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1 Model description

1.1 Purpose of the model

The aim of the model is to understand age-related changes of neural stem cell (NSC) numbers

in the mouse hippocampus. We distinguish between different NSC subpopulations, namely

actively proliferating NSCs (identified by expression of Ki67 and referred to as proliferating

NSCs in the main text) and quiescent NSCs (identified by absence of Ki67 expression).

The quiescent NSC population is further subdivided in dormant NSCs, i.e., NSCs that have

never been activated since establishment of the niche at postnatal day 14 and resting NSCs,

i.e., quiescent NSCs that have already been activated since establishment of the niche at

postnatal day 14. The model describes the time evolution of active, dormant and resting

NSC counts after postnatal day 14.
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1.2 Data and experimental setup

Total, active and resting NSC counts were experimentally determined in mice aged 15, 35,

60, 200 and 365 days. For the measurements the animals were sacrificed such that each data

point comes from a different individual.

NSCs were counted in brain sections. Hippocampal NSCs were defined as cells containing

a radial GFAP-positive process linked to a SOX2-positive nucleus in the subgranular zone.

Ki67 was used as a marker to distinguish between active (Ki67 positive) and quiescent (Ki67

negative) stem cells.

The resting NSC counts were approximated by the following experimental procedure:

Mice were exposed to the thymidine analogue EdU for 14 days followed by an EdU free

period of 20 hours (referred to as “chase”). During DNA repliction EdU is incorporated into

the DNA. After the chase period the animals were sacrificed. Resting cells were defined as

EdU positive Ki67 negative cells, i.e., cells that have divided during the EdU exposure but

have returned to a quiescent state at the time of cell counting.

1.3 Model derivation

The model describes time evolution of active, resting and dormant NSCs. As stated above,

NSCs that have never divided since postnatal day 14 are denoted as dormant. Quiescent

NSCs that have divided since postnatal day 14 are denoted as resting NSCs. Proliferating

stem cells are denoted as active. The model considers the following processes

• Dormant NSCs are activated at the rate r1.

• Resting NSCs activated at the rate r2.

• Active stem cells divide at the rate p.

• Upon division an active NSC gives rise to two progeny. With probability a a progeny

cell is again a stem cell (referred to as self-renewal), with probability (1 − a) it is an

intermediate neuronal progenitor cell (referred to as differentiation). The probability a

is referred to as self-renewal probability or fraction of self-renewal (Stiehl and Marciniak-

Czochra, 2011, 2017; Marciniak-Czochra et al., 2009).

• In agreement with our previous work and with experimental data (Ziebell et al., 2018;

Kalamakis et al., 2019) we assume that NSCs originating from division become quies-

cent.
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Figure 1: NSC model. The scheme shows processes described by system (1). Non-stem cells

are denoted by X.

The model is summarized in Figure 1. It is an extension of previous models (Kalamakis

et al., 2019; Ziebell et al., 2018, 2014). The new aspect of the model introduced here is the

distinction between resting and dormant NSCs.

The rate r2 describes the reactivation from the resting state. If r2 assumes very large val-

ues this corresponds to a scenario where the time spent in the resting state before reactivation

is negligibly short. In biological terms this means that most cells remain active after division.

We denote the amount of dormant stem cells at time t as cd(t). The amount of active

stem cells at time t is denoted as ca(t) and that of resting stem cells as cr(t). For notational

convenience we omit the argument t and identify cd(t) ≡ cd, cr(t) ≡ cr and ca(t) ≡ ca. This

results in the following system of ordinary differential equations.
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d

dt
cd = −r1cd (dormant)

d

dt
ca = r2cr − cap+ r1cd (active)

d

dt
cr = −r2cr + 2a2pca + 2(1 − a)apca (resting)

= −r2cr + 2apca

(1)

cr(0) = c0r

ca(0) = c0a

cd(0) = c0d

(2)

with nonnegative initial conditions c0r, c
0
d and c0a.

We note that for r1 = r2 and qNSC = cd + cr, where qNSC denotes the amount of

quiescent stem cells, we obtain the model from (Kalamakis et al., 2019).

1.4 Model of the labeling experiments

Experimentally we can only count the resting cells that have divided during the EdU exposure

and became quiescent afterwards. The obtained cell counts are a lower bound for the total

number of resting cells, since resting cells that have not divided during EdU exposure cannot

be identified in the experiment. To avoid potential underestimations we explicitly simulate

the experimental setup and compare the experimentally obtained resting cell counts to the

simulations.

1.4.1 Labeling phase

For the labeling phase we assume:

• During EdU supply all active cells are instantaneously labeled.

• Cells transiting during the time of EdU supply from active to resting state retain the

label.
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Figure 2: NSC model during EdU supply. The scheme shows processes described by system

(3). Non-stem cells are denoted by X.

To quantitatively describe this experiment we have to distinguish between labeled and un-

labeled resting cells. Since we assume that active cells get instantaneously labeled all active

cells are per definition labeled. During the EdU supply the following model is considered. It

is visualized in Figure 2. We denote as c̃d the amount of dormant unlabeled cells, as c̃r,labeled
the amount of resting labeled cells, as c̃r,unlabeled the amount of resting unlabeled cells and

as c̃a the amount of active labeled cells.
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d

dt
c̃d = −r1c̃d (dormant, unlabeled)

d

dt
c̃a = r2(t)(c̃r,labeled + c̃r,unlabeled) − pc̃a + r1c̃d (active, labeled)

d

dt
c̃r,labeled = −r2(t)c̃r,labeled + 2a2pc̃a + 2(1 − a)apc̃a (resting, labeled)

= −r2(t)c̃r,labeled + 2apc̃a

d

dt
c̃r,unlabeled = −r2(t)c̃r,unlabeled (resting, unlabeled)

(3)

Assume the EdU supply starts at t = t∗, then we have

c̃d(t
∗) = cd(t

∗)

c̃a(t
∗) = ca(t

∗)

c̃r,unlabeled(t
∗) = cr(t

∗)

c̃r,labeled(t
∗) = 0

(4)

1.4.2 Chase period

For the chase period we make the following assumptions.

• Unlabeled cells getting activated during the chase period remain unlabeled and produce

unlabeled offspring.

• Since the chase period is short and labels are retained during several divisions, we

assume that labeled cells dividing during the chase period give rise to labeled cells.

This leads to the following system of equations. We denote as ĉr,labeled the amount of resting

labeled cells and as c̃a,labeled the amount of active labeled cells. The model is visualized in

Figure 3.
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Figure 3: NSC model during the chase period. The scheme shows processes described by

system (5). Non-stem cells are denoted by X.

d

dt
ĉa,labeled = r2(t)ĉr,labeled − pĉa,labeled (active, labeled)

d

dt
ĉr,labeled = −r2(t)ĉr,labeled + 2a2pĉa,labeled + 2(1 − a)apĉa,labeled (resting, labeled)

= −r2(t)ĉr,labeled + 2apĉa,labeled

(5)

Assume the chase starts at t = t#, then we have

ĉd(t
#) = c̃d(t

#)

ĉa,labeled(t
#) = c̃a(t

#)

ĉa,unlabeled(t
#) = 0

ĉr,unlabeled(t
#) = c̃r,unlabeled(t

#)

ĉr,labeled(t
#) = c̃r,labeled(t

#)

(6)

1.5 Full model

The amount of resting (EdU+Ki67-) cells present at time t is obtained as follows. Time

evolution of active, resting and dormant NSCs before EdU supply is simulated using system

(1) with initial conditions (2). We start simulation at time 0 and stop at t∗ = t. Then we
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Figure 4: Simulation of labeling experiments.

simulate the labeling period of τEdU = 14 days using system (3) with the initial condition

(4) for t∗ = t. We then simulate the chase using system (5) with the initial condition (6)

for t# = t∗ + τEdU . We stop simulations at t = t∗ + τEdU + τchase, with τchase = 20 hours

to readout the resting labeled cell count to compare it to measurements. The procedure is

summarized in Figure 4.

2 Model simulations

The model has been implemented in MATLAB and ordinary differential equations have been

solved using the solver ode23s.

3 Model quantification

We assume a doubling time of active NSCs of 22.8 hours, as measured in (Brandt et al., 2012).

The other model parameters and the initial conditions c0a, c
0
r, c

0
d are fitted based on the data.

For fitting we use a multistart approach (5000 multistarts) with random nonnegative initial

parameter guesses. The sampling of the initial guesses follows a latin hypercube approach.

Optimization is performed using the MATLAB function fmincon.

4 Model selection

To compare different models we use the Akaike information criterion for small sample sizes

(AICc) given as

AICc = AIC +
2k2 + 2k

n− k − 1
,

where n is the number of data points, k the number of free parameters and AIC the Akaike

information criterion (Burnham and Anderson, 2002). This approach takes into account
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the accuracy of the fit but at the same time punishes a high number of free parameters to

prevent overfitting. The level of empirical support of a given model is considered substantial

if 0 ≤ ∆ ≤ 2, considerably less so if 4 ≤ ∆ ≤ 7 and none, if ∆ > 10 holds, where ∆ is the

AICc of a given model minus the minimum AICc of all considered models (Burnham and

Anderson, 2002).

5 Age-related change of cell parameters

In (Kalamakis et al., 2019; Ziebell et al., 2018) it has been concluded that the activation rate

of NSCs changes during aging. This can be modeled by assuming that the rate is not given

by a constant but by a time-dependent function. In the following we allow the activation

rates r1, r2 and the self-renewal probability a to be functions of the age of the organism.

6 Fitting active and total NSC dynamics

To check consistency of our dataset with the model from (Kalamakis et al., 2019) we first

fit different versions of the model only to active and total NSC counts, i.e., for the moment

we ignore the information about resting NSCs.

6.1 Identical activation rates for dormant and resting NSCs

In (Kalamakis et al., 2019; Ziebell et al., 2018) it has been concluded that the activation rate

of quiescent NSCs changes during aging. To obtain the model from (Kalamakis et al., 2019)

we assume that the activation rates are identical for dormant and resting cells and that they

change with age. As in (Kalamakis et al., 2019) we set

r(t) := r1(t) = r2(t) = rmaxe
−βrt.

We assume a cell cycle time of active NSCs of 22.8 hours, as measured in (Brandt et al.,

2012). We fit the other model parameters to active and total NSC counts. We observe that

the model is close to the data, however, the values of the estimated parameters differ from

those in (Kalamakis et al., 2019).
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Parameter Value Source Parameter Value Source

rmax [1/days] 0.1304 fitted βr [1/days] 0.0174 fitted

a 0.3518 fitted p [1/days] 1.0526 (Brandt et al., 2012)

AICc=33.1

6.2 Different activation rates for dormant and resting NSCs

We now consider the case where activation rates of dormant and resting NSCs can be dif-

ferent. As in (Ziebell et al., 2018; Kalamakis et al., 2019) we assume that they decline

exponentially with time, i.e.,

r1(t) = rmax,1e
−βr,1t,

r2(t) = rmax,2e
−βr,2t.

We fit this version of the model to the counts of total and active NSCs. This does not

improve the fit and an increase in AICc demonstrates that based on the total and active cell

counts there is no evidence for the rates to be different.
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.8211 fitted βr,1 [1/days] 0.9924 fitted

rmax,2 [1/days] 0.1404 fitted βr,2 [1/days] 0.0111 fitted

a 0.3508 fitted p [1/days] 1.0526 (Brandt et al., 2012)

AICc=38.3

7 Fitting total, active and resting NSC dynamics

Now we include our data on resting NSCs. In this section we fit the model to total, active

and resting NSC counts.

7.1 Identical activation rate for dormant and resting NSCs

We first consider the scenario where dormant and resting NSCs have the same activation

rate, i.e., we set

r(t) := r1(t) = r2(t) = rmaxe
−βrt.

12



Parameter Value Source Parameter Value Source

rmax [1/days] 0.0467 fitted βr [1/days] 0.0185 fitted

a 0.0016 fitted p [1/days] 1.0526 (Brandt et al., 2012)

AICc=120.3

7.2 Different activation rates for dormant and resting NSCs

If we allow dormant and resting cells to have different activation rates, i.e.,

r1(t) = r1,maxe
−βr1t,

r2(t) = r2,maxe
−βr2t,

we obtain a better fit and a reduction in AICc. This suggests that different activation rates

are required to explain the observed dynamics of resting NSCs.
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0202 fitted βr,1 [1/days] 0.0053 fitted

rmax,2 [1/days] 3390.0 fitted βr,2 [1/days] 0.1028 fitted

a 0.3536 fitted p [1/days] 1.0526 (Brandt et al., 2012)

AICc=53.3

The high activation rate of resting cells indicates that in young mice most activated cells

do not return to quiescence after division.

7.3 Different activation rates for dormant and resting NSCs and

age dependent self-renewal

We now allow different activation rates for dormant and resting cells and we allow self-

renewal to increase over time. The expression for age-dependent self-renewal has been taken

from (Kalamakis et al., 2019). We set

r1(t) = r1,maxe
−βr1t,

r2(t) = r2,maxe
−βr2t,

a =
1

2
· (1 + e−βat · (2amin − 1)).

This best obtained fit is the following.
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0202 fitted βr,1 [1/days] 0.0053 fitted

rmax,2 [1/days] 3389.3 fitted βr,2 [1/days] 0.1029 fitted

amin 0.3526 fitted βa [1/days] 7.25·10−5 fitted

p [1/days] 1.0526 (Brandt et al., 2012)

AICc=56.1

We observe an increase in AICc supporting the view that age dependence of self-renewal

has only a minor impact on cell dynamics. Also here the high activation rate of resting cells

indicates that in young mice most activated cells do not return to quiescence after division.

The following figure shows how activation rates and self-renewal probability change with

age.
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7.4 Model with non-zero activation for large time

In the versions of the model considered so far, the activation rates decline asymptotically

with time. This can lead to rates that are practically zero within the life-time of a mouse.

To prevent this unrealistic scenario, we modified the model as follows:

r1 = r1,maxe
−βr1t + ε,

r2 = r2,maxe
−βr2t + ε.

This implies that the activation rate is always larger than ε. We fit ε in addition to the

other parameters.

7.4.1 Constant self-renewal

We first consider the scenario with constant in time self-renewal (a = const) and age-

dependent activation rates:

r1 = r1,maxe
−βr1t + ε,

r2 = r2,maxe
−βr2t + ε.
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0196 fitted βr,1 [1/days] 0.0107 fitted

rmax,2 [1/days] 3390.0 fitted βr,2 [1/days] 0.1035 fitted

a 0.3604 fitted ε [1/days] 0.0031 fitted

p [1/days] 1.0526 (Brandt et al., 2012)

AICc=36.0

The fit is significantly improved. Although we have one more free parameter AICc is

reduced compared to the previous versions of the model. This implies that it is important

for the observed process that activation rates do not decline to zero for high ages.

7.4.2 Age-dependent self-renewal

We now allow in addition that self-renewal is age-dependent. As motivated above, we set

r1 = r1,maxe
−βr1t + ε,

r2 = r2,maxe
−βr2t + ε,

a =
1

2
· (1 + e−βat · (2amin − 1)).
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0202 fitted βr,1 [1/days] 0.0102 fitted

rmax,2 [1/days] 3390.0 fitted βr,2 [1/days] 0.1033 fitted

amin 0.3537 fitted βa [1/days] 8.1·10−4 fitted

ε [1/days] 0.0026 fitted p [1/days] 1.0526 (Brandt et al., 2012)

AICc=41.4

The increase in AICc indicates that age-dependence of self-renewal has only little impact

on the NSC dynamics.

The following figure shows how activation rates and self-renewal probability change with

age.
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7.5 Age-dependent proliferation

Compared to the model version in section 7.4.1 we now additionally consider age-dependent

proliferation. Therefore, we set

r1 = r1,maxe
−βr1t + ε,

r2 = r2,maxe
−βr2t + ε,

p = pmaxe
−βpt.
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0182 fitted βr,1 [1/days] 0.0134 fitted

rmax,2 [1/days] 3390.7 fitted βr,2 [1/days] 0.1132 fitted

a 0.2855 fitted pmax [1/days] 1.0526 (Brandt et al., 2012)

βp [1/days] 0.0064 fitted ε[1/days] 0.0045 fitted

AICc=37.9

The AICc reveals that this model is not more feasible compared to the model in section

7.4.1. The parametrization in this section would imply a cell cycle duration of approx. 3

days in mice of 6 months of age, which is longer than measured in experiments (Brandt et al.,

2012). When we consider pmax as an additional free parameter and fit it based on the data,

the AICc slightly decreases (AICc = 35.0), however in this case NSC cell cycle duration at

6 months of age would be approx. 2.7 days, which is longer than inferred from experimental

measurements (Brandt et al., 2012). We, therefore, stick to the model from section 7.4.1.

7.6 Age-dependent self-renewal and proliferation

Compared to the model version in section 7.4.1 we now additionally consider age-dependent

proliferation and self-renewal. Therefore, we set
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r1 = r1,maxe
−βr1t + ε,

r2 = r2,maxe
−βr2t + ε,

a =
1

2
· (1 + e−βat · (2amin − 1)),

p = pmaxe
−βpt.

Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0200 fitted βr,1 [1/days] 0.0142 fitted

rmax,2 [1/days] 3388.7 fitted βr,2 [1/days] 0.1095 fitted

amin 0.3211 fitted βa [1/days] 9.38·10−7 fitted

ε [1/days] 0.0041 fitted pmax [1/days] 1.0526 (Brandt et al., 2012)

βp [1/days] 0.0056 fitted

AICc=36.3

The AICc is similar to the AICc of the model from section 7.4.1 implying that the age-

dependent variability of the proliferation rate does not improve the model.

The parametrization in this section would imply a NSC cell cycle duration of approx. 2.6

days in mice of 6 months of age, which is longer than measured in experiments
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(Brandt et al., 2012). When we consider pmax as an additional free parameter and fit it

based on the data, the model can be improved (AICc = 28.2), however in this case NSC

cell cycle duration at 6 months of age would be approx. 3.7 days, which is unrealistic. We,

therefore, stick to the model from section 7.4.1.

8 Study of specific scenarios

In this section, two alternate scenarios are explored. Firstly, a model where proliferation rate

is the only age-dependent parameter. And a second scenario where there is no self-renewal.

We consider these models to be more extreme scenarios as they are contradicted by previous

experimental observations (Ziebell et al., 2018; Kalamakis et al., 2019; Encinas et al., 2011;

Pilz et al., 2018; Bonaguidi et al., 2011). The results in this section imply that age-dependent

activation rates are crucial to capture the experimentally observed NSC dynamics.

8.1 Proliferation rate as only age-dependent cell parameter

To study model dynamics under the assumption that only proliferation rate is age-dependent,

we set βr,1 = 0, βr,2 = 0, βa = 0. In this case model dynamics do not agree with experiments.
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0263 fitted rmax,2 [1/days] 8139.5 fitted

a [1/days] 0.2995 fitted p [1/days] 2.0166 fitted

βp [1/days] 0.000307 fitted ε [1/days] 0.0010 fitted

AICc=152.0

8.2 Scenarios without self-renewal

To understand the impact of self-renewal on NSC dynamics we consider two scenarios. First,

we use the fitted model from section 7.4.1 and set self-renewal to zero. This allows to

quantify the impact of self-renewal on NSC population dynamics in the model. Naturally, in

absence of self-renewal there exist no resting NSCs, since offspring of NSCs belong to more

differentiated cell types. Furthermore, the total cell dynamics cannot be recovered by the

model, since in absence of self-renewal the number of active NSCs in young mice is smaller

than observed in experiments.

As second approach we re-estimated the cell parameters subject to the constraint that

self-renewal equals zero. Also in this case the ratio of active and quiescent cells is not

captured by the model. This agrees with the observations in (Kalamakis et al., 2019; Ziebell

et al., 2018).
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0333 fitted βr,1 [1/days] 2.625·10−09 fitted

rmax,2 [1/days] 0.0692 fitted βr,2 [1/days] 0.0388 fitted

amin 0 fixed p [1/days] 1.0526 (Brandt et al., 2012)

ε[1/days] 0.0014 fitted

AICc=125.3

Based on these simulations we conclude that NSC self-renewal is required to recapitulate

experimentally observed NSC population dynamics.

9 Model with different EdU administration periods

Active NSCs persist for longer with age (Figure 1L, main text). Therefore, it might be im-

portant to lengthen the EdU administration period in older mice so as to not underestimate

the number of resting NSCs. A subset of 12-month old mice (n = 5) received a 28-day

EdU exposure to test whether lengthening the administration period would affect counts of

resting NSCs.

These different EdU administration periods can be taken into account in the model,

however it leads only to slight changes of the estimated parameters. As an example, we
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consider in this section an extended version of the model from section 7.4.1 (model with

age-dependent activation and age-independent proliferation and self-renewal) that considers

the different EdU administration periods.

The series of experiments with EdU administration periods of 14

days is referred to as ‘series 1’ (third row). The series of experi-

ments with EdU administration periods of 28 days is referred to

as ‘series 2’ (fourth row). In the fourth row the model solution is

shown as a red cross (+).

Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.02 fitted βr,1 [1/days] 0.0074 fitted

rmax,2 [1/days] 3396.9 fitted βr,2 [1/days] 0.1034 fitted

a 0.3557 fitted ε [1/days] 0.0014 fitted

p [1/days] 1.0526 (Brandt et al., 2012)

AICc = 43.8?

? This AICc cannot be directly compared to the AICc values of the

previous model fits, since here the model has been fitted to a different

dataset taking into account different EdU administration periods.

We note that the number of experimentally measured resting cells does not differ signif-

icantly for experiments with 14 days EdU administration compared to experiments with 28
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days EdU administration. For this reason we consider the simpler model from section 7.4.1

as a suitable approximation of the experiments.
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0

100

200

300

400

500

Length of EdU administration

Ed
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ls
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n.s.

The number of EdU+Ki67- cells per dentate gyrus

does not differ in experiments with 14 days EdU ad-

ministration (left) compared to experiments with 28

days EdU administration (right). Significance level

0.05, two-sided t-test.

10 Model without return to quiescence

Our MCM2 immunolabeling studies (Figure S1) show active cells return to a quiescent

(resting) state. However, in this section we test a hypothetical scenario where NSCs do not

return to quiescence and instead reside in an extended G1 phase. These hypothetical G1

phases have no upper time-limits.

Dormant cells are activated at rate r1. Activated NSCs divide at rate p. After each

NSC division the fraction a of the offspring are NSCs and the fraction 1 − a adopt a more

differentiated phenotype. Cells originating from division enter G1 phase, from which they

are reactivated at rate r2. We furthermore assume that during its nth division a NSC only

gives rise to more differentiated cells. Fig. 5 provides an overview of the model structure.
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Figure 5: Model without return to quiescence. Non-stem cells are denoted by X.

Denote by cd(t) ≡ cd the amount of dormant NSCs at time t, by ca,i the amount of NSCs

that have been activated i times (1 ≤ i ≤ n + 1) since their exit from dormancy and by

cG1,i the amount of NSCs that are in the G1 phase for the ith time since their exit from

dormancy. This results in the following system of ordinary differential equations:
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d

dt
cd = −r1cd (dormant)

d

dt
ca,1 = r1cd − pca,1 (activated for the 1st time)

d

dt
cG1,1 = 2apca,1 − r2cG1,1 (G1 for the 1st time)

d

dt
ca,2 = r2cG1,1 − pca,2 (activated for the 2nd time)

d

dt
cG1,2 = 2apca,2 − r2cG1,2 (G1 for the 2nd time)

. . . . . .

d

dt
ca,n = r2cG1,n−1 − pca,n (activated for the nth time)

d

dt
cG1,n = 2apca,n − r2cG1,n (G1 for the nth time)

d

dt
ca,n+1 = r2cG1,n − pca,n+1 (activated for the n+ 1st time),

(7)

supplemented by the following initial conditions:

cd(0) = c0d

ca,i(0) = c0a,i, 1 ≤ i ≤ n+ 1

cG1,i(0) = c0G1,i, 1 ≤ i ≤ n.

As above we set

r1 = r1,maxe
−βr1t + ε,

r2 = r2,maxe
−βr2t + ε.

10.1 Labeling phase

We make the same assumptions as in section 1.4.1, i.e., active cells get immediately labeled

when EdU supply starts. We denote by c̃d the amount of dormant NSCs at time t, by c̃a,i
the amount of labeled NSCs that have been activated i times (1 ≤ i ≤ n+ 1) since their exit

from dormancy, by cG1,i,l the amount of labeled NSCs that are in the G1 phase for the ith

time since their exit from dormancy and by cG1,i,u the amount of unlabeled NSCs that are in
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the G1 phase for the ith time since their exit from dormancy. This results in the following

system of equations:

d

dt
c̃d = −r1c̃d (dormant, unlabeled)

d

dt
c̃a,1 = r1c̃d − pc̃a,1 (activated for the 1st time, labeled)

d

dt
c̃G1,1,l = 2apc̃a,1 − r2c̃G1,1,l (G1 for the 1st time, labeled)

d

dt
c̃G1,1,u = −r2c̃G1,1,u (G1 for the 1st time, unlabeled)

d

dt
c̃a,2 = r2(c̃G1,1,l + c̃G1,1,u) − pc̃a,2 (activated for the 2nd time, labeled)

d

dt
c̃G1,2,l = 2apc̃a,2 − r2c̃G1,2,l (G1 for the 2nd time, labeled)

d

dt
c̃G1,2,u = −r2c̃G1,2,u (G1 for the 2nd time, unlabeled)

. . . . . .

d

dt
c̃a,n = r2(c̃G1,n−1,l + c̃G1,n−1,u) − pc̃a,n (activated for the nth time, labeled)

d

dt
c̃G1,n,l = 2apc̃a,n − r2c̃G1,n,l (G1 for the nth time, labeled)

d

dt
c̃G1,n,u = −r2c̃G1,n,u (G1 for the nth time, unlabeled)

d

dt
c̃a,n+1 = r2(c̃G1,n,l + c̃G1,n,u) − pc̃a,n+1 (activated for the n+ 1st time, labeled)

(8)

Assume the EdU supply starts at t = t∗, then we have

c̃d(t
∗) = cd(t

∗)

c̃a,i(t
∗) = ca,i(t

∗), i = 1, ..., n+ 1

c̃G1,i,u(t
∗) = cG1,i(t

∗), i = 1, ..., n

c̃G1,i,l(t
∗) = 0, i = 1, ..., n.

10.2 Chase period

We make the same assumptions as in section 1.4.2. We denote ĉa,i the amount of labeled

NSCs that have been activated i times (1 ≤ i ≤ n + 1) since their exit from dormancy and
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by cG1,i,l the amount of labeled NSCs that are in the G1 phase for the ith time since their

exit from dormancy. The following system of equations describes the evolution of labeled

NSCs during the chase period.

d

dt
ĉa,1 = −pĉa,1 (activated for the 1st time, labeled)

d

dt
ĉG1,1,l = 2apĉa,1 − r2ĉG1,1,l (G1 for the 1st time, labeled)

d

dt
ĉa,2 = r2ĉG1,1,l − pĉa,2 (activated for the 2nd time, labeled)

d

dt
ĉG1,2,l = 2apĉa,2 − r2ĉG1,2,l (G1 for the 2nd time, labeled)

. . . . . .

d

dt
ĉa,n = r2ĉG1,n−1,l − pĉa,n (activated for the nth time, labeled)

d

dt
ĉG1,n,l = 2apĉa,n − r2ĉG1,n,l (G1 for the nth time, labeled)

d

dt
ĉa,n+1 = r2ĉG1,n,l − pĉa,n+1 (activated for the n+ 1st time, labeled)

(9)

Assume the chase starts at t = t#, then we have the following initial conditions

ĉa,i(t
#) = c̃a,i(t

#), i = 1, ..., n+ 1

ĉG1,i,l(t
#) = c̃G1,i,l(t

#), i = 1, ..., n.

10.3 Fitting

We assume a doubling time of active NSCs of 22.8 hours, as measured in (Brandt et al., 2012).

The other model parameters are fitted based on the data. For the initial condition we as-

sume a quasi steady state, namely c0a,1 =
r1c0d
p

, c0G1,1 =
2apc0a,1
r2

, c0a,i =
r2cG1,i−1

p
(2 ≤ i ≤ n+ 1),

c0G1,i =
2apc0a,i
r2

(2 ≤ i ≤ n). We assume that dormant NSCs and NSCs in the G1 phase are

Ki67-. For fitting we use a multistart approach (5000 multistarts) with random nonnegative

initial parameter guesses. The sampling of the initial guesses follows a latin hypercube ap-

proach. Optimization is performed using the MATLAB function fmincon.

We performed fits for different numbers of n.
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10.3.1 Maximal number of 5 divisions

Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0318 fitted βr,1 [1/days] 0.0107 fitted

rmax,2 [1/days] 3692.0 fitted βr,2 [1/days] 0.1084 fitted

a 0.3471 fitted ε [1/days] 0.0037 fitted

p [1/days] 1.0526 (Brandt et al., 2012)

AICc=25.1
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10.3.2 Maximal number of 10 divisions

Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0323 fitted βr,1 [1/days] 0.0184 fitted

rmax,2 [1/days] 3692.0 fitted βr,2 [1/days] 0.1083 fitted

a 0.3338 fitted ε [1/days] 0.0040 fitted

p [1/days] 1.0526 (Brandt et al., 2012)

AICc=24.2
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10.3.3 Maximal number of 50 divisions

Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0325 fitted βr,1 [1/days] 0.0186 fitted

rmax,2 [1/days] 3692.0 fitted βr,2 [1/days] 0.1083 fitted

a 0.3322 fitted ε [1/days] 0.0040 fitted

p [1/days] 1.0526 (Brandt et al., 2012)

AICc=24.1

These parameters correspond to an average duration of G1-phase of 250 days in 6 month

old mice.

10.4 Conclusion

We observe that AICc is practically identical for the different values of n, implying that

there is no significant difference between the different versions of the model. Since we made

a quasi steady state assumption, the unknown initial condition leads only to one additional

free parameter. In the model in section 7.4.1 the initial condition led to three additional

free parameters. For this reason the model considered in this section leads to a smaller AICc.

If we apply an analogous quasi steady state assumption to the model from section 7.4.1,

i.e., c0a = − r1c0d
(2a−1)p

, c0r = 2apc0a
r2

, we obtain the following fit.
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Parameter Value Source Parameter Value Source

rmax,1 [1/days] 0.0313 fitted βr,1 [1/days] 0.0182 fitted

rmax,2 [1/days] 3390.0 fitted βr,2 [1/days] 0.1068 fitted

a 0.3357 fitted ε [1/days] 0.0039 fitted

p [1/days] 1.0526 (Brandt et al., 2012)

AICc=24.2

This implies that there is no significant difference between the model from section 7.4.1

with a quasi steady state assumption on initial conditions (as presented in section 10.4)

assuming a return to quiescence and the models from sections 10.3.1-10.3.3 (assuming no

return to quiescence). Therefore, based on the mathematical modeling we cannot distinguish

between a scenario with return to quiescence and a scenario with intermittent G1 phases.

In fact both models are very similar: NSCs can switch between an actively dividing state

and a resting state (either G0 or G1). The main difference between the models is that the

model considered in this section limits the number of stem cell divisions before differentiation

to n, whereas in the model from section 7.4.1 the distribution of the number of divisions

performed by NSCs before differentiation solely depends on the value of the self-renewal

fraction a. For this reason for large values of n we expect both models to have very similar

properties.
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