba ₄ AgInS ₆	8.174 (Ba), 11.365 (Ag), 12.405 (In), 7.255 (S)	0.0050	22.600
78	CsCu ₅ S ₃	8.212 (Cs), 11.012 (Cu), 6.242 (S)	0.0181	20.700
79	CsCu ₅ Se ₃	8.287(Cs), 11.015 (Cu), 6.212(Se)	0.0162	19.750
80	K ₂ Cu ₂ GeS ₄	6.254 (k), 11.091 (Cu), 3.419 (Ge), 6.472 (S)	0.0136	24.500
81	Li2In2SiS6	0.669 (Li), 12.198 (In), 3.147 (Si), 6.519 (S)	0.0167	17.500
82	Li ₂ In ₂ SiSe ₆	0.677 (Li), 12.336(In), 3.400 (Si), 6.428 (Se)	0.0141	16.600
83	Li ₂ In ₂ GeS ₆	0.658 (Li), 12.197 (In), 3.390 (Ge), 6.483 (S)	0.0155	17.400
84	Li ₂ In ₂ GeSe ₆	0.666 (Li), 12.331 (In), 3.604 (Ge), 6.399 (Se)	0.0132	16.700
85	Lu5GaS9	15.903 (Lu), 12.322(Ga), 6.684 (S)	0.0102	31.100
86	SrCdGeS ₄	6.971 (Sr), 11.148(Cd), 3.354 (Ge), 6.631 (S)	0.0121	23.900
87	SrCdGeSe ₄	6.965 (Sr), 11.203(Cd), 3.555 (Ge), 6.569 (Se)	0.0105	23.500
88	TlInGe ₂ S ₆	12.619 (Tl), 12.171(In), 3.326 (Ge), 6.426 (S)	0.0114	18.450
89	TlInGe ₂ Se ₆	12.649 (Tl), 12.312 (In), 3.552(Ge), 6.322 (Se)	0.0095	17.900
90	TlGaSn ₂ Se ₆	12.711(Tl), 12.603 (Ga), 3.449 (Sn), 6.298(Se)	0.0097	17.890
91	Tl ₂ PbZrS ₄	12.714 (Tl), 13.371 (Pb), 8.941 (Zr), 6.565(S)	0.0075	18.200
92	Tl ₂ PbZrSe ₄	12.724(Tl), 13.427 (Pb), 9.027 (Zr), 6.524 (Se)	0.0073	19.500
93	Tl ₂ PbHfS ₄	12.679 (Tl), 13.337 (Pb), 3.296 (Hf), 6.502 (S)	0.0075	18.900
94	Tl ₂ PbHfSe ₄	12.681 (Tl), 13.387 (Pb), 3.388(Hf), 6.466(Se)	0.0073	19.400
95	Tl ₂ CdGeSe ₄	12.743 (Tl), 11.166 (Cd), 3.545(Ge), 6.450 (Se)	0.0085	18.600
96	Tl ₂ CdSnSe ₄	12.751 (Tl), 11.173(Cd), 3.236 (Sn), 6.529 (Se)	0.0080	18.900
97	Tl ₂ HgGeSe ₄	12.649 (Tl), 11.535 (Hg), 3.485 (Ge), 6.420 (Se)	0.0062	18.700
98	Tl ₂ HgSiSe ₄	12.660 (Tl), 11.544 (Hg), 3.344 (Si), 6.447 (Se)	0.0067	18.450
99	Tl ₂ HgSnS ₄	12.632 (Tl), 11.498 (Hg), 2.993 (Sn), 6.561(S)	0.0066	19.150

Table S4	Our results	for the	<mark>99</mark>	crystals: refractive inde	x (r	1).
----------	-------------	---------	-----------------	---------------------------	------	-----

#	Crystal	n
1	Cu ₂ ZnSiS ₄	2.673
2	Cu ₂ ZnSiSe ₄	2.894
3	Cu ₂ ZnSiTe ₄	3.354
4	Cu ₂ ZnGeS ₄	2.915
5	Cu ₂ ZnGeSe ₄	3.741
6	Cu ₂ ZnSnS ₄	3.240
7	Cu ₂ ZnSnSe ₄	3.741
8	Cu ₂ ZnSnTe ₄	3 605
9	Cu2CdSiS4	2 673
10	Cu2CdSiSe4	2.073
11	Cu2CdSiSC4	3.016
12	Cu2CdGeSe4	3 807
12	Cu ₂ CdGeTe ₄	3.807
13	Cu ₂ CuOeTe ₄	2 201
14	Cu ₂ CuSIIS4	2 972
15	Cu ₂ Cu ₃ IISe ₄	3.674
10	Cu ₂ Cu ₃ IITe ₄	2 162
1/	Cu ₂ HgGeS ₄	3.102
18	Cu ₂ HgGeSe ₄	3.821
19	Cu ₂ HgGeTe ₄	3.847
20	Cu ₂ HgSnS ₄	3.566
21	Cu ₂ HgSnSe ₄	4.183
22	Cu ₂ HgSnTe ₄	3.549
23	Cu ₂ BaGeS ₄	2.915
24	Cu ₂ BaGeSe ₄	3.130
25	Cu ₂ SrSiS ₄	2.608
26	Cu ₂ SrGeS ₄	2.828
27	Cu ₂ SrGeSe ₄	3.049
28	Cu ₂ BaSnS ₄	2.881
29	Cu2BaSnSe4	3.025
30	Cu ₂ SrSnS ₄	2.933
31	Cu ₂ SrSnSe ₄	3.098
32	Cu ₂ MgSiS ₄	2.588
33	Cu ₂ MgSiSe ₄	2.756
34	Cu ₂ MgGeS ₄	2.828
35	Cu2MgSnS4	3.001
36	Cu ₂ MgSnSe ₄	3.354
37	Cu2MgSnTe4	3.464
38	Ag ₂ ZnSiS ₄	2.692
39	Ag ₂ ZnSnS ₄	2.765
40	Ag ₂ ZnSnSe ₄	3.025
41	Ag2CdGeS4	2.664
42	Ag2CdSnS4	2.756
43	Ag ₂ CdSnSe ₄	2.983
44	Ag ₂ CdSnTe ₄	3.130
45	Ag ₂ HgSnS ₄	2.683
46	Ag ₂ HgSnSe ₄	2.983
47	Ag ₂ BaGeS ₄	2.262
48	Ag2BaGeSe4	2.756
49	Ag ₂ BaSnS ₄	2.598
50	Ag ₂ BaSnSe ₄	2.738
51	Ag ₂ SrGeS ₄	2.626
52	Ag2SrGeSe4	2.802
53	Ag2SrSnS4	2.645
54	Ag2SrSnSe4	2,766
55	Ag2In2SiS6	2.499
56	AgaInaGeSc	2.549
50	· 15211120000	

57	Ag ₂ In ₂ SiSe ₆	2.645
58	Ag ₂ In ₂ GeSe ₆	2.716
59	Ag ₂ SiS ₃	2.479
60	Ag ₂ GeS ₃	2.881
61	Cu ₂ GeS ₃	3.912
62	Cu ₂ GeSe ₃	3.982
63	Ag ₂ SnSe ₃	3.030
64	Ag ₂ SnTe ₃	3.718
65	$Ag_4P_2S_6$	2.677
66	Ag ₄ P ₂ Se ₆	2.924
67	BaZnSiSe ₄	2.366
68	BaZnGeSe ₄	2.510
69	BaHg ₂ As ₂ S ₆	2.620
70	BaCd ₂ As ₂ S ₆	2.640
71	Ba ₂ AlSbS ₅	2.533
72	Ba2GaBiSe5	2.885
73	Ba ₂ AsGaSe ₅	2.640
74	Ba2LaGaSe5	2.706
75	Ba ₂ LuGaSe ₅	2.557
76	Ba ₂ LuInSe ₅	2.631
77	Ba ₄ AgInS ₆	2.506
78	CsCu ₅ S ₃	3.089
79	CsCu ₅ Se ₃	3.282
80	K ₂ Cu ₂ GeS ₄	2.549
81	Li ₂ In ₂ SiS ₆	2.330
82	Li ₂ In ₂ SiSe ₆	2.460
83	Li ₂ In ₂ GeS ₆	2.371
84	Li ₂ In ₂ GeSe ₆	2.527
85	Lu5GaS9	2.542
86	SrCdGeS ₄	2.397
87	SrCdGeSe ₄	2.553
88	TlInGe ₂ S ₆	2.635
89	TlInGe ₂ Se ₆	2.787
90	TlGaSn ₂ Se ₆	2.569
91	Tl ₂ PbZrS ₄	4.375
92	Tl ₂ PbZrSe ₄	4.524
93	Tl ₂ PbHfS ₄	4.326
94	Tl ₂ PbHfSe ₄	4.424
95	Tl ₂ CdGeSe ₄	3.647
96	Tl ₂ CdSnSe ₄	3.535
97	Tl ₂ HgGeSe ₄	3.715
98	Tl ₂ HgSiSe ₄	3.701
99	Tl ₂ HgSnS ₄	3.605

Table ${\color{black} {\textbf{S5}}}$ The calculated elastic constants C_{ij} (GPa) for the ${\color{black} {\textbf{99}}}$ crystals.

#	Crystal	C ₁₁	C ₁₂	C ₁₃	C ₂₁	C ₂₂	C ₂₃	C ₃₁	C ₃₂	C ₃₃	C44	C55	C66
1	Cu ₂ ZnSiS ₄	124.976	57.391	44.792	57.391	122.374	43.791	44.792	43.791	158.825	31.529	30.567	34.298
2	Cu ₂ ZnSiSe ₄	96.229	45.824	34.392	45.824	103.007	37.524	34.392	37.524	128.882	25.042	23.982	27.049
3	Cu ₂ ZnSiTe ₄	63.565	35.569	37.890	35.569	72.856	42.541	37.890	42.541	73.652	32.672	32.688	30.949
4	Cu2ZnGeS4	120.211	52.512	40.167	52.512	116.010	37.896	40.166	37.896	149.271	29.284	28.284	32.728
5	Cu2ZnGeSe4	77.649	47.234	44.566	47.234	86.378	48.803	44.566	48.803	75.521	35.650	35.570	33.268
6	Cu ₂ ZnSnS ₄	72.691	43.560	55.953	43.560	85.985	62.501	55.953	62.501	110.213	41.257	41.460	40.641
7	Cu ₂ ZnSnSe ₄	58.336	32.462	43.225	32.462	64.581	46.351	43.225	46.351	86.307	32.969	33.471	32.705
8	Cu ₂ ZnSnTe ₄	58.309	35.196	35.468	35.196	63.549	38.069	35.468	38.069	64.511	27.304	27.251	27.084
9	Cu2CdSiS4	115.978	57.955	44.042	57.955	113.375	42.610	44.042	42.610	134.174	25.553	26.324	28.012
10	Cu2CdSiSe4	92.815	45.688	34.498	45.688	87.940	31.211	34.498	31.211	106.086	20.252	21.125	22.874
11	Cu ₂ CdGeS ₄	107.377	53.835	45.122	53.835	107.520	45.241	45.122	45.241	137.512	23.802	23.980	26.313
12	Cu ₂ CdGeSe ₄	79.622	49.112	48.528	49.112	78.109	47.718	48.528	47.718	72.839	32.070	31.906	33.251
13	Cu ₂ CdGeTe ₄	61.859	33.689	37.224	33.689	56.851	34.725	37.224	34.725	61.191	25.808	26.211	26.277
14	Cu ₂ CdSnS ₄	81.601	49.905	56.101	49.905	78.827	54.768	56.101	54.768	89.189	35.515	35.381	34.104
15	Cu ₂ CdSnSe ₄	53.107	28.512	29.042	28.512	53.405	29.165	29.042	29.165	53.578	28.665	28.535	28.883
16	Cu ₂ CdSnTe ₄	53.240	31.697	41.200	31.697	55.045	42.130	41.200	42.130	74.027	24.182	24.100	23.996
17	Cu_2HgGeS_4	91.607	41.997	34.980	41.997	62.280	20.251	34.980	20.251	44.574	38.184	38.072	41.502
18	$Cu_2HgGeSe_4$	76.607	42.868	46.248	42.868	66.328	41.050	46.248	41.050	67.276	31.611	31.175	30.375
19	$Cu_2HgGeTe_4$	59.697	35.159	33.704	35.159	61.822	34./19	33.704	34.719	54.490	26.612	26.509	27.334
20	Cu_2HgSnS_4	92.442	65.655	64.542	65.655	95.905	66.146	64.542	66.146	94.226	33.419	33.155	35.502
21	$Cu_2HgSnSe_4$	69.685	46.054	46.316	46.054	72.405	47.754	46.310	47.754	70.463	28.198	28.222	28.303
22	$Cu_2HgSnTe_4$	56.820	57.202	34.799	57.202	56.934	34.881	34.799	34.881	56.881	25.068	24.708	24.928
23	Cu_2BaGeS_4	91.520	27.293	20.792	27.293	85.189	20.275	20.792	33.130	45.259	14.519	14.432	10.201
24	Cu ₂ BaGeSe ₄	106 159	26.017	29.765	26.017	100.084	41.016	29.765 44.205	29.273 41.016	117 709	21.262	21.192	22 261
25	Cu SrGeS	121.086	52 218	<u>44.393</u> 52 505	52 218	102.803	41.910	52 505	41.910	102 665	28 600	20 105	30.070
20	Cu ₂ SiGeS ₄	86.694	28 535	29 7/1	28 535	57.957	13/00	29 7/1	13 409	83 557	17 3/18	23.103	10/180
28	Cu ₂ SiGese ₄	54 238	20.555	22.741	20.555	33 311	13.575	22.741	13.402	27.860	10 552	9 874	3 574
29	Cu ₂ BaSnSe	68 021	23.982	27.424	23.982	54 231	15.902	27.424	15.902	71 806	15.819	21 226	18 588
30	Cu ₂ SrSnS ₄	81.661	37.439	34.976	37.439	83 164	36.293	34.976	36 293	79.998	23.533	23.361	22.766
31	$Cu_2SrSnSe_4$	69.817	26.140	19.786	26.140	55.530	10.355	19.786	10.355	72.686	15.669	20.656	17.804
32	Cu ₂ MoSiS ₄	118 587	53 850	50.725	53 850	102 415	40 535	50.725	40 535	135 986	25.646	26.055	28 408
32	Cu ₂ MgSiSe	89 5117	40 327	37.097	40 327	83 675	33 952	37.097	33 9518	111 539	20.349	20.702	22 255
24	Cu McGoS	126.815	66.822	46 201	66.822	118 181	42 100	46 201	43 100	119.921	24.575	22.702	26.440
25	Cu ₂ MgGe34	06 2107	62 220	40.391	62 220	99 115	43.109	40.391 55 544	43.109	75.629	24.373	26.299	25.120
35		90.3197	02.250	33.344	02.250	66.115	31.440	33.344	31.440	73.028	30.222	30.388	35.120
36	Cu ₂ MgSnSe ₄	/0./36	44.451	43.001	44.451	68.456	41.848	43.001	41.848	64.961	29.271	29.221	28.145
37	Cu ₂ MgSnTe ₄	60.0377	37.087	34.139	37.087	57.992	33.112	34.139	33.1118	51./118	23.712	23.550	21.842
38	Ag_2ZnSiS_4	53.457	-22.437	42.503	-22.437	-2.748	-10.656	42.503	-10.656	76.139	-2.695	25.667	-2.784
39	Ag ₂ ZnSnS ₄	71.801	48.005	47.971	48.005	71.685	47.955	47.971	47.955	67.4917	27.074	26.925	28.778
40	$Ag_2ZnSnSe_4$	61.230	40.581	40.641	40.581	61.196	40.623	40.641	40.623	57.131	22.924	23.187	23.730
41	Ag ₂ CdGeS ₄	76.828	42.406	38.791	42.406	71.311	36.552	38.791	36.552	92.942	16.185	14.349	16.290
42	Ag ₂ CdSnS ₄	63.466	44.086	45.333	44.086	63.341	45.326	45.333	45.326	62.837	22.994	23.163	23.059
43	Ag ₂ CdSnSe ₄	55.160	37.990	39.102	37.990	55.158	39.100	39.102	39.100	53.765	19.968	19.834	19.925
44	Ag ₂ CdSnTe ₄	47.132	31.145	32.097	31.145	47.116	32.107	32.097	32.107	45.540	17.551	17.517	16.093
45	Ag ₂ HgSnS ₄	68,560	40,264	34,727	40,264	69.749	36.083	34,727	36.083	85.812	13.058	12,766	14.130
46	Ag ₂ HgSnSe	59,111	35,892	31,231	35,892	58,706	29.974	31,231	29.974	73.069	11.029	10.617	11.716
17	AgaBaGeS.	77 374	52 474	35 288	52 474	76.402	35 335	35 288	35 335	45.096	18.817	18 758	24 800
4/	Ag BaCaSa	76 806	31 205	24.057	31 205	34 225	10 /77	24 057	10 /77	30.674	12.01/	13 907	16 255
48	$A_2 Da Ue Se_4$	26.270	10 704	24.037	10 704	12 (17	17.4//	24.037	17.4//	39.074	12.230	15.007	10.233
49	Ag ₂ BaShS ₄	30.370	19.794	28.966	19.794	43.04/	23.011	28.966	23.011	19.115	15./0/	15.190	12.780
50	Ag ₂ BaSnSe ₄	68.014	20.482	20.622	20.482	30.774	17.588	20.622	17.588	30.255	11.128	12.724	13.802
51	Ag_2SrGeS_4	43.133	28.024	38.966	28.024	49.684	32.831	38.966	32.831	97.287	18.336	14.875	16.842
52	Ag ₂ SrGeSe ₄	80.985	33.469	26.381	33.469	34.559	23.170	26.381	23.170	42.890	12.774	14.141	13.827
53	Ag_2SrSnS_4	31.386	36.637	28.514	36.637	120.002	40.945	28.514	40.945	85.624	13.888	11.926	10.520
54	Ag ₂ SrSnSe ₄	73.253	26.703	22.009	26.703	27.094	20.446	22.009	20.446	40.819	9.307	11.774	11.225
55	Ag ₂ In ₂ SiS ₆	62.397	24.651	18.747	24.651	48.765	21.433	18.747	21.433	54.904	16.189	18.491	15.286
56	Ag ₂ In ₂ GeS ₆	59.840	22.764	16.832	22.764	46.533	20.049	16.832	20.049	51.170	16.026	17.930	15.674
57	Ag ₂ In ₂ SiSe ₆	51.461	20.407	14.099	20.407	42.726	17.660	14.099	17.660	47.593	14.958	15.841	13.838
58	Ag ₂ In ₂ GeSez	48,802	19.024	12.829	19.024	40.715	16.820	12.829	16.820	45,953	14 302	15.031	14.160
50	AgaSiSa	56 251	34 466	27 071	34 466	58 916	28 570	27 071	28 570	46 196	15 302	14 926	15 758
57		71 144	11 974	25 102	11 974	77 000	20.570	25 102	20.570	96 252	13.302	15 254	16 157
00	$Ag_2 Geo_3$	/1.100	41.0/0	33.480	41.0/0	//.900	30.910	55.480	20.210	00.232	14.045	15.554	10.457

61	Cu ₂ GeS ₃	134.693	56.017	49.563	56.017	138.913	53.530	49.563	53.530	137.221	27.360	27.744	38.041
62	Cu ₂ GeSe ₃	90.258	22.124	33.831	22.124	91.791	45.794	33.831	45.794	70.491	35.640	36.984	17.619
63	Ag ₂ SnSe ₃	46.999	12.497	-1.610	12.497	44.1259	0.256	-1.610	0.256	-1.121	-0.159	-0.120	4.707
64	Ag ₂ SnTe ₃	56.492	26.361	25.011	26.361	58.182	26.233	25.011	26.233	59.115	10.149	10.030	14.159
65	$Ag_4P_2S_6$	37.452	23.542	13.658	23.542	51.270	23.162	13.658	23.162	48.369	11.005	8.009	13.303
66	$Ag_4P_2Se_6$	31.154	18.140	15.169	18.140	46.173	20.972	15.169	20.972	62.375	11.283	8.404	13.372
67	BaZnSiSe ₄	40.965	16.652	14.171	16.652	40.530	14.486	14.171	14.486	64.844	15.783	11.062	11.318
68	BaZnGeSe ₄	39.497	16.506	13.042	16.506	39.480	13.947	13.042	13.947	61.662	14.608	9.338	10.987
69	BaHg ₂ As ₂ S ₆	46.118	17.648	25.198	17.648	32.077	19.779	25.198	19.779	47.645	8.514	10.991	15.820
70	BaCd ₂ As ₂ S ₆	46.680	16.588	28.578	16.588	34.653	20.911	28.578	20.911	54.494	11.812	13.559	13.439
71	Ba ₂ AlSbS ₅	56.807	13.313	12.537	13.313	57.296	21.717	12.537	21.717	41.783	23.407	15.138	12.243
72	Ba2GaBiSe5	54.028	13.957	12.762	13.957	50.574	23.053	12.762	23.053	34.942	21.601	13.082	12.918
73	Ba2AsGaSe5	47.541	9.792	12.274	9.792	44.902	17.968	12.274	17.968	38.743	20.964	12.079	10.432
74	Ba2LaGaSe5	56.987	25.786	17.675	25.786	82.040	37.402	17.675	37.402	53.490	28.969	12.802	21.871
75	Ba2LuGaSe5	56.099	21.670	20.891	21.670	67.588	17.551	20.891	17.551	38.863	19.413	16.909	23.118
76	Ba ₂ LuInSe ₅	79.547	20.711	25.759	20.711	46.703	26.135	25.759	26.135	54.520	17.584	25.982	21.249
77	Ba ₄ AgInS ₆	70.360	26.779	20.979	26.779	59.713	28.105	20.979	28.105	62.069	22.670	19.739	25.820
78	CsCu ₅ S ₃	89.317	30.515	30.104	30.515	93.144	22.175	30.104	22.175	44.843	9.642	10.110	20.477
79	CsCu ₅ Se ₃	50.747	23.266	18.869	23.266	76.543	13.073	18.869	13.073	44.015	5.641	9.501	12.384
80	K ₂ Cu ₂ GeS ₄	46.915	18.919	16.287	18.919	45.211	22.245	16.287	22.245	41.702	25.412	14.767	18.222
81	Li ₂ In ₂ SiS ₆	54.789	18.628	15.121	18.628	38.523	12.765	15.121	12.765	56.461	15.127	18.488	17.284
82	Li2In2SiSe6	44.302	16.361	11.831	16.361	31.895	10.733	11.831	10.733	47.676	13.175	15.257	14.784
83	Li2In2GeS6	51.774	17.779	14.309	17.779	37.755	12.434	14.309	12.434	54.835	14.871	17.995	16.915
84	Li2In2GeSe6	41.449	15.851	11.212	15.851	31.826	10.783	11.212	10.783	46.087	12.523	14.725	14.161
85	Lu5GaS9	94.631	38.181	28.394	38.181	87.606	29.276	28.394	29.276	88.562	29.456	27.999	39.844
86	SrCdGeS ₄	50.802	18.578	22.073	18.579	59.205	19.702	22.073	19.702	83.01	22.488	15.569	12.785
87	SrCdGeSe ₄	44.558	15.534	19.281	15.534	48.720	17.101	19.281	17.101	67.284	20.065	12.742	9.143
88	TlInGe ₂ S ₆	26.336	9.936	7.368	9.936	27.018	7.252	7.368	7.252	24.577	10.493	10.558	8.967
89	TlInGe ₂ Se ₆	20.923	7.654	6.508	7.654	20.517	6.521	6.508	6.521	20.370	6.840	6.476	7.142
90	TlGaSn ₂ Se ₆	21.987	5.729	6.283	5.729	22.677	6.326	6.283	6.326	21.722	7.413	6.075	8.384
91	Tl ₂ PbZrS ₄	71.592	20.608	30.530	20.608	77.784	30.792	30.530	30.792	65.220	31.490	28.886	20.175
92	Tl ₂ PbZrSe ₄	62.568	18.418	26.385	18.418	69.103	25.800	26.385	25.800	54.044	29.239	28.127	18.590
93	Tl ₂ PbHfS ₄	73.009	21.428	30.886	21.428	79.663	31.599	30.886	31.599	66.162	31.080	30.297	19.067
94	Tl ₂ PbHfSe ₄	62.910	18.813	27.567	18.813	69.648	26.378	27.567	26.378	56.452	29.631	27.679	18.247
95	Tl ₂ CdGeSe ₄	35.066	16.506	13.086	16.506	35.053	13.110	13.086	13.110	65.206	7.475	7.586	7.795
96	Tl ₂ CdSnSe ₄	34.887	15.674	12.567	15.674	34.889	12.598	12.567	12.598	62.725	8.659	8.659	9.516
97	Tl ₂ HgGeSe ₄	33.585	17.241	12.772	17.241	33.632	12.799	12.772	12.799	61.386	6.186	6.156	8.609
98	Tl ₂ HgSiSe ₄	34.860	17.898	13.350	17.898	34.888	13.357	13.350	13.357	65.017	6.202	6.498	8.021
99	Tl_2HgSnS_4	39.745	15.593	12.873	15.593	39.185	12.504	12.873	12.504	73.254	6.998	6.857	8.873

#	Crystal	E (GPa)	K (GPa)	G	η	G/K
				(GPa)		
1	Cu ₂ ZnSiS ₄	93.126	77.250	35.843	0.299	0.464
2	Cu ₂ ZnSiSe ₄	74.351	62.316	28.571	0.301	0.458
3	Cu ₂ ZnSiTe ₄	61.878	48.641	24.022	0.288	0.494
4	Cu ₂ ZnGeS ₄	88.466	71.463	34.191	0.293	0.478
5	Cu ₂ ZnGeSe ₄	66.938	56.607	25.688	0.302	0.454
6	Cu ₂ ZnSnS ₄	74.818	60.896	28.882	0.295	0.474
7	Cu ₂ ZnSnSe ₄	60.584	48.061	23.484	0.290	0.488
8	Cu ₂ ZnSnTe ₄	52.559	44.463	20.169	0.303	0.454
9	Cu ₂ CdSiS ₄	75.925	64.650	29.106	0.304	0.450
10	Cu ₂ CdSiSe ₄	63.029	56.323	23.993	0.314	0.426
11	Cu ₂ CdGeS ₄	74.031	70.103	27.957	0.324	0.399
12	Cu ₂ CdGeSe ₄	61.468	57.525	23.250	0.322	0.404
13	Cu ₂ CdGeTe ₄	50.368	42.912	19.307	0.304	0.449
14	Cu ₂ CdSnS ₄	65.538	62.530	24.725	0.325	0.395
15	Cu ₂ CdSnSe ₄	50.871	34.987	20.225	0.258	0.578
10	Cu ₂ CdSnTe ₄	46.157	42.952	17.472	0.321	0.407
1/	Cu ₂ HgGeS ₄	64.026	36.019	26.595	0.204	0.738
18	Cu ₂ HgGeSe ₄	57.730	50.952	22.018	0.311	0.432
19	Cu ₂ HgGeTe ₄	50.546	42.245	19.432	0.301	0.459
20	Cu ₂ HgSnS4	04.808 52.615	72.857 54.360	23.990	0.331	0.329
21	Cu ₂ HgShSe ₄	47.220	J4.309	20.071	0.333	0.309
22	Cu ₂ HgShTe ₄	47.229	41.000	17.999	0.312	0.429
23	Cu ₂ BaGeS ₄	40.178	40.764	14.003	0.337	0.510
24	Cu ₂ BaOeSe ₄	93.04J	43.770 63.148	23.420	0.273	0.555
25	Cu ₂ SiSiSi	76 908	68 357	20 200	0.200	0.310
20	Cu ₂ SrGeSe ₄	55 519	39.820	21.200	0.268	0.42)
28	Cu2BiGeSe4	12 787	17.056	4 650	0.200	0.273
29	Cu ₂ BaSnSe ₄	49 115	35.858	19 311	0.272	0.538
30	Cu ₂ SrSnS ₄	60.025	51,313	22.997	0.305	0.448
31	Cu ₂ SrSnSe ₄	49.689	33.991	19.775	0.256	0.582
32		78.047	71.424	29.611	0.317	0.414
33	Cu2MgSiSe4	62.347	55.851	23.725	0.314	0.425
34	Cu ₂ MgGeS ₄	74.524	72.668	28.036	0.329	0.386
35	Cu ₂ MgSnS ₄	67.158	65.208	25.278	0.328	0.387
36	Cu ₂ MgSnSe ₄	54.339	50.579	20.568	0.320	0.406
37	Cu ₂ MgSnTe ₄	44.901	41.570	17.008	0.320	0.409
38	Ag ₂ ZnSiS ₄	34.698	21.450	14.100	0.230	0.657
39	Ag ₂ ZnSnS ₄	51.529	54.941	19.175	0.352	0.349
40	Ag ₂ ZnSnSe ₄	43.804	46.639	16.303	0.343	0.349
41	Ag ₂ CdGeS ₄	46.640	52.740	17.241	0.353	0.327
42	Ag ₂ CdSnS ₄	43.192	50.553	15.908	0.358	0.315
43	Ag ₂ CdSnSe ₄	37.396	43.665	13.776	0.357	0.315
44	Ag2CdSnTe4	32.876	36.491	32.876	0.350	0.901
45	Ag ₂ HgSnS ₄	41.254	49.446	15.156	0.360	0.306
46	Ag ₂ HgSnSe ₄	34.389	42.686	12.590	0.365	0.295
47	Ag ₂ BaGeS ₄	44.575	46.035	16.650	0.339	0.362
48	Ag ₂ BaGeSe ₄	33.695	30.678	12.793	0.317	0.417
49	Ag ₂ BaSnS ₄	36.533	31.614	13.972	0.307	0.442
50	Ag2BaSnSe4	30.550	27.316	11.628	0.314	0.426
51	Ag ₂ SrGeS ₄	40.220	40.102	15.088	0.333	0.376
52	Ag ₂ SrGeSe ₄	32.853	33.213	12.303	0.335	0.370
53	Ag_2SrSnS_4	37.847	39.987	14.098	0.342	0.352
54	Ag ₂ SrSnSe ₄	27.609	28.254	10.324	0.337	0.365

Table S6 Calculated Young modulus (E), Bulk modulus (K), Shear modulus (G), Poisson's ratio (η), and Pugh's modulus ratio (G/K) for the 99 crystals.

55	Ag ₂ In ₂ SiS ₆	42.267	32.698	16.452	0.284	0.503
56	Ag ₂ In ₂ GeS ₆	41.125	30.522	16.122	0.275	0.528
57	Ag ₂ In ₂ SiSe ₆	37.318	27.264	14.670	0.272	0.538
58	Ag ₂ In ₂ GeSe ₆	36.026	25.737	14.220	0.266	0.552
59	Ag ₂ SiS ₃	36.151	37.137	13.512	0.338	0.364
60	Ag ₂ GeS ₃	45.946	51.853	16.988	0.352	0.327
61	Cu ₂ GeS ₃	86.215	78.050	32.759	0.316	0.419
62	Cu ₂ GeSe ₃	66.695	49.809	26.117	0.277	0.524
63	Ag ₂ SnSe ₃	7.983	6.334	3.094	0.290	0.488
64	Ag ₂ SnTe ₃	32.831	36.275	12.167	0.349	0.335
65	$Ag_4P_2S_6$	28.793	26.883	10.894	0.321	0.405
66	Ag ₄ P ₂ Se ₆	30.814	26.386	11.803	0.305	0.447
67	BaZnSiSe ₄	35.352	25.914	13.889	0.272	0.536
68	BaZnGeSe ₄	33.095	24.950	12.939	0.279	0.518
69	BaHg ₂ As ₂ S ₆	29.009	27.051	10.978	0.312	0.406
70	BaCd ₂ As ₂ S ₆	32.183	28.554	12.263	0.312	0.429
71	Ba2AlSbS5	41.785	27.607	16.744	0.247	0.606
72	Ba2GaBiSe5	37.221	26.119	14.741	0.262	0.564
73	Ba ₂ AsGaSe ₅	35.469	23.427	14.214	0.247	0.607
74	Ba2LaGaSe5	49.132	37.689	19.151	0.282	0.508
75	Ba ₂ LuGaSe ₅	44.828	30.228	17.890	0.252	0.592
76	Ba ₂ LuInSe ₅	49.157	35.308	19.384	0.268	0.549
77	Ba ₄ AgInS ₆	53.439	38.170	21.094	0.266	0.553
78	CsCu ₅ S ₃	42.324	40.648	15.954	0.326	0.392
79	CsCu ₅ Se ₃	33.026	30.929	12.490	0.322	0.404
80	K ₂ Cu ₂ GeS ₄	37.130	25.715	14.741	0.259	0.573
81	Li2In2SiS6	41.436	26.432	16.725	0.238	0.633
82	Li2In2SiSe6	34.625	22.032	13.983	0.238	0.635
83	Li2In2GeS6	40.268	25.409	16.291	0.235	0.641
84	Li2In2GeSe6	33.268	21.337	13.413	0.240	0.629
85	Lu5GaS9	75.751	49.729	30.394	0.246	0.611
86	SrCdGeS ₄	46.681	34.140	18.347	0.272	0.537
87	SrCdGeSe ₄	38.147	28.854	14.905	0.279	0.517
88	TlInGe ₂ S ₆	21.375	13.930	8.589	0.244	0.617
89	TlInGe ₂ Se ₆	14.097	10.891	5.488	0.284	0.504
90	TlGaSn ₂ Se ₆	16.406	11.207	6.531	0.256	0.583
91	Tl ₂ PbZrS ₄	59.137	41.681	23.401	0.263	0.561
92	Tl ₂ PbZrSe ₄	52.858	35.969	21.057	0.255	0.585
93	Tl ₂ PbHfS ₄	59.568	42.615	23.507	0.267	0.552
94	Tl ₂ PbHfSe ₄	53.300	36.853	21.168	0.259	0.574
95	Tl ₂ CdGeSe ₄	26.123	23.841	9.915	0.317	0.416
96	Tl ₂ CdSnSe ₄	28.141	23.231	10.839	0.298	0.466
97	Tl ₂ HgGeSe ₄	23.976	23.190	9.0294	0.328	0.389
98	Tl ₂ HgSiSe ₄	24.498	24.184	9.202	0.331	0.380
99	Tl ₂ HgSnS ₄	28.160	25.140	10.721	0.313	0.426

4. The Supplementary Figures

Fig.S1. Band structure for chalcogenide crystals.

Fig. S2. TDOS for the chalcogenide crystals.

Fig. S3. Distribution of partial charge of the elements from Cu to Pb.

Fig. S4. Distribution of partial charge of the elements from P to Lu.

Fig. S5. Distribution of partial charge of the chalcogene elements(S, Se, Te).

Fig. S6. Optical dielectric function for the chalcogenide crystals. The black curve for the real part (ε₁), the red curve for the imaginary part (ε₂).

Fig. S7. The Optical Loss function for the chalcogenide crystals

5. References:

- [1] W.-Y. Ching, P. Rulis, Electronic Structure Methods for Complex Materials: The orthogonalized linear combination of atomic orbitals, Oxford University Press, 2012.
- [2] H. Yao, L. Ouyang, W.Y. Ching, Ab initio calculation of elastic constants of ceramic crystals, Journal of the American Ceramic Society, 90 (2007) 3194-3204.
- [3] A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9 (1929) 49-58.
- [4] R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A, 65 (1952) 349.
- [5] Y. Gao, Y. Dong, Structural, mechanical and thermal properties of Cu2ZnSiS4 with four structures from the first-principle calculations, International Journal of Modern Physics B, 33 (2019) 1950067.
- [6] A. Litvinchuk, V. Dzhagan, V. Yukhymchuk, M.Y. Valakh, O. Parasyuk, L. Piskach, X. Wang, A. Jacobson,
 D. Zahn, Crystal structure and vibrational properties of Cu2ZnSiSe4 quaternary semiconductor,
 physica status solidi (b), 253 (2016) 1808-1815.
- [7] S. Levcenko, A. Nateprov, V. Kravtsov, M. Guc, A. Pérez-Rodríguez, V. Izquierdo-Roca, X. Fontané, E. Arushanov, Structural study and Raman scattering analysis of Cu 2 ZnSiTe 4 bulk crystals, Optics express, 22 (2014) A1936-A1943.
- [8] M. Guc, A. Litvinchuk, S. Levcenko, V. Izquierdo-Roca, X. Fontané, M.Y. Valakh, E. Arushanov, A. Pérez-Rodríguez, Optical phonons in the wurtzstannite Cu 2 ZnGeS 4 semiconductor: Polarized Raman spectroscopy and first-principle calculations, Physical Review B, 89 (2014) 205205.
- [9] O. Khyzhun, V. Bekenev, V. Ocheretova, A. Fedorchuk, O. Parasyuk, Electronic structure of Cu2ZnGeSe4 single crystal: Ab initio FP-LAPW calculations and X-ray spectroscopy measurements, Physica B: Condensed Matter, 461 (2015) 75-84.
- [10] L. Kong, J.X. Deng, First-Principles Study on Electronic and Optical Properties of Kesterite and Stannite Cu2ZnSnS4 Photovoltaic Absorbers, in: Materials Science Forum, Trans Tech Publ, 2015, pp. 80-88.
- [11] W. Gong, T. Tabata, K. Takei, M. Morihama, T. Maeda, T. Wada, Crystallographic and optical properties of (Cu, Ag) 2ZnSnS4 and (Cu, Ag) 2ZnSnSe4 solid solutions, physica status solidi (c), 12 (2015) 700-703.
- [12] N. Ullah, G. Murtaza, M. Iqbal, A. Mahmood, R. Khenata, Computational study of Cu 2 ZnSn (X 1– x Te x) 4 (X= S, Se) for optoelectronic applications, International Journal of Modern Physics B, 30 (2016) 1650137.
- [13] G. Chapuis, A. Niggli, The crystal structure of thenormal tetrahedral'compound Cu2CdSiS4, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28 (1972) 1626-1628.
- [14] H. Matsushita, T. Ichikawa, A. Katsui, Structural, thermodynamical and optical properties of Cu 2-II-IV-VI 4 quaternary compounds, Journal of materials science, 40 (2005) 2003-2005.
- [15] E. Parthé, K. Yvon, R. Deitch, The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 25 (1969) 1164-1174.
- [16] M. Brik, O. Parasyuk, G. Myronchuk, I. Kityk, Specific features of band structure and optical anisotropy of Cu2CdGeSe4 quaternary compounds, Materials Chemistry and Physics, 147 (2014) 155-161.
- [17] H. Haeuseler, F. Ohrendorf, M. Himmrich, Zur Kenntnis quaternärer Telluride Cu2MM' Te4 mit Tetraederstrukturen/Quaternary Tellurides Cu2MM' Te4 with Tetrahedral Structures, Zeitschrift für Naturforschung B, 46 (1991) 1049-1052.

- [18] S. Hussain, G. Murtaza, S.H. Khan, A. Khan, M.A. Ali, M. Faizan, A. Mahmood, R. Khenata, First principles study of structural, optoelectronic and thermoelectric properties of Cu2CdSnX4 (X= S, Se, Te) chalcogenides, Materials Research Bulletin, 79 (2016) 73-83.
- [19] T.V. Vu, A. Lavrentyev, B. Gabrelian, V. Tkach, K.D. Pham, O. Marchuk, O. Parasyuk, O. Khyzhun, Firstprinciples DFT computation and X-ray spectroscopy study of the electronic band structure and optical constants of Cu2HgGeS4, Solid State Sciences, (2020) 106287.
- [20] B. Gabrelian, A. Lavrentyev, T.V. Vu, V. Tkach, O. Marchuk, K. Kalmykova, L. Ananchenko, O. Parasyuk, O. Khyzhun, Quaternary Cu2HgGeSe4 selenide: Its electronic and optical properties as elucidated from TB-mBJ band-structure calculations and XPS and XES measurements, Chemical Physics, (2020) 110821.
- [21] B. Gabrelian, A. Lavrentyev, T.V. Vu, K. Kalmykova, L. Ananchenko, V. Tkach, O. Parasyuk, O. Khyzhun, Valence-band electronic structure and main optical properties of Cu2HgGeTe4: Theoretical simulation within a DFT framework and experimental XPS study, Materials Today Communications, 23 (2020) 100828.
- [22] T.V. Vu, A. Lavrentyev, B. Gabrelian, H.D. Tong, V. Tkach, O. Parasyuk, O. Khyzhun, A theoretical and experimental study of the valence-band electronic structure and optical constants of quaternary copper mercury tin sulfide, Cu2HgSnS4, a potential material for optoelectronics and solar cells, Optical Materials, 96 (2019) 109296.
- [23] T.V. Vu, A. Lavrentyev, B. Gabrelian, H.D. Tong, V. Tkach, O. Parasyuk, O. Khyzhun, Simulation within a DFT framework and experimental study of the valence-band electronic structure and optical properties of quaternary selenide Cu2HgSnSe4, Optik, 202 (2020) 163709.
- [24] J. Navrátil, V. Kucek, T. Plecháček, E. Černošková, F. Laufek, Č. Drašar, P. Knotek, Thermoelectric Properties of Cu 2 HgSnSe 4-Cu 2 HgSnTe 4 Solid Solution, Journal of electronic materials, 43 (2014) 3719-3725.
- [25] T. Zhu, W.P. Huhn, G.C. Wessler, D. Shin, B. Saparov, D.B. Mitzi, V. Blum, I2–II–IV–VI4 (I= Cu, Ag; II= Sr, Ba; IV= Ge, Sn; VI= S, Se): Chalcogenides for Thin-Film Photovoltaics, Chemistry of Materials, 29 (2017) 7868-7879.
- [26] M. Tampier, D. Johrendt, Kristallstrukturen und chemische Bindung von AM2GeSe4 (A= Sr, Ba; M= Cu, Ag), Zeitschrift für anorganische und allgemeine Chemie, 627 (2001) 312-320.
- [27] J.-P. Sun, G.C. McKeown Wessler, T. Wang, T. Zhu, V. Blum, D.B. Mitzi, Structural tolerance factor approach to defect-resistant I2-II-IV-X4 semiconductor design, Chemistry of Materials, 32 (2020) 1636-1649.
- [28] S.P. Ramkumar, Structural, Vibrational, and Electronic Properties of Trigonal Cu2SrSnS4 Photovoltaic Absorber from First-Principles Calculations, Material Science Research India, 17 (2020) 07-12.
- [29] A. Bedjaoui, A. Bouhemadou, S. Aloumi, R. Khenata, S. Bin-Omran, Y. Al-Douri, F.S. Saoud, S. Bensalem, Structural, elastic, electronic and optical properties of the novel quaternary diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4, Solid State Sciences, 70 (2017) 21-35.
- [30] B.-W. Liu, M.-J. Zhang, Z.-Y. Zhao, H.-Y. Zeng, F.-K. Zheng, G.-C. Guo, J.-S. Huang, Synthesis, structure, and optical properties of the quaternary diamond-like compounds I2–II–IV–VI4 (I= Cu; II= Mg; IV= Si, Ge; VI= S, Se), Journal of Solid State Chemistry, 204 (2013) 251-256.
- [31] B. Bekki, K. Amara, M. El Keurti, First-principles study of the new potential photovoltaic absorber: Cu2MgSnS4 compound, Chinese Physics B, 26 (2017) 076201.
- [32] B. Bekki, K. Amara, N. Marbouh, F. Khelfaoui, Y. Benallou, M. Elkeurti, A. Bentayeb, Theoretical study of structural, elastic and thermodynamic properties of Cu2MgSnX4 (X= S, Se and Te) quaternary compounds, Computational Condensed Matter, 18 (2019) e00339.
- [33] C.D. Brunetta, B. Karuppannan, K.A. Rosmus, J.A. Aitken, The crystal and electronic band structure of the diamond-like semiconductor Ag2ZnSiS4, Journal of alloys and compounds, 516 (2012) 65-72.

- [34] P. Mangelis, A. Aziz, I. da Silva, R. Grau-Crespo, P. Vaqueiro, A.V. Powell, Understanding the origin of disorder in kesterite-type chalcogenides A 2 ZnBQ 4 (A= Cu, Ag; B= Sn, Ge; Q= S, Se): The influence of inter-layer interactions, Physical Chemistry Chemical Physics, 21 (2019) 19311-19317.
- [35] C.D. Brunetta, Structure determination by X-ray diffraction methods and physicochemical characterization of quaternary diamond-like semiconductors, (2013).
- [36] S. Saidi, S. Zriouel, L. Drissi, M. Maaroufi, First principles study of electronic and optical properties of Ag2CdSnS4 chalcogenides for photovoltaic applications, Computational Materials Science, 152 (2018) 291-299.
- [37] S. Saidi, S. Zriouel, L. Drissi, M. Maaroufi, A DFT study of electro-optical properties of kesterite Ag2CdSnX4 for photovoltaic applications, Physica E: Low-dimensional Systems and Nanostructures, 103 (2018) 171-179.
- [38] O. Parasyuk, S. Chykhrij, V. Bozhko, L. Piskach, M. Bogdanyuk, I. Olekseyuk, L. Bulatetska, V. Pekhnyo, Phase diagram of the Ag2S–HgS–SnS2 system and single crystal preparation, crystal structure and properties of Ag2HgSnS4, Journal of alloys and compounds, 399 (2005) 32-37.
- [39] T.V. Vu, A. Lavrentyev, B. Gabrelian, O. Parasyuk, V. Ocheretova, O. Khyzhun, Electronic structure and optical properties of Ag2HgSnSe4: First-principles DFT calculations and X-ray spectroscopy studies, Journal of Alloys and Compounds, 732 (2018) 372-384.
- [40] A. Reshak, O. Khyzhun, I. Kityk, A. Fedorchuk, H. Kamarudin, S. Auluck, O. Parasyuk, Electronic structure of quaternary chalcogenide Ag2In2Ge (Si) S6 single crystals and the influence of replacing Ge by Si: experimental X-ray photoelectron spectroscopy and X-ray diffraction studies and theoretical calculations, Science of Advanced Materials, 5 (2013) 316-327.
- [41] G. Myronchuk, O. Zamuruyeva, O. Parasyuk, I. Kityk, P. Czaja, M. Piasecki, The effect of composition on photoconductivity and nonlinear optical properties in the acentric Ag2In2AB6 (A= Si, Ge, B= S, Se) crystals, Optik, 179 (2019) 948-956.
- [42] M.Y. Rudysh, P. Shchepanskyi, A. Fedorchuk, M. Brik, C.-G. Ma, G. Myronchuk, M. Piasecki, Firstprinciples analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor, Journal of Alloys and Compounds, 826 (2020) 154232.
- [43] A.H. Reshak, M. Jamal, DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic), Journal of alloys and compounds, 543 (2012) 147-151.
- [44] L.M. de Chalbaud, G.D. De Delgado, J. Delgado, A. Mora, V. Sagredo, Synthesis and single-crystal structural study of Cu2GeS3, Materials research bulletin, 32 (1997) 1371-1376.
- [45] G. Marcano, C. Rincón, G. Marín, G. Delgado, A. Mora, J.L. Herrera-Perez, J. Mendoza-Alvarez, P. Rodríguez, Raman scattering and X-ray diffraction study in Cu2GeSe3, Solid state communications, 146 (2008) 65-68.
- [46] R. Ávila-Godoy, D. Acosta-Najarro, G. Camargo-E, C. Magaña-Zavala, L. Nieves, S. Paredes-Dugarte, B. Hidalgo-Prada, Structural Characterization of the Layered Compound Ag2SnSe3 from Scanning and Transmission Electron Microscopy and Synchrotron Powder Diffraction, Acta Microscopica, 27 (2018) 76-82.
- [47] G.-G.P. Braulio, Synthesis, thermal analysis and structural characterization of the ternary compound Ag.
- [48] P. Toffoli, P. Khodadad, N. Rodier, Structure d'une deuxième variété d'hexathiodiphosphate (IV) d'argent, Ag4P2S6. Comparaison des structures des deux variétés, Acta Crystallographica Section C: Crystal Structure Communications, 39 (1983) 1485-1488.
- [49] P. Toffoli, P. Khodadad, N. Rodier, Structure cristalline de l'hexasélénohypodiphosphate d'argent, Ag4P2Se6, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 34 (1978) 1779-1781.
- [50] W. Yin, A.K. Iyer, C. Li, J. Yao, A. Mar, Noncentrosymmetric chalcogenides BaZnSiSe4 and BaZnGeSe4 featuring one-dimensional structures, Journal of Alloys and Compounds, 708 (2017) 414-421.

- [51] Y. Guo, F. Liang, M. Zhou, Z. Lin, J. Yao, Y. Wu, BaM2As2S6 (M= Cd, Hg): Synthesis, crystal structure, optical and electronic properties, Journal of Alloys and Compounds, 762 (2018) 143-148.
- [52] X. Wu, X. Gu, H. Pan, Y. Hu, K. Wu, Synthesis, crystal structures, optical properties and theoretical calculations of two metal chalcogenides Ba2AlSbS5 and Ba2GaBiSe5, Crystals, 8 (2018) 165.
- [53] C. Li, X. Li, H. Huang, J. Yao, Y. Wu, Ba2AsGaSe5: A New Quaternary Selenide with the Novel [AsGaSe5]
 4–Cluster and Interesting Photocatalytic Properties, Inorganic chemistry, 54 (2015) 9785-9789.
- [54] W. Yin, D. Zhang, M. Zhou, A.K. Iyer, J.-H. Pöhls, J. Yao, A. Mar, Quaternary rare-earth selenides Ba2REGaSe5 and Ba2REInSe5, Journal of Solid State Chemistry, 265 (2018) 167-175.
- [55] X.W. Lei, M. Yang, S.Q. Xia, X.C. Liu, M.Y. Pan, X. Li, X.T. Tao, Synthesis, Structure and Bonding, Optical Properties of Ba4MTrQ6 (M= Cu, Ag; Tr= Ga, In; Q= S, Se), Chemistry–An Asian Journal, 9 (2014) 1123-1131.
- [56] Z. Xia, H. Fang, X. Zhang, M.S. Molokeev, R. Gautier, Q. Yan, S.-H. Wei, K.R. Poeppelmeier, CsCu5Se3: A copper-rich ternary chalcogenide semiconductor with nearly direct band gap for photovoltaic application, Chemistry of Materials, 30 (2018) 1121-1126.
- [57] B. Sun, J. He, X. Zhang, K. Bu, C. Zheng, F. Huang, Synthesis, crystal structure and optical properties of K2Cu2GeS4, Journal of Alloys and Compounds, 725 (2017) 557-562.
- [58] K.M. Wong, W. Khan, M. Shoaib, U. Shah, S.H. Khan, G. Murtaza, Ab Initio Investigation of the Structural, Electronic and Optical Properties of the Li 2 In 2 XY 6 (X= Si, Ge; Y= S, Se) Compounds, Journal of Electronic Materials, 47 (2018) 566-576.
- [59] H. Lin, J.-N. Shen, W.-W. Zhu, Y. Liu, X.-T. Wu, Q.-L. Zhu, L.-M. Wu, Two new phases in the ternary RE– Ga–S systems with the unique interlinkage of GaS 4 building units: synthesis, structure, and properties, Dalton Transactions, 46 (2017) 13731-13738.
- [60] Y. Dou, Y. Chen, Z. Li, A.K. Iyer, B. Kang, W. Yin, J. Yao, A. Mar, SrCdGeS4 and SrCdGeSe4: promising infrared nonlinear optical materials with congruent-melting behavior, Crystal Growth & Design, 19 (2019) 1206-1214.
- [61] T.V. Vu, A. Lavrentyev, B. Gabrelian, O. Parasyuk, O. Khyzhun, TlInGe 2 S 6, A Prospective Nonlinear Optical Material: First-Principles DFT Calculations of the Electronic Structure and Optical Properties, Journal of Electronic Materials, 47 (2018) 5525-5536.
- [62] T.V. Vu, A. Lavrentyev, B. Gabrelian, O. Parasyuk, O. Khyzhun, First-principles DFT calculations of the electronic structure and optical properties of TlInGe2Se6, a prospective NLO material, Materials Chemistry and Physics, 219 (2018) 162-174.
- [63] T.V. Vu, A. Lavrentyev, B. Gabrelian, H.D. Tong, O. Parasyuk, O. Khyzhun, Electronic band structure and basic optical constants of TlGaSn2Se6, a promising NLO semiconductor: First-principles calculations under DFT framework, Optik, 181 (2019) 673-685.
- [64] C.R. Sankar, A. Assoud, H. Kleinke, New Layered-Type Quaternary Chalcogenides, Tl2Pb MQ 4 (M= Zr, Hf; Q= S, Se): Structure, Electronic Structure, and Electrical Transport Properties, Inorganic Chemistry, 52 (2013) 13869-13874.
- [65] A. Selezen, I. Olekseyuk, G. Myronchuk, O. Smitiukh, L. Piskach, Synthesis and structure of the new semiconductor compounds Tl2BIIDIVX4 (BII–Cd, Hg; DIV–Si, Ge; X–Se, Te) and isothermal sections of the Tl2Se–CdSe-Ge (Sn) Se2 systems at 570 K, Journal of Solid State Chemistry, (2020) 121422.
- [66] M.Y. Mozolyuk, L. Piskach, A. Fedorchuk, I. Olekseyuk, O. Parasyuk, The Tl2Se–HgSe–GeSe2 system and the crystal structure of Tl2HgGeSe4, Chemistry of metals and alloys, (2013) 55-62.
- [67] M.Y. Mozolyuk, L. Piskach, A. Fedorchuk, I. Olekseyuk, O. Parasyuk, Physico-chemical interaction in the Tl2Se–HgSe–DIVSe2 systems (DIV–Si, Sn), Materials Research Bulletin, 47 (2012) 3830-3834.
- [68] A. Lavrentyev, B. Gabrelian, T.V. Vu, L. Ananchenko, G. Myronchuk, O. Parasyuk, V. Tkach, K. Kopylova, O. Khyzhun, Electronic and optical properties of quaternary sulfide Tl2HgSnS4, a promising optoelectronic semiconductor: A combined experimental and theoretical study, Optical Materials, 92 (2019) 294-302.

- [69] X. Zhang, D. Chen, K. Deng, R. Lu, Band engineering of wurtzite-derived semiconductors Cu2ZnSiS4 and Cu2ZnSiSe4, Journal of Alloys and Compounds, 656 (2016) 196-199.
- [70] X. Zhang, D. Rao, R. Lu, K. Deng, D. Chen, First-principles study on electronic and optical properties of Cu2ZnSiV I4 (VI= S, Se, and Te) quaternary semiconductors, AIP Advances, 5 (2015) 057111.
- [71] N. Kodan, S. Auluck, B. Mehta, A DFT study of the electronic and optical properties of a photovoltaic absorber material Cu2ZnGeS4 using GGA and mBJ exchange correlation potentials, Journal of Alloys and Compounds, 675 (2016) 236-243.
- [72] D. Chen, N. Ravindra, Electronic and optical properties of Cu2ZnGeX4 (X= S, Se and Te) quaternary semiconductors, Journal of alloys and compounds, 579 (2013) 468-472.
- [73] G.K. Gupta, R. Chaurasiya, A. Dixit, Theoretical studies on structural, electronic and optical properties of kesterite and stannite Cu2ZnGe (S/Se) 4 solar cell absorbers, Computational Condensed Matter, 19 (2019) e00334.
- [74] C.-R. Li, Y.-F. Li, B. Yao, G. Yang, Z.-H. Ding, R. Deng, L. Liu, Electronic and optical properties of kesterite Cu2ZnSnS4 under in-plane biaxial strains: First-principles calculations, Physics Letters A, 377 (2013) 2398-2402.
- [75] H.-R. Liu, S. Chen, Y.-T. Zhai, H.-J. Xiang, X.-G. Gong, S.-H. Wei, First-principles study on the effective masses of zinc-blend-derived C u 2 Z n– IV– VI 4 (IV= Sn, Ge, Si and VI= S, Se), Journal of Applied Physics, 112 (2012) 093717.
- [76] S. Ullah, H.U. Din, G. Murtaza, T. Ouahrani, R. Khenata, S.B. Omran, Structural, electronic and optical properties of AgXY2 (X= Al, Ga, In and Y= S, Se, Te), Journal of alloys and compounds, 617 (2014) 575-583.
- [77] A. Lavrentyev, B. Gabrelian, V. Vu, P. Shkumat, V. Ocheretova, O. Parasyuk, O. Khyzhun, Electronic structure and optical properties of Cu2CdGeS4: DFT calculations and X-ray spectroscopy measurements, Optical Materials, 47 (2015) 435-444.
- [78] H. Ahmoum, M. Su'ait, G. Li, S. Chopra, M. Boughrara, Q. Wang, M. Kerouad, D. Rai, Electronic and thermoelectric properties of chalcopyrite compounds Cu 2 (XY) S 4 (X= Zn, Cd and Y= Sn, Pb): first-principles study, Indian Journal of Physics, (2020) 1-7.
- [79] F. Liu, J. Zheng, M. Huang, L. He, W. Ao, F. Pan, J. Li, Enhanced thermoelectric performance of Cu 2 CdSnSe 4 by Mn doping: experimental and first principles studies, Scientific reports, 4 (2014) 1-7.
- [80] N. Sarmadian, R. Saniz, B. Partoens, D. Lamoen, First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides, Journal of Applied Physics, 120 (2016) 085707.
- [81] D. Li, X. Zhang, Z. Zhu, H. Zhang, F. Ling, Ab initio calculations of structural, electronic, and optical properties of Cu2HgSnSe4, Solid state sciences, 14 (2012) 890-893.
- [82] S. Azam, M. Irfan, Z. Abbas, S.A. Khan, I.V. Kityk, T. Kanwal, M. Sohail, S. Muhammad, A.G. Al-Sehemi, Effect of S and Se replacement on electronic and thermoelectric features of BaCu2GeQ4 (Q= S, Se) chalcogenide crystals, Journal of Alloys and Compounds, 790 (2019) 666-674.
- [83] Y. Yang, K. Wu, X. Wu, B. Zhang, L. Gao, A new family of quaternary thiosilicates SrA 2 SiS 4 (A= Li, Na, Cu) as promising infrared nonlinear optical crystals, Journal of Materials Chemistry C, 8 (2020) 1762-1767.
- [84] F. Hong, W. Lin, W. Meng, Y. Yan, Trigonal Cu 2-II-Sn-VI 4 (II= Ba, Sr and VI= S, Se) quaternary compounds for earth-abundant photovoltaics, Physical Chemistry Chemical Physics, 18 (2016) 4828-4834.
- [85] S. Sharma, P. Kumar, Quaternary semiconductors Cu2MgSnS4 and Cu2MgSnSe4 as potential thermoelectric materials, Journal of Physics Communications, 1 (2017) 045014.
- [86] M. Rasukkannu, D. Velauthapillai, P. Vajeeston, Hybrid Density Functional Study of Au2Cs2l6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4 for the Intermediate Band Solar Cells, Energies, 11 (2018) 3457.

- [87] S. Nakamura, T. Maeda, T. Tabata, T. Wada, First-principles study of indium-free photovoltaic compounds Ag 2 ZnSnSe 4 and Cu 2 ZnSnSe 4, in: 2011 37th IEEE Photovoltaic Specialists Conference, IEEE, 2011, pp. 002771-002774.
- [88] L. Wei, W. Fan, Y. Li, X. Zhao, L. Yang, Effect of cation ordering on the electronic and lattice dynamic properties of Ag2CdGeS4 polytypes: First-principle calculation, Journal of Solid State Chemistry, 201 (2013) 48-55.
- [89] L. Dan, Z. Xing-Hong, Theoretical studies on the structural, electronic, and optical properties of Ag2HgSnSe4, Chinese Physics B, 20 (2011) 126102.
- [90] H. Shao, X. Tan, T. Hu, G.-Q. Liu, J. Jiang, H. Jiang, First-principles study on the lattice dynamics and thermodynamic properties of Cu2GeSe3, EPL (Europhysics Letters), 109 (2015) 47004.
- [91] M. Ali, M.A. Hossain, M. Rayhan, M. Hossain, M. Uddin, M. Roknuzzaman, K. Ostrikov, A. Islam, S. Naqib, First-principles study of elastic, electronic, optical and thermoelectric properties of newly synthesized K2Cu2GeS4 chalcogenide, Journal of Alloys and Compounds, 781 (2019) 37-46.
- [92] S. Azam, S.A. Khan, J. Minar, W. Khan, H.U. Din, R. Khenata, G. Murtaza, S. Bin-Omran, S. Goumri-Said, Coulomb interaction and spin-orbit coupling calculations of thermoelectric properties of the quaternary chalcogenides TI2PbXY4 (X= Zr, Hf and Y= S, Se), Semiconductor Science and Technology, 30 (2015) 105018.