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1 Supplementary Math Note: Control geometry of the ISN (re-
lated to Figures 3 and 4)

The optimal LQR strategy can be used to expose the challenges associated with controlling
the inhibition-stabilized model of M1 that we use here. Indeed, network activity may be more
easily controlled (or “steered”) along some directions than along others, and having analytical
access to the optimal control inputs (Equations 31 and 32) allows us to quantify this “control
geometry”. Specifically, we quantify control performance as E =

∫∞
0 (δxTQδx)dt, i.e. our original

cost functional J in Equation 23 without the input energy penalty. We can then ask: what is
the smallest such cost Emin that can be achieved with a fixed input energy budget

∫∞
0 ‖δu‖

2dt?
We know that Emin is achieved by the LQR solution δu = λ−1Pλ (we use the ·λ subscript to
make the dependence of P on λ explicit). It can be shown that the input energy induced by this
optimal feedback law is a decreasing function of λ. Thus, all we need to do is find the λ that
gives us the desired value of

∫∞
0 ‖δu‖

2dt, and evaluate Emin for this particular λ. Importantly,
the result will depend on the state of the cortical network at the beginning of the controlled
preparatory phase, relative to the target x?.

A simple derivation based on the LQR Ricatti equation shows that starting the control phase
from some initial condition x? + δx0 yields a total control cost equal to J = δxT0 Pλδx0. More-
over, the corresponding energy cost is given by δxT0 Y δx0 where Y is the solution to

AT
clY + Y Acl + λ−2PλPλ = 0, (S1)

and
Acl , A + K = A− λ−1Pλ (S2)

is the effective state matrix governing the dynamics of the closed control loop. For a given
δx0, we use a simple root-finding method (bisection with initial interval bracketting) to find
the λ that achieves the set, desired energy cost (our fixed “energy budget”). For this λ, we
then calculate the associated control cost E = δxT0 (P − λY ) δx0. This is plotted in Figure S4,
for initial deviations of x from x? chosen to be the top 20 eigenvectors of Q, ranked by their
respective eigenvalues νi (Equation 26).

Figure S4 (right) shows that there is “no free lunch”: preparatory deviations from x? that induce
the worst motor errors (the top eigenvectors of Q, with the largest eigenvalues νi) are also those
that are the most difficult to control, i.e. for which the minimal control cost Emin will be largest
for a fixed input energy budget.

From the point of view of dynamical systems, this result is rather intuitive. The optimal initial
conditions {x?k} (found via optimization to achieve the required torques; STAR Methods) are
positioned in state space where the flow induced by the recurrent connectivity is strong – strong
enough to elicit rich transients that can be decoded into torques patterns that grow transiently
before decaying. To steer M1 towards (and maintain it at) these states, the input δu(t) (and
the steady input u?) must work against the strong local flow of the recurrent dynamics. This
requires large inputs. From a physiological standpoint, this is also intuitive. The optimal initial
states {x?k} are shown to be states in which the E/I balance is momentarily broken (Hennequin
et al., 2014). Much input energy must be spent to sustain an E/I imbalance in a network whose
connectivity strives to maintain balance.
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2 Supplementary Math Note: Universal performance of naive
feedforward control (related to Figure 5)

In this section, we show that for a linear system solving a motor task, the anticipatory control
cost J under the naive feedforward strategy only depends on the movements that are generated
as part of the task.

Consider a network characterized by a state matrix A and generating a given movement using
readout weights C and an initial condition x? using the following movement-epoch dynamics:

τ
dx

dt
= Ax(t) + h (S3)

where h = −Axsp sets the spontaneous fixed point at xsp. These are the same dynamics as
Equation 8 but excluding h(t) as explained in STAR Methods. When the feedforward strategy
is used for preparatory control, a constant preparatory input u? (Equation 28) is added to the
r.h.s. of Equation S3 that instantaneously switches the network’s fixed point from xsp to x?.
Thus,

x(t) = x? + e
t
τ
A(xsp − x?). (S4)

Now, let x(t, t′) be the activity of the network at time t+t′, where t marks the end of preparation
and the beginning of the movement. At time t, the constant preparatory input u? is withdrawn,
causing the fixed point of the dynamics to switch back to xsp. Therefore,

x(t, t′) = xsp + e
t′
τ
A(e

t
τ
A − I)(xsp − x?) (S5)

and the corresponding output torques as Cx(t, t′). To compute the corresponding error in
torques, m(t, t′)−m?(t′), we note that the system produces the target movements with no error
in the limit of infinite preparation time (t → ∞). Thus, the momentary error at time t + t′ is
given by

m(t, t′)−m?(t′) = C
[
x(t, t′)− x(∞, t′)

]
(S6)

= Ce
t+t′
τ

A(xsp − x?) (S7)

where we have also used the fact that Cxsp = 0. Importantly, it is easy to show that Equation S7
is in fact equal to the target output torque t+ t′ seconds after movement onset, i.e. m?(t+ t′) =
Cx(∞, t+ t′). In summary, under the naive feedforward control strategy, motor errors following
insufficiently long preparation only depend on the target movements, but not on the details of
the (linear) system that achieves them. A fortiori, since the control cost J (Equation 30) is
defined based on output errors in torques, it must also be the same for any network that has
been successfully trained to produce the target torques (in the limit of long preparation). We
calculated this cost to be

Jnaive =
1

τ2

∫∫ ∞
0

dt dt′ ‖m?(t+ t′)‖2. (S8)

3 Supplementary Math Note: Alignment index under naive
feedforward control (related to Figure 6)

Early preparatory activity under the naive feedforward strategy can be shown to be the negative
image of movement-epoch activity, up to a constant offset. Consider a network solution to
the reaching task characterized by linear dynamics with a state matrix A and a set of initial
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conditions {x?k}. During the preparatory epoch for movement k, the network activity evolves
according to

τ
dx

dt
= Ax(t) + h̄ + u?k (S9)

where u?k sets the fixed point of the preparatory dynamics at x?k. Thus, preparatory activity
xp
k(t) for a movement k is given by:

xp
k(t) = x?k + e

t
τ
A(xsp − x?k). (S10)

Movement-epoch dynamics, on the other hand, obey:

τ
dx

dt
= Ax(t) + h̄ + h(t) (S11)

where h̄ = −Axsp sets the fixed point at xsp and h(t) is the condition-independent input
(h(t) = 0 for the ‘full’ and ‘low-rank’ networks). Assuming the network activity successfully
reaches x?k during the preparation epoch, movement activity xm

k (t) is given by

xm
k (t) = xsp + e

t
τ
A(x?k − xsp) + q(t), (S12)

where

q(t) =

∫ t

0
e
t−t′
τ

Ah(t′)dt′ (S13)

is the contribution of the condition-independent external drive h(t). Comparing Equation S10
and Equation S12, we find that xp

k is the negative image of xm
k , up to a constant offset, and

condition-independent temporal variations:

xp
k(t) = −xm

k (t) + x?k + xsp + q(t). (S14)

In computing the alignment index, Elsayed et al. (2016) first removed the mean across condition
at every time point. We have done the same mean removal in our analysis, which eliminates the
xsp + q(t) terms in Equation S14, yielding

x̂p
k(t) = −x̂m

k (t) + x̂?k (S15)

where ·̂ denotes deviation from the condition mean. This result explains the high alignment
index of all network classes under the naive feedforward strategy (Figure 6C).
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Figure S1: [Related to Figure 2] (A) Schematics of the arm model. (B) Reaches produced by
the model, along with associated torques at the two joints, and x-y velocities of the hand (solid
lines). Dashed lines denote target trajectories. Scale bar: 200 ms.
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Figure S2: [Related to Figure 2] Comparison of movement-generating network model with
monkey M1 dynamics during movement. (A) Top: model (left) and monkey (center and right) hand
trajectories for each straight reach (color-coded). Black bars denote 10 cm. Monkey hand trajectories
are averaged across trials with delays longer than 400 ms. Middle: overlap (Pearson correlation across
neurons) between the preparatory end-states for model (left) and monkey activity (center and right).
Reaches are numbered counter-clockwise as indicated near the model hand trajectories. Bottom: neural
activity projected into the top jPC plane (see text). (B) Timecourse of the 1st, 3rd, 5th and 14th CCA
projections (canonical variables) in the model (top) and monkey J (bottom), for each condition (color-
coded as in B). Black scale bars indicate 200 ms from movement onset (note that “movement onset”
in the model is re-defined to account for the latency between the go cue and actual movement onset in
the monkey; see STAR Methods). To equalize the number of movement conditions across model and
monkeys, we dropped the 9th movement, which is kinematically redundant the 8th (c.f. B). (C) Same
as C, for monkey N (5th movement excluded, redundant with the 6th). (D) Full spectrum of canonical
correlations, with average labeled ρ̄.
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ũ?
cortexD

dy
dt

thalamus

dz
dt

KyxKzy

Kxz

Figure S3: [Related to Figure 7] Four steps to arrive at a biologically plausible implemen-
tation of optimal anticipatory motor control. (A) The classical LQR solution prescribes in-
stantaneous state feedback, with reentrant control inputs of the form of δu(t) = Kδx(t) and
a constant external input u?. (B) It is possible to constrain feedback to be of the form
δu(t) = K [INE

0Ni ] δx(t) = KδxE(t) instead. In STAR Methods, we describe how to com-
pute the optimal feedback matrix K in (A–B). (C) For flexibility, we propose that feedback
be relayed by the motor thalamus, which is under the gating control of the basal ganglia. In
STAR Methods, we show that the optimal feedback gain K obtained in (B) can be decomposed
into sign-constrained matrices implementing E connections from M1 to thalamus (Kyx), from
thalamus to M1-layer 4 (Kzy), and Dale-structured E/I connections from layer 4 back into the
main recurrent M1 circuit (Kxz). (D) Finally, first-order dynamics can be introduced in our
model thalamus and M1-layer 4 neurons. We show in STAR Methods how the lag introduced
by such dynamics can be taken into account, to obtain a set of connections that achieve optimal
anticipatory control of movement under these biological constraints.
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Figure S4: [Related to Figures 3 and 4] Left: eigenvalues νi (top) and minimum control
cost Emin achievable given a fixed energy budget (see text), for the top 20 eigenvectors of the
observability Gramian Q defined in Equation 26. Note that νi is also the motor error C incurred
by a deviation of the preparatory state x? of unit length in the direction of the corresponding
eigenvector vi, just prior to movement. Right: same νi and Emin as shown on the left, plotted
against each other.
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Figure S5: [Related to Figure 4] Role of the nonlinearity in preparatory control. (A) Dis-
tribution of firing rates across all neurons, times (including both preparation and movement
epochs) and reach conditions. (B) Firing rate range (max − min) across time and reach condi-
tions, computed for each neuron in monkey J, monkey N, and the model (min, 25th percentile,
median, 75th percentile, max). (C) Prospective motor error during optimal preparation, under
three different assumptions. NL: nonlinear network dynamics during preparation, but prospec-
tive error computed assuming linear dynamics during movement (c.f. Figure 4A of the main
text). LL: same as NL, but with linear dynamics during preparation. NN: nonlinear dynamics
during preparation, and prospective error computed using rollouts of the same nonlinear net-
work dynamics during the movement-epoch. In all three cases, the optimal preparatory inputs
were computed assuming a linear model as throughout the paper.
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Figure S6: [Related to Figure 5] Movement-generating dynamics in an example ‘full’ network
(A-E) and an example ‘low-rank’ network (F-J), and comparison to monkey M1 dynamics. For
details, please see the caption of Figure S2 where the same panels are shown for the ISN model.
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Figure S7: [Related to Figures 4 and 6] Preparing whilst not moving. Norm of the output joint
torques, ‖m(t)‖, averaged over the 8 reaches, for the naive feedforward strategy (light blue), optimal
preparatory control (dark blue), and an extended optimal preparatory control strategy that explicitly
penalizes premature movement (green). The black bar marks the preparatory epoch.
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