

Figure S1. Reduced NGBR expression in the liver is associated with increased inflammatory molecules. Liver samples were collected from NGBR^{fl/fl} and NGBR^{hepKO} mice and used to determine expression of mRNA for tumor necrosis factor α (*TNF* α), interleukin 1 β , 4, 6, 10 (*IL1\beta, 4, 6, 10*) by qPCR. *, *p*<0.05 *versus* NGBR^{fl/fl}, *n*=6.

Chen et al, Figure S2

Figure S2. NGBR deficiency does not affect hepatic Nogo-B protein expression and secretion *in vitro* and *in vivo*. HepG2 cells in 6-well plates were transfected with scrambled siRNA (siCtrl, 50 nM) or NGBR siRNA (siNGBR, 50 nM) for 24 h. (A) Expression of Nogo-B and NGBR protein and mRNA were determined by western blot and qPCR, respectively. *, p<0.05, n=3. (B) Nogo-B content in HepG2 cell culture medium was determined by a human Nogo-B ELISA kit. n=5. (C) Expression of Nogo-B and NGBR protein and mRNA in livers of NGBR^{fl/fl} and NGBR^{hepKO} mice were determined by western blot and qPCR, respectively. *, p<0.05, n=5. (D) Serum Nogo-B levels of NGBR^{fl/fl} and NGBR^{hepKO} mice were determined by a mouse

Nogo-B ELISA kit. n=14. (E) Protein and mRNA expression of Nogo-B and NGBR in livers of wild type and db/db mice was determined by western blot and qPCR. *, p<0.05, n=4.

Chen et al, Figure S3

Figure S3. Determination of NGBR mRNA expression in mouse tissues. Samples of epididymal white adipose tissue (eWAT) (A), skeletal muscle (B) and pancreas (C) were collected from NC, T2D and T2D+NGBR mice used in Figure 2A, followed by preparation of tissue total RNA and determination of *Ngbr* mRNA expression by qPCR.

*, *p*<0.05 versus NC, *n*=5 (NC group), *n*=7 (T2D or T2D+NGBR group).

Figure S4. Injection of AAV-NGBR has little effect on bodyweight gain and food intake in high-fat diet (HFD)/streptozotocin (STZ) mice. (A, B) The experimental design was shown in Figure 2A. During this course, mouse bodyweight (A) and 24-h food intake (B) were monitored weekly. n=5 (NC group), n=7 (T2D or T2D+NGBR group).

Figure S5. NGBR regulates insulin sensitivity through insulin signaling and AKT axis in primary hepatocytes. Primary hepatocytes isolated from wild type mouse liver were cultured in 6-well plates and transfected with scrambled siRNA (siCtrl, 50 nM) or NGBR siRNA (siNGBR, 50 nM) for 24 h. Cells were then treated with insulin at the indicated concentrations for 30 min. Expression of indicated proteins was determined by western blot. *, p<0.05 versus lane 1; †, p<0.05 versus lane 2; ‡, p<0.05 versus lane 3; &, p<0.05 versus siCtrl. n=3.

Figure S6. Reduced NGBR expression in HepG2 cells is associated with decreased phosphorylation of AMPK and insulin receptor substrate 1 (IRS1). (A) HepG2-Ctrl cells and HepG2-AMPK α 1^{-/-} cells in 6-well plates were treated with insulin at the indicated concentrations for 30 min. (B) HepG2 cells in 6-well plates were transfected with scrambled siRNA (siCtrl, 50 nM) or NGBR siRNA (siNGBR, 50 nM) for 24 h. Expression of indicated proteins was determined by western blot. *, *p*<0.05 versus lane 1or siCtrl; †, *p*<0.05 versus lane 2; ‡, *p*<0.05 versus lane 3. *n*=3.

Gene	Forward	Backward
Homo ATF4	ATGACCGAAATGAGCTTCCTG	GCTGGAGAACCCATGAGGT
Homo ATF6	TCCTCGGTCAGTGGACTCTTA	CTTGGGCTGAATTGAAGGTTTTG
Homo Ngbr	GGGCATCTCCTACATTAGCG	CCCAGAAGTTCTTGCTGTTG
Homo Nogo-B	AATAGGCTGGCACCAAACAC	CGTGACAAGAGATGGACGGT
Homo XBP1s	CCGCAGCAGGTGCAGG	ACATGACTGGGTCCAAGTTGT
Homo IRE1a	CACAGTGACGCTTCCTGAAAC	GCCATCATTAGGATCTGGGAGA
Homo BIP	TTGACTCCGACCTTCACCTTCC	TTTCACAGTGGCCAAGAGTC
Homo CHOP	GGAAACAGAGTGGTCATTCCC	CTGCTTGAGCCGTTCATTCTC
Homo SKIP	AGGGGCGAGACATCCCAAA	AGTCCTCGATCCGAAAGTTCA
Homo β-actin	CTGGAACGGTGAAGGTGACA	AAGGGACTTCCTGTAACAATGCA
Mus Ngbr	GAGGAAGCCCACAGATCTGGATGTA	TCTGATTTGCCAGGGAAGAAAGCC
Mus Nogo-B	TCGGGCTCAGTGGTTGTT	GAGACAGCAGCAGGAATAAGCT
Mus Gk	TGAACCTGAGGATTTGTCAGC	CCATGTGGAGTAACGGATTTCG
Mus Dgat	GGTGCCCTGACAGAGCAGAT	CAGTAAGGCCACAGCTGCTG
Mus Srebf1	TGACCCGGCTATTCCGTGA	CTGGGCTGAGCAATACAGTTC
Mus Acc1	GAAGTCAGAGCCACGGCACA	GGCAATCTCAGTTCAAGCCAGTC
Mus Fasn	CTGCGATGAAGAGCATGGTTT	CCATAGGCGATTTCTGGGAC
Mus Atf4	CCTGAACAGCGAAGTGTTGG	TGGAGAACCCATGAGGTTTCA
Mus Atf6	TCGCCTTTTAGTCCGGTTCTT	GGCTCCATAGGTCTGACTCC

Table S1. Sequences of primers for qPCR analysis.

Mus Xbp1s	CTGAGGTCCGCAGCAGGT	TGTCAGAGTCCATGGGAAGA
Mus Skip	CAGCACGGAGACAGGAACAC	AGGCCACATTCCACGTCAC
Mus Ppara	AGTTCGGGAACAAGACGTTG	CAGTGGGGAGAGAGGACAGA
Mus Pgc1a	CCCTGCCATTGTTAAGACC	TGCTGCTGTTCCTGTTTTC
Mus Sirt1	GACGGTATCTATGCTCGCCT	ACACAGAGACGGCTGGAACT
Mus Bip	CGCTGGGCATCATTGAAGTAA	GAGGTGGGCAAACCAAGACAT
Mus Chop	CCACCACACCTGAAAGCAGAA	GGTGCCCCCAATTTCATCT
Mus Mfn1	ATGGCAGAAACGGTATCTCCA	GCCCTCAGTAACAAACTCCAGT
Mus Mfn2	AGAACTGGACCCGGTTACCA	CACTTCGCTGATACCCCTGA
Mus Opal	TGGAAAATGGTTCGAGAGTCAG	CATTCCGTCTCTAGGTTAAAGCG
Mus Drp1	GCAACTGGAGAGGAATGCTG	CACAATCTCGCTGTTCTCGG
Mus Fis1	AGAGGAACAGCGGGACTATG	CCATGCCTACCAGTCCATCT
Mus Mff	CACCACCAAATGCTGACCTG	GGTGTTTTCAGTGCCAGAGG
Mus Pink1	CTGTCAGGAGATCCAGGCAATT	GTGGGCATGGTGGCTTCAT
Mus Parkin	CGTGTGATTTTTGCCGGGAAG	GGTCCACTCGTGTCAAGCTC
Mus TNFα	CGTCGTAGCAAACCACCAAG	TTGAAGAGAACCTGGGAGTAGACA
Mus <i>IL1</i> β	GACCTTCCAGGATGAGGACA	AGCTCATATGGGTCCGACAG
Mus IL4	ACAGGAGAAGGGACGCCAT	GAAGCCCTACAGACGAGCTCA
Mus IL6	GAGGATACCACTCCCAACAGACC	AAGTGCATCATCGTTGTTCATACA
Mus IL10	GCTCTTACTGACTGGCATGAG	CGCAGCTCTAGGAGCATGTG
Mus β-actin	ATGGAGGGGAATACAGCCC	TTCTTTGCAGCTCCTTCGTT

Homo, homo sapiens; Mus, mouse sapiens.

Primary antibodies

Mouse anti-protein kinase B (AKT, Cat# 5239S) monoclonal antibody, rabbit antiphosphorylated-AKT (p-AKT, Cat# 4060L), phosphorylated glycogen synthase kinase 3 beta (p-GSK3β, Cat# 5558S), pancreatic endoplasmic reticulum kinase (PERK, Cat# 3192S), eukaryotic translation initiation factor 2a (EIF2a, Cat# 9722S), phosphorylated-eIF2a (p-EIF2a, Cat# 3597S), phosphorylated-ACC (Cat# 11818), ACC (Cat# 3676S), phosphorylated AMPKa (p-AMPKa, Cat# 2535S), insulin (Cat# 3014) monoclonal antibodies, and rabbit anti-phosphorylated-mTOR (p-mTOR, Cat# 2971), phosphorylated-IRS1 (p-IRS1, Cat# 3070S) polyclonal antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-GSK3β (Cat# 22104-1-AP), heat shock protein 90 (Hsp90) (Cat# 13171-1-AP), IRS1 (Cat# 17509-1-AR) and insulin (Cat# 15848-1-AP) polyclonal antibodies, mouse HRPglyceraldehyde-3-phosphate dehydrogenase (GAPDH, Cat# HRP-60004) and mouse anti-mTOR (Cat# 66888-1-IG) monoclonal antibodies, HRP-conjugated goat antirabbit IgG (H+L, Cat# A00001-2), anti-mouse IgG (H+L, Cat# 00001-1) and goat antirabbit IgG (H+L)-Rhodamine (Cat# SA00007-2) antibodies were purchased from Proteintech Group (Chicago, IL, USA). Rabbit anti-AMPKa1 (Cat# NB110-55457) monoclonal antibody and rabbit anti-Nogo-B (Cat# NB100-56681) polyclonal antibody were purchased from Novus Biologicals (Littleton, CO, USA). Rabbit anti-NGBR (Cat# ab168351) monoclonal antibody and rabbit anti-Nogo-B (Cat# ab47085) polyclonal antibody were purchased from Abcam (Cambridge, MA, USA). Rabbit antiβ-actin (Cat# sc-130656) polyclonal antibody and mouse anti-glucagon (Cat# sc-514592) monoclonal antibody were purchased from Santa Cruz Biotechnology (Dallas,

Texas, USA). Rabbit anti-binding immunoglobulin protein or 78 kDa glucose-regulated protein (BIP/GRP78, Cat# A11366), phosphorylated-Raptor (p-Raptor, Cat# AP0928), Raptor (Cat# A8992) polyclonal antibodies were purchased from ABclonal (Wuhan, China). Goat anti-mouse IgG (whole molecule)-FITC (Cat# F0257) antibody was purchased from Sigma-Aldrich.