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SUMMARY
The actin cytoskeleton plays a fundamental role in numerous cellular processes, such as cell motility, cyto-
kinesis, and adhesion to the extracellular matrix. Revealing the polarity of individual actin filaments in intact
cells would foster an unprecedented understanding of cytoskeletal processes and their associated mechan-
ical forces. Cryo-electron tomography provides the means for high-resolution structural imaging of cells.
However, the low signal-to-noise ratio of cryo-tomograms obscures the high frequencies, and therefore
the polarity of actin filaments cannot be directly measured. Here, we developed a method that enables us
to determine the polarity of actin filaments in cellular cryo-tomograms. We applied it to reveal the actin po-
larity distribution in focal adhesions, and show a linear relation between actin polarity and distance from the
apical boundary of the adhesion site.
INTRODUCTION

Actin polymerization drives cell motility and is a central factor in

mediating contractile forces in cells (Holmes et al., 1990; Merino

et al., 2018; Pollard and Borisy, 2003). Actin filaments (Egelman

et al., 1982; Galkin et al., 2015) assemble into complex networks

(Malik-Garbi et al., 2019; Xu et al., 2012), which are essential for

their activity in the cell. Reconstructing individual actin filaments

at sub-nanometer resolution inside cells would provide an

unparalleled view on actin networks, and would allow a more

fine-grained modeling of cytoskeletal-based mechanical pro-

cesses (Hervas-Raluy et al., 2019).

A prominent mechanosensitive mechanism, involving acto-

myosin contractility, occurs at the integrin-based interaction

sites of cells with the extracellular matrix (Burridge and Guilluy,

2016; Geiger et al., 2009). These interactions are mediated by

adhesive structures such as focal adhesions (FAs) (Legate

et al., 2011; Shemesh et al., 2005; Zaidel-Bar et al., 2007).

The organization of proteins and the role of the actin network

in FAs has been intensively studied using fluorescent and elec-

tron microscopy (Kanchanawong et al., 2010; Patla et al.,

2010); however, the 3D architecture of FAs, including the polar-

ity and position of each individual actin filament, has not

been shown.

Cryo-electron tomography (cryo-ET) allows reconstruction

of 3D density maps of unperturbed cells at a resolution of

2–3 nm (Beck and Baumeister, 2016; Lucic et al., 2005; Weber

et al., 2019). Therefore, single actin filaments can readily be

detected in tomograms of eukaryotic cells (Jasnin et al.,
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2019; Medalia et al., 2002). Moreover, using direct electron

detectors permits recognition of the characteristic helical

shape of F-actin, which is in clear distinction to other cellular

filaments. However, cryo-tomograms suffer from a low signal-

to-noise ratio (SNR) (Forster et al., 2008; Pei et al., 2016), and

from missing information due to the limited tilt range during

data acquisition, referred to as the missing wedge (Lucic

et al., 2005). Subtomogram averaging can compensate for

these issues (Beck and Baumeister, 2016; Forster et al.,

2005; Himes and Zhang, 2018; Schur et al., 2016), but it is

computationally more demanding and lacks the robustness

and level of standardization of the procedures used for data

analysis in single-particle cryo-electron microscopy (cryo-

EM) (Nogales, 2016; Scheres, 2012).

Here we developed a set of MATLAB scripts that enable, in

conjunction with RELION (Scheres, 2012), the 3D reconstruction

of actin filaments from cryo-tomograms. It is based on trans-

forming subtomogram averaging into a single-particle task,

and the determination of the actin filament’s polarity is built on

a robust statistical analysis of the individual filaments. Further-

more, this actin polarity toolbox (APT) features tools for spatial

and topological analysis of the reconstructed actin filament net-

works and their visualization.

Using a correlative fluorescence microscopy and cryo-ET

approach (Patla et al., 2010; Sartori et al., 2007), we unveil the

3D architecture of the actin cytoskeleton at FAs. We show that

the actin polarity distribution correlates with the position along

the FA and that regions of mixed polarity are concentrated at the

periphery of the characteristic actin bundles.
ed by Elsevier Ltd.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Polarity determination of modeled actin bundles

(A) The workflow of APT consists of consecutive modules. The orange modules symbolize the required input data. The blue modules were implemented in

MATLAB, and the green modules were executed in RELION.

(B) Top view of one of the modeled actin bundles, which were used for the validation of APT. The bundles were rendered without noise for visualization purposes.

Here the angle a between bundle and tilt axis is 30�, and the fraction rr of actin filaments that are oriented in the opposite direction (red colored filaments) was set

to 0.1.

(C) Top view of an additional bundle with a increased to 70�, and rr to 0.3.

(D) The same bundle seen from the side with the viewing axis adjusted parallel to the filaments. The distance between the filaments is 10–37 nm. Scale

bar, 100 nm.

(E and F) (E) In order to quantify the impact of noise on the precision of APT, the bundles weremodeled with defined SNRs. The depicted bandpass filtered slice of

a filament was extracted from a bundle with SNR = 10�3. For comparison, the filament shown in (F) originates from a bundle with SNR = 10�4. Scale bar, 10 nm.

(G) The modeled bundles were processed with APT. The plot shows the resulting c�1
k ðTiÞ histogram of the bundle displayed in (C). Segments in the blue peak

mainly originate from blue filaments, and the opposite for the red peak. The filaments point with their plus ends in opposite directions, so the peaks are separated

by 180�. Since rr was set to 0.3 in this bundle, the number of segments in the red peak is z30% of the total number of segments.

(H and I) (H) The line plot shows the filament positions and polarities of the bundle, shown in (C), as recovered by APT. It was affectedwith SNR = 10�3; however, in

this case the match between original and recovered bundle (the side view is shown in [I], and can be compared with [D]) is almost error free.

(J) Here the xðFj
i Þ vectors of the recovered bundle are depicted. Segments that originate from the same filament are plotted as columns of circles. The color

scheme reflects to which peak the segments were assigned in the c�1
k ðTiÞ histogram, shown in (G), and the xðFj

i Þ vectors are sorted according to their fraction of

segments linked to the blue peak. In this representation of the filaments, segments with incorrect orientation determination appear as distortions of otherwise

uniformly colored columns.

(K) Three modeled datasets with three different SNRs were produced, each comprising 10 bundles with varying orientation a between 0� and 90�. The data were

processed with APT and the ccsðFj
i Þ and tseðFj

i Þ values were analyzed. Each cross in the plot marks the average of all ccsðFj
i Þ values in a bundle and diamond

symbols indicate averaged tseðFj
i Þ values per bundle. The SNR of the respective dataset can be identified by the color scheme: black, SNR = 10�2; red, SNR =

10�3; and blue, SNR = 10�4, respectively. Linear regression lines are depicted as solid or dashed lines.

See also Figures S1 and S2.
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RESULTS

Determining actin polarity by APT
The first aim of APT is the reconstruction of an actin filament at a

resolution that allows the unambiguous determination of the fila-
ment’s polarity (better than 20 Å). Therefore, APT requires cryo-

tomograms and segmentations of the actin cytoskeleton as input

data (Figure 1A). Subsequently, the segmented filaments are

subdivided into segments with equidistant spacing. We make

use of the observation that a projection of a subtomogram along
Structure 29, 488–498, May 6, 2021 489
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the electron beam axis is approximately invariant of the missing

wedge orientation and can be treated as a single-particle image

(Figures S1A–S1D). Thus, single-particle image processing

packages, such as cryoSPARC (Punjani et al., 2017) or RELION

(Scheres, 2012), can be used to reconstruct the actin filament

from the segments. Interestingly, this approach is not only

restricted to filamentous structures (Figures S1E–S1H).

Our main goal is to determine the polarity of all the initially

segmented filaments. Therefore, based on the filament average,

APT calculates for each segment the position of its plus end in

the cryo-tomograms. During the 3D reconstruction step, APT

obscures the correlation between segments and filaments,

thus for each filamentmultiple independent polarity observations

can be statistically evaluated, which greatly reduces the error of

polarity determination, as we show in the validation of the

method (see below).

The segmentations can be conducted on contrast-enhanced

tomograms in order to facilitate a better detection of actin fila-

ments. We do not assume the segmentations to be free of

false-positives, because they will be efficiently sorted out at a

later stage. However, we assume that each filament or detected

part is represented by a unique set of voxels; therefore, filaments

should not touch each other in the segmentations. The fact that a

filament may appear divided into parts (for instance, when it runs

through low-contrast, dense, or crowded regions, where it

cannot be tracked unambiguously) has no detrimental effect

on its polarity determination but leads to an underestimation of

the actual filament length.

The workflow of APT is shown in Figure 1A. A detailed descrip-

tion of the method can be found in the following subsections.

Step I: coordinates. The input data is a set of NT cryo-electron

tomograms Ti ði = 1;/;NT Þ and for each Ti there is an associ-

ated segmentation Si of the actin filaments. Each Si defines a

set of filaments Fj
i ðj = 1;/;NiÞ, with Ni being the number of de-

tected filaments in Ti. Firstly, APT utilizes Si to construct for each

Fj
i a set of 3D coordinates fx1; x2;/; xNj

i
g that are evenly spaced

along Fj
i , and will be the sampling points for polarity determina-

tion. Here Nj
i indicates the number of sampling points per

filament, which we term segments. For example, the second fila-

ment segmented in the first tomogram is denoted with F2
1 . If this

filament was subdivided into 12 segments, N2
1 = 12.

Step II: subtomograms. Next, APT pools all these NC =
P

Nj
i

segments xk ðk = 1;/;NCÞ, stores the index relation k4 Fj
i for po-

larity determination at a later stage, and extracts NC subtomo-

gramscenteredonxk fromactf-correctedversionof thedatasetTi.

Step III: projections. Subsequently, APT masks and then pro-

jects the subtomograms in the direction of the electron beam (z

axis). The applied cuboid mask diminishes the influence of fila-

ments and other electron densities above and below the pro-

jected segment. We term the height of this mask the projection

thickness parameter.

Step IV: prealignment. The purpose of this module is to align

the (central) filament density in the projected subtomograms par-

allel to the x axis (see STARmethods). The detected orientations

will be used as priors in the next step.

Step V: 2D classification. In this module class averages of the

actin segments will be calculated (see STAR methods). It allows

us to sort out false-positive and low-quality segments (Bharat

and Scheres, 2016). Using the priors from the previous step,
490 Structure 29, 488–498, May 6, 2021
the segments are prealigned parallel to the x axis, and therefore

a second, rectangular mask can be applied in order to further

diminish the influence of neighboring filaments and other elec-

tron densities.

Step VI: 3D reconstruction. In order to obtain an actin filament

structure from the projected subtomograms we use a helical

reconstruction 3D refine job in RELION (He and Scheres, 2017)

(see STAR methods). Subsequently, APT combines all transfor-

mations, and as a result we have the forward transformation Uk ,

which describes how filament Fj
i has to be transformed at sam-

pling point xk in order to align with the filament average.

Step VII: polarity. To resolve actin polarity, it is crucial that the

filament average reaches a resolution better than 20 Å. Once

this has been achieved, APTcalculates the inverse transformation

U�1
k , which describes howfilament Fj

i is oriented at sampling point

xk with respect to the filament average. Particularly filament polar-

ity is encoded in the invertedpsi anglec�1
k , which indicates thepo-

sition of the plus end of Fj
i relative to the y axis of Ti.

Next, APT uses the index relation k4Fj
i to extract all c�1

k ðTiÞ
that are originating from the same tomogram Ti. If Ti contains a

filament bundle with mixed polarity, then the histogram of

c�1
k ðTiÞ shows two distinct peaks that are separated by 180�.

The height of each peak indicates how many segments were

aligned with their plus ends in the respective direction, and al-

lows an estimation of the polarity ratio within the bundle, while

the peak width decreases with increasing parallelism of the fila-

ments. Obviously, if a bundle exhibits a uniform polarity distribu-

tion, then the histogram of c�1
k ðTiÞ shows a single peak.

Subsequently, APT assigns to each segment a direction label.

Per default, segments included in the right peak are labeled with

0, and segments included in the left peak are labeled with 1.

Therefore, each filament can be represented as a vector xðFj
i Þ

of polarity labeled segments. The centerpiece of APT is that

the elements of xðFj
i Þ are computed statistically independent.

Segments whose directionality was detected incorrectly do not

prohibit the correct polarity determination of a filament as a

whole, as long as the majority of segments building that filament

were determined accurately.

Consequently, the final polarity label PðFj
i Þ of filament Fj

i is

defined as follows:

P
�
Fj
i

�
=

8>>><
>>>:

0 if mean
�
x
�
Fj
i

��
<0:5

0:5 if mean
�
x
�
Fj
i

��
= 0:5

1 if mean
�
x
�
Fj
i

��
>0:5

:

If PðFj
i Þ = 0:5, the polarity of that filament is maximally

uncertain.

Step VIII: confidence. We suggest that the closer meanðxðFj
i ÞÞ

is to 0 or to 1, respectively, the higher the probability that PðFj
i Þ

was determined correctly. We use this relation to define a confi-

dence score for each filament, termed majority confidence

score, as follows:

mcs
�
Fj
i

�
= max

�
mean

�
x
�
Fj
i

��
;mean

�� x
�
Fj
i

���
;

with � xðFj
i Þ the logical complement of xðFj

i Þ. The values of

mcsðFj
i Þ range between 0.5 (maximum uncertainty) and 1 (mini-

mal uncertainty), and are the fraction of segments per filament
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that are pointing in the majority direction. The mcs measures the

consistency of the segment’s directionality determination along

a filament.

Additionally, we define a second confidence score, termed

sensitivity confidence score. Here the reconstruction of the fila-

ment average is repeated, but the direction of the template initially

used in the 3D reconstruction step (see STAR methods) is

reversed from plus end up to plus end down. Subsequently, APT

initializes for each Fj
i a vector lðFj

i Þ that has Nj
i elements. Those

segments that reverse their plus-end orientation as well are orien-

tationsensitive, andAPTsets the respectiveelementsof lðFj
i Þ to1.

On the other hand, if a segment shows no logical behavior upon

change in template direction, the respective element of lðFj
i Þ is

set to0.Thenwedefine thesensitivityconfidencescoreas follows:

scs
�
Fj
i

�
= mean

�
l
�
Fj
i

��
:

ThevaluesofscsðFj
i Þ rangebetween0 (nosegmentofFj

i isorien-

tational sensitive) and 1 (Fj
i is built exclusively from orientational

sensitive segments). Comparable with the majority confidence

score, the sensitivity confidencescore is analternative tomeasure

the self-consistency of the segment’s directionality determination.

Finally, we define the combined confidence score of filaments

Fj
i as follows:

ccs
�
Fj
i

�
= mcs

�
Fj
i

�
,scs

�
Fj
i

�
:

Moreover, the polarity labels xðFj
i Þ can be considered as Nj

i in-

dependent observations of the filament’s polarity PðFj
i Þ, which

follow a binominal probability distribution. It can be shown that

the maximum likelihood estimation of PðFj
i Þ is the observed pro-

portion of polarity labelsmcsðFj
i Þ (Lynch, 2007), and the standard

error of mcsðFj
i Þ is:

s
�
Fj
i

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcs

�
Fj
i

��
1�mcs

�
Fj
i

��
Nj

i

:

s

We use sðFj
i Þ to calculate the lower bound of a 95% confi-

dence interval around mcsðFj
i Þ, which allows us to define an

additional confidence score for the polarity determination of fila-

ments Fj
i as follows:

mcsy
�
Fj
i

�
= mcs

�
Fj
i

�� 1:96,s
�
Fj
i

�
;

withmcsyðFj
i Þ termed the extended majority confidence score. If

mcsyðFj
i Þ<0:5, the polarity determination of filament Fj

i is

uncertain.

The minimal length of a filament that comprises one polarity

outlier is six segments, in order to reach mcsyðFj
i ÞR0:5; for

example, xðF1
1 Þ= ð1 0 1 1 1 1Þ would yield mcsyðF1

1 Þ = 0:54. On

the other hand, choosing a threshold of ccsðFj
i ÞR0:6 would allow

for shorter filaments built from three segments with one polarity

outlier, only if all three segments are orientational sensitive. Typi-

cally, we use ccsðFj
i ÞR0:6 to allow for a denser visualization of

actin filament networks, but secure statistical conclusions about

the polarity distribution in that networks with the stricter confi-

dence scoremcsyðFj
i ÞR0:5.

Step IX: topology. In this module, APT performs a 3D neigh-

borhood analysis of the actin filaments in order to characterize

their polarity distribution in the observed bundles. Therefore,
centered around each segment xk , APT constructs a sphere

KεðxkÞ with radius ε, defining the neighborhood of xk . Then,

APT extracts number, distance, and polarity of all filaments

passing through KεðxkÞ. For instance, let the polarity of Fj
i be

PðFj
i Þ = 0, and imagine Fj

i is surrounded at coordinate xk by

four filaments within KεðxkÞ, of which one displays the same po-

larity and three reversed polarity. Then, the probed segment of

the filament is located in a neighborhood that exhibits 75%

mixed polarity and 25% uniform polarity, respectively. This

calculation is performed by APT for all KεðxkÞ, and subsequently

it sums the degrees of uniform polarity Pk and mixed polarity P‚

of all neighborhoods in a given actin bundle. Finally, the topology

score t of an actin bundle is defined as follows:

t =
Pk � P‚
Pk +P‚

:

The topology score t ranges from�1 to +1. Themore filaments

are organized in a uniform polarity configuration, the closer the

value of t will be to +1. If the bundle shows a phase separated to-

pology, so that filaments with opposite polarities adjoin mainly at

phase boundaries, t will be reduced accordingly. However, the

more the bundle favors a close proximity between filaments with

opposite polarities, the more t will approach �1.
Validation of APT
The missing wedge affects the reconstruction of a tomogram in

an anisotropic manner (Lucic et al., 2005). As a consequence, fil-

aments parallel to the tilt axis are better resolved than filaments

oriented orthogonal to the tilt axis (Figures S1A and S1B). It is

fundamental to ensure that our projection approach for subto-

mogram averaging is not biased by themissingwedge. Addition-

ally, the impact of SNR and polarity distribution on the output

precision of APT should be verified, as well as the influence of

out-of-plane tilt of filaments.

For validation purposes, we implemented a ground truth data

generator (see STARmethods) that createsmodeled tomograms

of actin bundles (volume 3533 3533 353 nm3with a pixel size of

3.44 Å), utilizing EMD-6179 (Galkin et al., 2015) as filament den-

sity, with four adjustable parameters: the angle a of the bundle

with the tilt axis, the angle b creating an out-of-plane tilt of the

bundle, the SNR of the tomogram (Forster et al., 2008; Pei

et al., 2016), and the polarity ratio rr , namely the fraction of fila-

ments in the bundle oriented in opposite direction. Each of the

bundles comprises, on average, 73 filaments, with a uniform

length distribution of 86–282 nm and a uniform distance distribu-

tion of 10–37 nm between neighboring filaments.

In the first model experiment, we created three ground truth

datasets with three different SNRs, which are 10�2, 10�3, and

10�4. Each dataset consists of 10 tomograms of different bun-

dles that are oriented in 10� steps from a= 0� (filaments k to

the tilt axis) to a= 90� (filaments t to the tilt axis). Additionally,

within each set we varied the polarity ratio rr in triplets, meaning

that the first four tomograms (a = 0�;10�;20�;30�) were modeled

with rr = 0:1;0:3;0:5;0:1, and so forth, except the last tomogram

(a = 90�) was constructed with rr = 0:5. In the first model exper-

iment, we neglected an out-of-plane tilt of the bundles (b = 0�).
A top view on one of themodeled bundles (a = 30�, rr = 0:1) is

shown in Figure 1B (without noise, only for visualization
Structure 29, 488–498, May 6, 2021 491
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purposes). A second example is depicted in Figure 1C. This

bundle is oriented 70� with respect to the tilt axis and the polarity

ratio is 0.3. Its side view is displayed in Figure 1D, with the

viewing axis oriented parallel to the filaments. A bandpass

filtered slice of a filament that was boxed out of one of the

modeled tomograms (a = 0�, SNR = 10�3) is shown and can

be compared with a filament parallel to the tilt axis as well, but

affected with an SNR of 10�4 (Figures 1E and 1F, respectively).

We applied the APT workflow on each of the three datasets

independently. Since segmentation of the filaments is given

by the ground truth data, we first established the segment coor-

dinates (step I), with an equidistant spacing of 11 nm, corre-

sponding to ~1,000 segments per modeled bundle. Next, the

subtomograms were extracted using a box size of 50 3 50 3

50 nm3 (step II) and subsequently projected using a projection

thickness of 11 nm (step III). In the next step, segments were pre-

aligned (step IV), followed by the 2D classification module (step

V). In Figures S2A–S2F, the results of prealignment and 2D clas-

sification are exemplified for the dataset with SNR = 10�4.

Following this, we executed 3D reconstruction (step VI) of the

three actin filament averages from a similar number of particles

(~10,000 segments per average), distributed approximately uni-

form over the modeled bundles. As expected, the resolutions

of the filament structures decrease with decreasing SNR

(Figure S2G).

Subsequently, we determined the polarity of all bundles (step

VII). All c�1
k ðTiÞ histograms showed two distinct peaks (Fig-

ure 1G), separated by 180�, indicating the opposite plus-end

orientations of the segments, and the height of the peaks repro-

duce the respective polarity ratios. All restored bundles from all

three SNR conditions coincide with the ground truth bundles

(Figures 1H and 1I). Furthermore, we visualized the xðFj
i Þ vectors

of all the recovered bundles (Figure 1J). The position of incorrect

assigned segments is randomly distributed and their number in-

creases with decreasing SNR.

The results of the confidence analysis (step VIII) are plotted in

Figure 1K. The ccsðFj
i Þ of filaments with SNR = 10�3 decreased

slightly in comparison with SNR = 10�2, but show no trend to

lower ccsðFj
i Þ with increasing a angle (slopes of black and red

linear regression lines in Figure 1K are 2:72,10�5 ± 1:04,10�3

and � 3:25,10�4 ± 1:42,10�3, and p values of the slopes are

0.98 and 0.83, respectively). We conclude that the missing

wedge-induced anisotropic deterioration does not negatively in-

fluence the precision of APT for low SNR values, as found in

cellular cryo-tomograms (Forster et al., 2008; Pei et al., 2016).

However, for the markedly challenging SNR = 10�4, the ccsðFj
i Þ

show a trend to decrease with increasing a angle (the slope

of the blue linear regression line in Figure 1K is

�1:17,10�3 ± 8:37,10�4 and its p value is 0.20).

Next, we evaluated the total segment error tseðFj
i Þ, namely the

fraction of segments with an incorrect orientation determination

compared with the ground truth. The tseðFj
i Þ values for filaments

affectedwith SNRsof 10�2, 10�3, and 10�4 (Figure 1K, black, red,

and blue diamond symbols) are 0:05±0:05, 0:07±0:04, and

0:20±0:07, respectively. These values can be compared with

the total filament error tfeðFj
i Þ; that is, the fraction of filaments

with incorrect polarity determination compared with the ground

truth. Here we find for all modeled bundles (independently of

both a and rr ) with SNRs of 10�2 and 10�3 that tfeðFj
i Þ = 0, and
492 Structure 29, 488–498, May 6, 2021
for bundles modeled with an SNR of 10�4 the tfeðFj
i Þ is

0:05±0:06 (here the polarity of 34 out of 712 filaments was deter-

mined incorrect). This shows that APT is capable of reliably cor-

recting noise-induced polarity errors on the filament level.

In the second model experiment we again created three

ground truth datasets with previously chosen SNRs. However,

in order to study the influence of an out-of-plane tilt of the

filaments on the precision of APT, we varied the bundle tilt b be-

tween 0� and 38� in steps of 2�, which resulted in 20 modeled

bundles per SNR condition. This time we neglected bundle

orientation (a = 0�) and kept the polarity ratio constant (rr = 0:5).

Subsequently, we applied the APT workflow on each of the

three datasets independently. Here the projection thickness

parameter (step III) had to be increased to capture the tilted seg-

ments in the projection completely. Consequently, we increased

the projection thickness from 11 nm to 44 nm for all segments,

assuming no prior knowledge about the tilt of individual

segments.

Based on regression line analysis of the resulting ccsðFj
i Þ

values (Figure S2H), we conclude that out-of-plane tilt at least

up to 38� has no detrimental effect on the precision of APT.

Similar to what we observed in the first model experiment, the

tseðFj
i Þ values increase with decreasing SNR (Figure S2H). The

same holds true for the tfeðFj
i Þ values, which are 0:004±0:008

and 0:01± 0:02 for tilted bundles with SNRs of 10�2 and 10�3,

respectively. However, at SNR = 10�4, the tfeðFj
i Þ increases

sharply (0:33±0:06). Here the polarity of 487 out of 1,462 fila-

ments was determined incorrect.

In order to confirm that this effect can be attributed to the 4-

fold increased projection thickness (Figure S2I), we generated

an additional tilted ground truth dataset with SNR = 10�4, but

this time we assumed that prior knowledge about the tilt of indi-

vidual segments exists; e.g., by estimating b from the segmenta-

tions. Based on that prior knowledge we tilted the projection

mask individually for each segment, so that the projection thick-

ness parameter can be reverted to 11 nm. As a result, the tfeðFj
i Þ

was diminished substantially (0:01± 0:02). Here the polarity of 22

out of 1,465 filaments was determined incorrect.

In situ actin reconstruction at FAs
Here we applied APT on the actin cytoskeleton inside FAs, using

a correlative fluorescence microscopy and cryo-ET approach

(Patla et al., 2010; Sartori et al., 2007) (see STAR methods).

Mouse embryonic fibroblasts (MEFs), expressing vinculin-venus

as a marker for FAs (Grashoff et al., 2010; Ringer et al., 2017),

were cultured on electron microscopy grids with silicon oxide

support and imaged by fluorescence microscopy (Figure 2A).

Conspicuous FAs were identified and found again under the

electron beam.

Due to the sheer size of FAs, tomograms cannot cover a com-

plete adhesion site (U3 mm in length), and, due to electron dose

sensitivity of the sample, only a single tomogram can be ac-

quired per FA. Therefore, we recorded cryo-tomograms at a

spectrum of positions, namely from proximal regions, where a

stress fiber enters the FA, to distal regions, where they are ori-

ented toward the plasma membrane. Seven cryo-tomograms

of FAs (Figure 2B), covering positions from proximal to distal,

were selected in the first place, and the actin filaments were

manually segmented (Figure 2C).



Figure 2. Cryo-tomography of FAs and actin filament structure from inside cells

(A and B) Correlated microscopy combining fluorescence microscopy (A and B, inset) and cryo-ET (B) was used to identify FA sites. Scale bar in (A), 10 mm. (B) A

1.4-nm thick slice through a cryo-tomogram of an FA (A, B, white circles) shows individual actin filaments and plasma membrane. Scale bar, 200 nm.

(C) Surface rendering view of the FA site. Actin is depicted in yellow, membranes in blue, macromolecules in red and gray, and receptor densities in green. The

segmentation of the actin filaments served as input for APT.

(D) Class averages obtained by 2D classification of the extended dataset. Scale bar, 18 nm.

(E) Structure of an actin filament at FAs, shown as gray isosurface.

(F) The in-vitro structure EMD-6179 (Galkin et al., 2015) (green isosurface) was docked into the in situ structure. Scale bar, 5 nm.

See also Figures S3 and S4.
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Following this, we applied the APT workflow on this dataset.

Firstly, we extracted a total of 43,400 segments with an equidis-

tant spacing of 11 nm (step I). The box size of the subtomograms

was set to 50 3 50 3 50 nm3 (step II), and the projection thick-

ness to 11 nm (step III), since the analyzed actin bundles are ori-

ented in a good approximation planar within the tomograms (bz
0). After prealignment and 2D classification (steps IV–V), we

finally selected 20,585 segments (Figure S3A) for 3D reconstruc-

tion (step VI).

The obtained in situ actin filament structure was resolved to

18 Å, and allows us to unambiguously detect the position of its

plus end (Figures S3B–S3D). This shows that the APT workflow

is capable of producing sufficient resolution for subsequent

mapping of the filament’s polarity distribution, although the data-

set was relatively limited and the filaments originate from a

crowded and dense cellular environment, with multiple possible

binding partners and modulations of their helical symmetry.

In order to efficiently increase the size of the dataset, we used

the previous seven manual segmentations to train a convolu-

tional neural network with EMAN2 (Chen et al., 2017), capable

of detecting actin filaments (see STAR methods). Using this

approach, we additionally created 31 segmentations of the actin

cytoskeleton at FAs.

We then applied the APT workflow to this extended dataset.

Here we extracted a total of 247,940 segments (11 nm spacing)

with a box size of 363 363 36 nm3 and a projection thickness of

11 nm (steps I–III). After prealignment and 2D classification

(steps IV–V), we finally selected 72,973 segments (Figures S4A

and 2D) for 3D reconstruction (step VI).

Subsequently, we performed a 3D classification with RELION

(Figures S4B–S4H). The highest resolved class averagewith 14 Å
is shown in Figure 2E, together with a docking of EMD-6179 (Gal-

kin et al., 2015) in Figure 2F.

Polarity distribution of actin bundles at FAs
Finally, we utilized APT to reconstruct actin networks in situ,

including the polarity of the filaments. Therefore, we continued

the APT workflow with the polarity determination module (step

VII), based on the in situ actin filament reconstruction (Figure S3),

previously obtained from seven manual segmentations of actin

bundles at FAs. All c�1
k ðTiÞ histograms showed two distinct

peaks, separated by 180�. We extracted the xðFj
i Þ vectors of

the resulting 2,893 filaments, and used APT to calculate the con-

fidence scores (step VIII), plotted in Figures 3A–3C. The mini-

mum reliable ccsðFj
i Þ was set to 0.6 (Figure 3C), thereby leaving

a total number of 2,146 actin filaments with determined polarity

(Figure S3E). The total length of the filaments is ~149 mm, with

an average length of ~70 nm, and a maximum length of

~350 nm (Figures S5A–S5B).

In Figure 3D the resulting xðFj
i Þ vectors of one of the bundles

are displayed. Here we found that 62% of the segments are

pointing with their plus ends toward the cell tip (blue segments),

and 38% in the opposite direction (red segments). The actin po-

larity distribution of this actin bundle is visualized in Figure 3E.

The blue filaments are pointing with their plus ends toward the

cell tip, and the red filaments in the opposite direction.

The two bundles shown in Figures 3E and 3F were acquired at

proximal regions of FAs, whereas the two bundles shown in Fig-

ures 3G and 3H were acquired at distal regions. We applied

APT’s topology module (step IX), and sorted the bundles with

increasing topology score (Figure S5C) from left (t=0.25) to right

(t=0.87), which reflects their transition from a tendentially mixed
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Figure 3. Architecture of actin bundles at

FAs

(A) Histogram of the mcsðFj
i Þ values from 2,893 re-

constructed actin filaments, extracted from seven

manually segmented cryo-tomograms acquired at

FAs.

(B) Histogram of the respective scsðFj
i Þ values.

(C) Plot of the respective ccsðFj
i Þ values. Each red

cross marks the ccsðFj
i Þ of one filament, and the

scores are plotted as a function of the bundle

orientation a. The blue crosses indicate the average

of all ccsðFj
i Þ values that are originating from

the same actin bundle, and a regression line

was fitted to these values (blue line with a slope of

� 9:24,10�4 ± 7:31,10�4; the p value of the slope is

0.26). Only filaments reaching a ccsðFj
i ÞR0:6

(dashed line) were accepted; therefore, 2,146 re-

constructed actin filaments were used for subse-

quent bundle visualization and topology analysis.

(D) Visualization of the resulting xðFj
i Þ vectors of a

bundle that was recorded at a proximal FA region.

Segments that originate from the same filament are

plotted as columns of circles. Blue segments are

oriented with their plus ends toward the cell tip, and

red segments point in the direction of the cell body.

In this bundle, 495 filaments with an average length

of 7.1 segments were analyzed. Approximately

two-thirds of the segments are directed toward the

cell tip.

(E–H) Top views on the architecture and polarity

distribution of four actin bundles, recorded at

proximal (E and F) and distal (G and H) FA regions.

Blue actin filaments are oriented with their plus

ends toward the cell tip, and red filaments point in

the direction of the cell body. Proximal FA bundles

are characterized by a tendentially mixed polarity

distribution, and distal FA bundles converge to a

predominantly uniform polarity distribution.

(I and J) Side views on the bundles shown in (E) and

(H), respectively. (I) Filaments, which are directed

toward the cell body (red filaments), are found with

a higher probability at outer regions of proximal FA

actin bundles.

This relation is displayed in (K) as well, showing the

long axis of bundle (E). In all visualizations (E–K),

actin filaments were rendered from EMD-6179

(Galkin et al., 2015), the dashed rectangles are bounding boxes surrounding the actin bundles. Scale bars, 100 nm. Additionally, positions of plasma membrane

are suggested by light gray lines, and support planes by dark gray lines.

See also Figure S5.
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polarity distribution to a predominantly uniform polarity distribu-

tion. In Figure 3E, for example, 65% of the filaments are directed

toward the cell tip, whereas in Figure 3H this fraction is increased

to 96%. Applying mcsyðFj
i ÞR0:5 for filament selection (step VIII)

reveals similar topology values and filament distributions as

before; however, the number of actin filaments with determined

polarity is reduced to 1,464.

The bundles in Figures 3E and 3H are shown from the side in

Figures 3I and 3J. Furthermore, the long axis of the bundle in Fig-

ure 3E is shown in Figure 3K. The data suggest that filaments that

are directed toward the cell tip, forming the core of the FA actin

bundle, and the reversely directed filaments are organized

around this core. The positive topology scores of bundles with

mixed polarity distributions are a further indication for this archi-

tectural principle. If the reversed actin filaments would be
494 Structure 29, 488–498, May 6, 2021
diffused into the bundles, the topology score would approach

negative values. In addition, we analyzed the polarity distribution

in layers parallel to the support, finding that reversed filaments

are enriched on top and bottom of the mixed polarity bundles

(Figure S5D).

The number of filaments within neighborhood spheres KεðxkÞ,
which were evaluated during topology analysis (step IX), using a

radius of ε = 40 nm, has its maximum at six neighbors (Fig-

ure S5E), and the mean filament distance is ~28 nm (Figure S5F).

Finally, we completed the APT workflow (steps VII–IX) for the

extended dataset with previously obtained 31 automatic seg-

mentations (Figures 2D–2F and S4). Seven tomograms were

excluded, because they contained ill-defined ormultiple bundles

with similar orientation, so that the c�1
k ðTiÞ histograms did

not exhibit two clearly defined peaks. Here we applied



Figure 4. The distribution of actin polarity at

FAs

Plot of topology score versus normalized bundle

position along an FA. The green datapoints (fitted by

the red dashed regression line) suggest a correla-

tion between these two parameters. The polarity

distribution along FAs transitions smoothly from

mixed to uniform. Some datapoints in the plot are

accompanied by their fluorescence microscopy

signal. The plasma membrane is outlined by white

dashed lines, and the tomogram position is indi-

cated by a red circle. Scale bar, 5 mm.
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mcsyðFj
i ÞR0:5 for filament selection, thereby leaving a total num-

ber of 3,460 actin filaments with determined polarity.

In Figure 4 we plotted the topology score t of these 24 bundles

versus their normalized position along an FA (see STAR

methods). Strikingly, pronounced uniform polarity distribution

can be found in distal regions of FAs exclusively. For most of

the analyzed bundles (Figure 4, green dots) the plot suggests a

linear correlation between topology score and normalized

bundle position (the slope of the red dashed linear regression

line in Figure 4 is 0:62±0:21 and its p value is 0.007). In other

words, within an FA, from proximal to distal regions, the polarity

distribution of the actin filaments transforms smoothly from a

mixed to uniform actin polarity organization.

DISCUSSION

In order to reconstruct structure and polarity of actin filaments in

cells, we developed an alternative procedure for subtomogram

averaging. The key operation is to project subtomograms in

the direction of the electron beam, and then perform 3D recon-
struction from the projected subtomo-

grams. Compared with classic subtomo-

gram averaging, where 3D volumes have

to be aligned and averaged, here the 3D

reconstruction is computed from 2D im-

ages, like in single-particle analysis. Obvi-

ously, this reduces the amount of pro-

cessed data by a factor 1=z, with z being

the number of voxels of the processed

subtomograms in z direction. This results

in a substantial speedup, which allows an

efficient processing of large datasets, finer

angular samplings, deeper classifications,

and comprehensive hyperparameter tun-

ing. Conceptually, this approach trans-

forms a subtomogram averaging task into

a single-particle cryo-EM task, and keeps

the unique benefit of cryo-ET, that the mo-

lecular structure under investigation can

be computationally purified from its natural

environment.

Within APT, an actin filament is dissected

into multiple segments, and subsequently

their polarity is measured. Thereby a set

of statistically independent estimations of
the filament’s polarity is generated. This allows evaluation of the

confidence of the polarity assignment with statistical methods.

Based on that, filaments with low confidence can be sorted out

and conclusions about the polarity distribution in actin networks

can be drawn using a solid statistical basis.

A previous approach to decipher actin polarity from tomo-

graphic data necessitated chemical extraction and negative

staining of the cytoskeleton (Narita et al., 2012), in order to in-

crease the SNR of the tomograms. However, the challenge of

resolving actin filament structure and polarity in situ requires a

tomographic dataset from intact cells (Beck and Baumeister,

2016; Lucic et al., 2005), which involves vitrification of the sam-

ple, and therefore the method needs to successfully handle low

SNR (Forster et al., 2008; Pei et al., 2016). We usedmodel calcu-

lations in order to investigate how the error rate of APT depends

on the SNR. Even for a very low and challenging SNR of 10�4, the

polarity of only 5% of the modeled filaments was assigned

incorrect.

WeappliedAPTonactin bundles foundat FAs (Kanchanawong

et al., 2010; Patla et al., 2010). Here, we find that the majority of
Structure 29, 488–498, May 6, 2021 495



Figure 5. A model for actin polarity at FAs

Actin bundles within FAs are characterized by a

mixed polarity distribution at proximal regions.

However, there is a smooth transition toward a

uniform polarity distribution at distal regions. Actin

filaments, which are directed with their plus ends

toward the cell body (red), are arranged around a

central core of filaments pointing toward the cell

periphery (blue).
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the filaments are directed toward the cell tip (Figures 3E–3H), and

form thecore of thebundles,whereas filamentswith reversedpo-

larity organize around this core (Figures 3I–3K and S5D). Ulti-

mately, the polarity distribution depends on the position of the

bundle along the FA (Figure 4). The more distal the position, the

more uniform the polarity distribution, while mixed polarity can

be observed mainly in the proximal regions.

Stress fibers are contractile actin assemblies (Malik-Garbi et al.,

2019), enrichedwith actomyosin interactions, which favor amixed

polarity distribution of actin filaments. Proximal regions of FAs an-

chor to stress fibers (Burridge and Guilluy, 2016), therefore exhib-

iting a mixed polarity actin bundle. However, at distal regions of

FAs, more vectoral or even protruding forces may play a role that

resembles a more uniform polarity distribution (Figure 5).

Since the polarity of an individual actin filament is determined

from its segments exclusively, the polarity of surrounding fila-

ments does not bias the polarity measurement. As shown in

the model calculations, the confidence scores reflect the SNR

of the data. In turn, the confidence scores can be used to esti-

mate the effective SNR within different filament bundles.

In Figure 3C, the averaged ccsðFj
i Þ values of different actin

bundles are plotted (blue crosses). Since these values are rela-

tively similar between different bundles (mean ± SD is 0:75±

0:04), we conclude that the effective SNRs of the bundles are

comparable. Based on this argument, we are confident that

the measured differences between the bundles are not biased

by data quality differences between the tomograms.

Technical developments in sample preparation allowed cryo-

ET to provide fundamental insights into cellular assemblies and

processes in situ (Mahamid et al., 2016; Marko et al., 2007;

Schaffer et al., 2019). Equally important, it requires the develop-

ment of powerful tools to analyze the data (Chen et al., 2017;

Himes and Zhang, 2018; Martinez-Sanchez et al., 2020; Song

et al., 2019). APT extends this toolbox and allows actin filaments

to be analyzed in physiological relevant processes. We hope that

it will help to provide a better understanding of actin networks,

such as the actin cortex (Chugh et al., 2017), stereocilia organi-
496 Structure 29, 488–498, May 6, 2021
zation (Metlagel et al., 2019), or remodeling of actin during

phagocytosis (Gerisch, 2011).
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Deposited data

Manually segmented dataset (7 cryo-

tomograms of FAs from MEFs) and APT

workflow

This paper EMPIAR-10570

In-situ structure of an actin filament from

FAs of MEFs

This paper EMD-11976

Near-atomic resolution for one state of

F-actin

(Galkin et al., 2015) EMD-6179

Talin-activated vinculin interacts with

branched actin networks to initiate bundles

(Boujemaa-Paterski et al., 2020) EMD-10737

Crystal-structure of the 20s proteasome

from the archaeon T-acidophilum at 3.4-

angstrom resolution

(Lowe et al., 1995) PDB-1PMA

Crystal structure of the thermosome, the

archaeal chaperonin and homolog of CCT

(Ditzel et al., 1998) PDB-1A6D

Experimental models: cell lines

MEFs stably expressing vinculin-venus (Ringer et al., 2017) N/A

Software and algorithms

Actin polarity toolbox (APT) This paper github.com/meibauer/

ActinPolarityToolbox

RELION (Scheres, 2012) https://www3.mrc-lmb.

cam.ac.uk/relion/index.

php/Main_Page

MATLAB MathWorks, Natick, USA N/A

SerialEM (Mastronarde, 2005) https://bio3d.colorado.

edu/SerialEM/
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AMIRA Thermo Fisher Scientific,
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EMAN2 (Chen et al., 2017) https://blake.bcm.edu/
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edu/chimera/
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Data and code availability
The APT code is available at github.com/meibauer/ActinPolarityToolbox. Themanual segmented dataset (7 cryo-tomograms of FAs)

together with the APTworkflow is deposited at the ElectronMicroscopy Public Image Archive under accession code EMPIAR-10570.

The in-situ structure of an actin filament from FAs of MEFs is deposited in the Electron Microscopy Data Bank under accession code

EMD-11976.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
MEFs stably expressing vinculin-venus (Grashoff et al., 2010; Ringer et al., 2017) were cultured in Dulbecco’s Modified Eagle’s Me-

dium (Sigma-Aldrich, D5671), supplemented with 10% (v/v) fetal bovine serum (Sigma-Aldrich, G7524), 2 mM L-glutamine (Sigma-

Aldrich, G7513) and 100 mg/ml penicillin-streptomycin (Sigma-Aldrich, P0781), at 37�C and 5% CO2.

METHOD DETAILS

Step IV: prealignment
This is the first of three steps that were performed in RELION. First, a starfile was created only passing the name of each projected

subtomogram (rlnImageName) and its originating tomogram (rlnMicrographName) to RELION. Next, the projected subtomograms

were normalized with relion_preprocess. Please note that the index relation k4Fj
i was kept invisible for RELION (for example no

metadata label rlnHelicalTubeID was provided (He and Scheres, 2017)). Furthermore, CTF correction in RELION jobs was switched

off, because the tomograms were CTF corrected by phase-flipping prior to subtomogram extraction.

For prealignment of the segments a 2D classification with the prepared starfile as input was performed. The purpose of this step is

to align the (central) actin filament density parallel with the x-axis, which is the RELION convention for helical reconstruction (He and

Scheres, 2017). Therefore, we created a set of projection images (the template library) from an actin filament structure, which was

oriented along the x-axis, rotated in 3� increments and subsequently projected. The template library was used as initial references

for prealignment (Figure S2A).

Since the resolution of the actin filament averages was determined by Fourier shell correlation between the averages and EMD-

6179 (Galkin et al., 2015) as an external reference (Figures S2G, S3D, S3E, and S4H), we were reluctant to use the same structure

for the construction of the template library. For that purpose, we used the actin filament structure EMD-10737 (Boujemaa-Paterski

et al., 2020).

Step V: 2D classification
Subsequently a second 2D classification was performed, passing previously found psi angles and translations as priors (rlnAngleP-

siPrior, rlnOriginXPrior, rlnOriginYPrior). In contrast to the prealignment step, it is crucial that this 2D classification is unsupervised, in

order to extract the structural heterogeneity in the data unbiasedly (Figures S2C–S2F).

The psi search was conducted local around the psi prior. Therefore, it is possible to apply a second mask (the first mask is applied

during the projection step), which allows to focus the alignment on the (central) actin filament density.

This second 2D classification is capable of producing high quality class averages of filamentous actin from inside intact cells (Fig-

ure S3A and S4A), and allows to sort out false positive actin detections and segments of lower quality (Bharat and Scheres, 2016).

Based on this classification we selected the segments for subsequent 3D reconstruction.

Step VI: 3D reconstruction
For actin filament alignment and averaging a 3D refine job in RELION was performed with helical reconstruction (He and Scheres,

2017). As helical rise 27.6 Å and as helical twist -166.7� was used (Galkin et al., 2015). In the input starfile, the refined psi angles

and translations found in the previous step were passed as priors plus for each segment a random rot angle as prior was added

(rlnAngleRotPrior) and the tilt prior (rlnAngleTiltPrior) was set to 90� (He and Scheres, 2017). As initial template the same structure

as for construction of the template library was used, low-pass filtered to 30 Å (Figure S3D).

Ground truth data generator
In the first step of modelling a cryo-tomogram of an actin bundle, filament x-z-coordinates were calculated based on random close

packing (Desmond and Weeks, 2009), with a uniform distance distribution in the range between 10-37 nm. As a consequence of the

modelled x-z-dimension of the bundles of 282 x 150 nm, on average 73 filaments could be packed in each bundle. Next, position and

length of each filament in y-direction was randomly chosen from a uniform distribution between 86-282 nm. According to these co-

ordinates, actin filaments based on EMD-6179 (Galkin et al., 2015), were pasted in an empty volume of 353 x 353 x 353 nm3, however,

a fraction of rr randomly selected filaments were pasted in the volume after 180� rotation around the x-axis (Figures 1B–1D, red

filaments).

After that the modelled bundle was rotated around a�, to adjust the bundle orientation, and b�, to adjust the bundle tilt, then

Gaussian noise was added to set the targeted SNR, and finally the missing wedge of a tilt-series with tilt-range from -60� to +60�

was applied in Fourier space.
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Fluorescence microscopy
TheMEFs were applied onto glow-discharged EM grids with a silicon-oxide support film (R1/4, Au mesh; Quantifoil, Jena, Germany).

After incubation, the cells were fixed in a 4% paraformaldehyde solution (Sigma-Aldrich, 16005), and washed 3 times with 1x PBS

(Fisher Scientific, BP399-1). The EM grids were transferred to a 35x14 mm glass-bottom cell culture dish (MatTek, P35G-0-14-C) for

fluorescence microscopy analysis of the FAs. Adherent MEFs were imaged using an automated inverted microscope (DMI4000 B,

Leica Microsystems, Wetzlar, Germany) equipped with a fluorescence lamp and amonochromatic digital camera (DFC365 FX, Leica

Microsystems). Overview images of the EM grids were acquired using a 10x dry objective (HCX PL Fluotar 10x/0.30, Leica Micro-

systems). All images of individual cells (Figure 2A) were acquired in phase contrast and fluorescence mode using a 63x oil objective

(HCX PL APO 63x/1.40-0.6, Leica Microsystems).

Cryo-electron tomography
A drop of 4 ml BSA-coated 10 nm fiducial gold markers (Aurion, Wageningen, Netherlands) was applied on the EM grids before

plunging them into liquid nitrogen cooled ethane.

A Titan Krios transmission electron microscope (Thermo Fisher Scientific, Waltham, USA) equipped with a Quantum energy filter

and a K2-Summit direct electron detector (Gatan, Pleasanton, USA) was used for cryo-EM data acquisition. The microscope was

operated at 300 keV in zero-loss mode with the energy filter slit width set to 20 eV.

The position of the cells and FAs were identified by overlaying the fluorescence signal to lowmagnification EM images of the grids.

At tomography positions image stacks were recorded at each tilt angle in super-resolution mode with an electron flux of ~8 electrons

per pixel per second using SerialEM (Mastronarde, 2005). All tomograms were acquired at a magnification of 42’000x, and a dose-

fractionated frame rate of 6 frames per 1.2 s. The tilt-series covered an angular range of -60� to +60�, and were recorded with tilt

increments of 2� and a defocus of -4 mm. The accumulated electron dose did not exceed ~75 e-/Å2.

All image stacks were down-sampled andmotion corrected usingMotionCorr (Li et al., 2013), resulting in a final pixel size of 3.44 Å.

Next, CTF correction of the tilt-series was applied (Eibauer et al., 2012). Overview tomograms (Figure 2B) for actin filament segmen-

tation (Figure 2C) and subtomograms of actin segments were reconstructed by weighed back-projection using the TOM Toolbox

(Nickell et al., 2005).

Normalized bundle position of FA
The tomographic position within a FA was determined by overlaying the light microscopy images of the individual cells with cryo-EM

images.

First, phase contrast and fluorescence imageswere overlaid, hereby enabling the identification of the cell membrane and enclosing

grid holes. Second, lowmagnification EM images (4’800x) of the FA tomography position were overlaid such, that the cell membrane

and grid holes coincided with the light microscopy images. Third, the zero-degree tilt-series image (42’000x) was aligned with the low

magnification EM image such, that the cell membrane shape matched. By increasing the opacity of the EM images, we displayed the

FA fluorescence signal on the tomography position.

We defined the center of the tomogram as the tomography position FAT. In order to determine the relative position of FAT within the

entire FA, we defined the proximal end (closest to the cell body) and distal end (closest to the cell periphery) fluorescencemicroscopy

signal pixels as FAP and FAD, respectively. The distance d between FAT and FAD and the length l of the FA (distance between FAP and

FAD) was measured (the pixel size of the fluorescence microscopy images was 91 nm). Finally, the normalized bundle position of the

FA (plotted on the y-axis in Figure 4) was calculated as 1� d=l.

Automatic segmentation
We developed a script in MATLAB to automatize the convolutional neural network (CNN) segmentation with EMAN2 (Chen et al.,

2017, 2019).

The method requires three image stacks with fixed x-y-dimension of 64 x 64 pixels as input files. Firstly, the positive training stack

contains 2D images of densities targeted for segmentation. These images are slices, boxed out of cryo-tomograms. In our case they

contain actin filament densities. Secondly, an image stack that provides for each image in the positive training stack an associated

segmentation mask. Thirdly, the negative training stack, which contains 2D images of densities not targeted for segmentation, for

example gold particles used as fiducial markers, backprojection rays, tomogram edges, plasma membrane, and regions without

actin filaments in general.

As a starting point we created seven manual segmentations of actin filaments in cryo-tomograms of FA actin bundles (Figure 2C)

with AMIRA (Thermo Fisher Scientific, Waltham, USA). The segmentations were skeletonized, then the filaments were dissected in

segments, and around each 3D coordinate of a segment one positive training image was extracted from the tomogram at respective

z-position. For each manual segmentation one positive training stack was created, limited to 3’000 images.

In order to create the associated segmentation masks, we extended the skeletonized filaments to the diameter of an actin filament.

Subsequently, the segmentation masks were extracted from the extended segmentation at the same coordinates as the positive

training images. For each manual segmentation one stack with segmentation masks was created, with the same dimension as

the associated positive training stack.

Negative training images were extracted at random positions from the tomograms, but the volume of the actin bundle was

excluded. For each manual segmentation one negative training stack was created, limited to 3’000 images as well.
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Based on these image stacks, we trained one CNN for each manually segmented tomogram, using default EMAN2 data augmen-

tation, network and training parameters. In the next step, the resulting seven CNNs were applied to each of the 31 tomograms in the

extended dataset, thereby creating a total amount of 217 segmentations. Finally, the segmentations belonging to the same tomo-

gram were averaged and post-processed in UCSF Chimera (Pettersen et al., 2004) with the hide dust command.

Visualization
All isosurface visualizations of actin filament structures and actin bundles were rendered with UCSF Chimera or AMIRA. For the vi-

sualizations of actin bundles in Figures 3E–3K we used EMD-6179 (Galkin et al., 2015) to represent the filaments. Therefore, we used

a b-spline registration algorithm to bend the filaments in order tomatch their 3D shape defined by the segment coordinates (Rueckert

et al., 1999).

QUANTIFICATION AND STATISTICAL ANALYSIS

Slopes of linear regression lines are given in the form slope± standard error of the slope. Linear regression lines were computed with

the robustfit function in MATLAB. The total segment errors tseðFj
i Þ and total filament errors tfeðFj

i Þ are given in the form mean±

standard deviation of the mean. Furthermore, the developed method determines the polarity of individual actin filaments based on

a statistical analysis, which is described in detail in the results section.
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Figure S1. Structural analysis of projected subtomograms by single particle methods. 

Related to Figure 1. (A) Structure of an actin filament (EMD-6179 (Galkin et al., 2015)), that 

was oriented parallel to the tilt-axis (y-axis), and then distorted by the missing wedge. (B) 

However, if the filament was oriented parallel to the x-axis (orthogonal to the tilt-axis), the 

anisotropic distortion caused by the missing wedge in z-direction is substantially more 

pronounced. (C) Left to right: projection of filament (A) in z-direction, projection of filament (B) 

in z-direction, and difference image between the two projections. The difference image is 

featureless, which indicates that the missing wedge induced anisotropy vanishes in the 

projection images. (D) However, if a mask in z-direction is applied before projection (in this 

case the height of the mask was 11 nm), the difference image is not featureless anymore. The 

influence of this mask on the precision of APT is part of the validation of the method. Scale 

bars 10 nm. 

We tested our approach for subtomogram averaging with a dataset of modelled subtomograms 

(Forster et al., 2008), including missing wedge (tilt-range from -60° to +60°), contrast transfer 

function (defocus of -6 µm, acceleration voltage 300 kV, spherical aberration 2.0 mm, pixelsize 

0.42 nm), and modulation transfer function. The dataset contains two particle species: 2048 

20S-proteasomes (PDB-1PMA (Lowe et al., 1995)) and 256 thermosomes (PDB-1A6D (Ditzel 

et al., 1998)). The orientation of the particles was uniformly distributed over the 3D rotation 

space, and both subtomogram species were modelled with a SNR = 10−1. The subtomograms 

were projected without masking in z-direction. (E) A gallery of 100 projected proteasomes is 

displayed. (F) A gallery of 100 projected thermosomes is shown. (G) The projected images of 

both particle species were mixed and a 2D classification in RELION (Scheres, 2012) was 

performed. Since the number of proteasome particles is eight-fold higher than thermosome 

particles, most of the classes are dominated by proteasomes. (H) For 3D reconstruction we 

initially executed a 3D refinement job in RELION. As starting reference, the proteasome 

structure was filtered to 45 Å resolution and rotationally symmetrized along the z-axis (grey 

structure). The obtained reconstruction is shown on the left (blue structure). It resembles a 

proteasome to a certain degree, but the structure is obviously distorted by the thermosome 



fraction. Then we performed a 3D classification job in RELION, using the same starting 

reference as previously, and assuming two classes. Both particle species were properly 

separated in 3D, with no classification error as compared to the ground truth – all proteasomes 

were assigned to class#1, cyan structure, and all thermosomes to class#2, yellow structure. 

The proteasome class average shows the expected D7 symmetry. Scale bar 10 nm. 

 

 

  



 

Figure S2. Processing of modelled actin bundles. Related to Figure 1. (A) The aim of the 

prealignment step (Step IV) is to orient the (central) filament density in the projected 

subtomograms parallel to the x-axis. Therefore, we used a template library, which was created 

from an actin filament structure by successively rotating and projecting the filament. The image 



shows the first ten entries in the template library. Scale bar 50 nm. (B) The first ten class 

averages after ten iterations of prealignment are shown. The particle rotations and translations 

were used as priors for the next step. (C) The 2D classification module (Step V) of APT aims 

to produce high quality class averages with RELION (Scheres, 2012). Therefore, we employ 

the prealignment priors, which allow to apply a mask parallel to the filament during 2D 

classification. This mask diminishes the influence of neighboring filaments. In contrast to the 

prealignment step, it is vital that this 2D classification is unsupervised. This ensures that as 

much as possible structural heterogeneity can cluster in a data-driven way into distinct class 

averages. The first ten class averages of the zeroth iteration are shown. It illustrates the 

initialization of the unsupervised 2D classification. (D) In the first iteration the applied mask 

appears, and the prealignment priors force the central filament density parallel to the x-axis. 

(E) After ten iterations of unsupervised 2D classification the class averages capture most of 

the structural heterogeneity present in the dataset. (F) After 100 iterations we selected the 

segments, which were assigned to the class averages marked with yellow dots, for subsequent 

3D reconstruction (Step VI). 

(G) Based on three modelled datasets (SNRs of 10−2, 10−3, and 10−4), each with varying 

bundle orientation 𝛼, but no bundle tilt (𝛽 = 0°), we reconstructed three actin filament structures 

(~ 10’000 segments per average). Resolution was estimated by Fourier shell correlation (FSC), 

calculated between the averages and EMD-6179 (Galkin et al., 2015), using the 0.5 threshold 

criterion (Rosenthal and Henderson, 2003). Prior FSC computation, the structures were 

aligned with each other. As expected, the resolution values drop with decreasing SNR, 9 Å 

(black FSC curve, SNR = 10−2), 10 Å (red FSC curve, SNR = 10−3), and 16 Å (blue FSC curve, 

SNR = 10−4). The dashed curve is the FSC between two noise volumes, using an identical 

masking as for the resolution estimation of the averaged structures. It shows that the mask 

has no inflating effect on the resolution. (H) APT workflow was applied to three modelled 

datasets (same SNRs as before), each with varying bundle tilt 𝛽 between 0° to 38°, but fixed 

bundle orientation (𝛼 = 0°). The projection thickness parameter was set to 44 nm for all 



segments. In the plot, the averaged ccs(𝐹𝑖
𝑗
) values per bundle are shown as cross symbols 

(black, red, and blue correspond to SNR of 10−2, 10−3, and 10−4). Slopes of the solid black, 

red, and blue linear regression lines are 1.04 ∙ 10−3 ± 3.04 ∙ 10−4, 1.03 ∙ 10−3 ± 5.54 ∙ 10−4, and 

−2.63 ∙ 10−4 ± 2.78 ∙ 10−4, and p values of the slopes are 0.0032, 0.08, and 0.36, respectively. 

The averaged tse(𝐹𝑖
𝑗
) values per bundle are shown as diamond symbols. The mean values 

per SNR condition are 0.04 ± 0.01 (SNR = 10−2), 0.13 ± 0.02 (SNR = 10−3), and 0.42 ± 0.02 

(SNR = 10−4). (I) We conducted the APT workflow on an additional dataset with SNR = 10−4 

and varying bundle tilt 𝛽. However, here we assumed that the bundle tilt is known a priori. 

Consequently, it is possible to adapt the projection mask for each segment individually, which 

allows to revert the projection thickness to 11 nm. The averaged ccs(𝐹𝑖
𝑗
) values per modelled 

bundle are shown as blue crosses. The slope of the solid blue linear regression line is 

−3.07 ∙ 10−3 ± 5.49 ∙ 10−4 and the p value of the slope is 2.62 ∙ 10−5. The averaged tse(𝐹𝑖
𝑗
) 

values per bundle are shown as blue diamond symbols with a mean value of 0.11 ± 0.03. 

 

 

  



 



Figure S3. In-situ actin filament average from manually segmented actin bundles. 

Related to Figure 2. (A) The image shows the final class averages of the 2D classification 

(Step V). Those segments, which were combined to class averages marked with yellow dots, 

were selected for 3D reconstruction (20’585 segments out of 43’400). Scale bar 36 nm. (B) In-

situ actin filament structure, reconstructed from selected segments (Step VI). The average 

shows clear polar features, and the position of the plus-end can be detected unambiguously 

(plus and minus symbols). (C) Here we docked EMD-6179 (Galkin et al., 2015) (green 

isosurface) into our structure (grey isosurface), reaching a correlation value of 0.87. However, 

if we reverse the filament direction the correlation value drops to 0.73. This shows that the 

average exhibits polar features. Scale bar 5 nm. (D) Resolution was estimated by FSC, 

calculated between the obtained in-situ average and EMD-6179, serving as an external 

reference. Prior FSC computation the structures were aligned with each other. The 

corresponding blue FSC curve crosses the 0.5 threshold criterion (Rosenthal and Henderson, 

2003) at 18 Å. The black FSC curve was calculated between the 3D reconstruction template 

and EMD-6179. In comparison with the blue FSC curve it proofs that during 3D reconstruction 

higher resolution features were successfully extracted from the data (no template bias). The 

red FSC curve was calculated between the obtained in-situ average and EMD-6179, however, 

the docking prior FSC computation was conducted with a reversed filament direction compared 

to the external reference. (E) Based on extracted filaments (2146 at this stage) another particle 

set was created. It only contains those 9931 segments with polarity labels that are congruent 

with polarity labels of the respective filaments. Based on these segments a Refine3D job was 

performed in RELION (Scheres, 2012), with local searches of helical symmetry. The resolution 

of this structure (17 Å) was measured as described in (D). The corresponding FSC is plotted 

as green curve in (E). The structure is deposited in the Electron Microscopy Data Bank under 

accession code EMD-11976. For comparison we added the blue FSC curve, which is based 

on a structure, reconstructed with identical parameter and particle number (9931 segments), 

but the segments were randomly selected from yellow dotted classes in (A). 



 



Figure S4. Processing of automatically segmented actin bundles. Related to Figure 2. 

(A) The image shows the final class averages (Step V). Those segments, which were 

combined to class averages marked with yellow dots, were selected for 3D reconstruction 

(72’973 segments out of 247’940). The class averages marked with blue dots are also shown 

in Figure 2D. Scale bar 18 nm. The three class averages (B), (D), and (F) are shown as grey 

isosurfaces. In (C), (E), and (G) we docked EMD-6179 (Galkin et al., 2015) (green isosurfaces) 

into the respective structures. Class average (B) and docking (C) are also displayed in 

Figures 2E and Figure 2F, respectively. Scale bar 5 nm. (H) Resolution was estimated by FSC, 

calculated between obtained in-situ class averages and EMD-6179 (Galkin et al., 2015), 

serving as an external reference. Prior FSC computation structures were aligned to each other. 

The corresponding red FSC curve (class#3, (F)), black FSC curve (class#2, (D)), and blue 

FSC curve (class#1, (B)) cross the 0.5 threshold criterion (Rosenthal and Henderson, 2003) 

at 15 Å, 15 Å, and 14 Å resolution, respectively. 

 

 

  



 

Figure S5. Analysis of actin bundles at FAs. Related to Figure 3. (A) Length distribution of 

reconstructed actin filaments from manual segmented dataset. (B) Initially all segments were 

extracted with an equidistant spacing of 11 nm. However, during 2D classification (Step V) a 



fraction of segments was rejected, thus the resulting distance distribution between the 

segments shows peaks located at multiples of 11 nm. (C) Using APT’s topology module 

(Step IX) the polarity distributions of actin bundles were analyzed. Therefore, the depicted 

matrices were computed based on the bundles shown in Figure 3E-H (corresponding matrices 

in the following order: top/left, top/right, bottom/left, and bottom/right). Each matrix element is 

the number of how often a specific combination of number of filaments within 𝒦𝜖(𝑥𝑘) (x-axis) 

versus the polarity difference within 𝒦𝜖(𝑥𝑘) (y-axis) appears in a bundle (𝜖=40 nm). High 

numbers are visualized as yellow/orange matrix elements, the dark blue background indicates 

zero. All four bundles show a substantial fraction of uniform polarity (polarity difference = 0). 

However, only in bundles located at proximal regions of FAs (top/left, top/right) a significant 

amount of mixed polarity neighborhoods can be detected (polarity difference ≠ 0). (D) In order 

to evaluate where mixed polarity regions are localized in the FA actin bundles, we fitted a plane 

to the bottom of the bundles (the side which is close to the support), and then stepwise moved 

this plane upwards through the bundle, and recorded for each step the polarity ratio found 

within the plane. We executed this calculation for the bundles shown in Figure 3E-H. The 

corresponding plots are shown in the following order: top/left, top/right, bottom/left, and 

bottom/right. The blue trajectory shows the fraction of filaments that are pointing with their plus-

ends towards the cell tip at the respective z-height of the plane, which is plotted normalized 

between 0 (bottom side of the bundle) and 1 (topside of the bundle). The red trajectory shows 

the fraction of filaments pointing in the opposite direction at respective z-heights. The two distal 

bundles with predominantly uniform polarity (bottom/left, bottom/right) show a similar polarity 

ratio at all z-heights. However, in the two proximal bundles (top/left, top/right) a pronounced 

mixed polarity can be found mainly at bottom and top side of the bundles. (E) During topology 

analysis (Step IX) the number of filaments within 𝒦𝜖(𝑥𝑘) was evaluated. The histogram shows 

that the most frequent configuration are six neighboring filaments in the FA actin bundles. 

(F) Additionally, the mean distance of the filaments within 𝒦𝜖(𝑥𝑘) was calculated. In the inset 

a possible packing configuration of the filaments is depicted. Within 𝒦𝜖(𝑥𝑘) the central filament 

at position 𝑥𝑘 is surrounded by six filaments (blue circles) at a distance d of ~28 nm. 
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