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Supplementary Methods

Selection of studies

To select relevant studies on HumanMethylation450 BeadChip normalization

methods a nonsystematic search using the PubMed database was performed. The

wording of the request is shown in Supplementary Figure 1, the flowchart of the

process is shown in Supplementary Figure 2, and the list of chosen publications is

shown in Supplementary List 1.

In addition to the selected publications from the search, two additional relevant
articles were included in our study (Supplementary Figure 2, Supplementary List 1).

The inclusion criteria were:

· The studies were conducted in 2008 or later.

· The full text and the supplement section of the studies were available free of

charge at the LMU in Munich.

· The studies used data of the Illumina Human Methylation450K BeadChip

microarray or its successor the Illumina Human MethylationEPIC BeadChip

microarray.

· The studies included comparisons and performance metrics of the relevant

normalization methods.

The data extracted from the included papers are found in Supplementary Table 1.



Comparison of normalization methods

Our goal was to determine if papers introducing a method tend to be optimistic

with regard to this method’s performance in comparison to existing methods.

For a given pair of methods, two types of comparisons were examined: a

comparison in the paper introducing the newer of the two methods (type-a

paper); and comparisons in later neutral papers, ie papers that are introducing

neither of the two methods, and written by authors assumed to be unbiased

(type-b papers).  If optimistic bias is at work, type-a papers will tend to be

more favourable to the method they are introducing than type-b papers are to

the same method.

Specifically, for a given pair of methods for which a type-a paper exists and

one or more type-b papers, we determined whether the type-a paper assesses

the newly introduced method as better than its pair-partner, and whether the

type-b papers also do so.

As our primary result, we examined the proportion of type-a papers evaluating

the newly introduced method as better than its partner and the proportion of

type-b papers also doing so, over all type-a and type-b papers examined.

If more than one method was introduced in a paper, then these pairs of

simultaneously introduced methods were excluded from the analysis.

Determination of the “Better” Method

Analysis 1:

Our first analysis examined type-a papers and type-b papers as a whole, ie for each

paper we determined one overall “better” method from the given pair. Most of the

selected studies demonstrated the performance of the normalization methods in

several graphical figures or performance metrics. We thus defined each such figure

or metric as one “substudy” of the paper. Each substudy implies a ranking of all

methods examined in the substudy, ie from best to worst determined through either

numeric values or visual inspection by our rater. In the case of rank equality within a

substudy, each method received the same rank as determined by a fractional ranking

system: the best rank value of the equally ranked normalization methods, adding one

divided by the number of equally performing methods. For example, methods A and



B are together the best ones. Method C is worse. The ranking would be A: 1.5, B:

1.5, and C: 3.

An overall determination of the “better” method of the pair for the paper was

determined by examining the rankings of methods for all substudies within the paper:

the “better” method was defined as that which had the lowest sum of rankings across

these examined substudies.

In some cases, authors presented an overall ranking of the methods presented in

their paper. If it was not possible to extract the results to reproduce their ranking, we

used the ranking order provided by the authors to determine “better” methods.

In analysis 1, we only consider papers for which each substudy ranks every method

examined in the paper (i.e., “complete substudies”).

Analysis 2:

In our second analysis, we considered all substudies as separate entities/papers, ie

we ignored that they group together in clusters (the original papers in which they

appear). A method was considered the “better” method if it was ranked higher than

the other within the specific substudy. Again, the proportion of type-a papers (in this

case type-a substudies) ranking the newly introduced method as better than better

than its partner and the proportion of type-b papers (here type-b substudies) also

doing so were compared.

Some notes on evaluation of ranks within substudies:

1) If a performance metric is based on several samples of the same data set, the

averages of the results across all samples for each method were calculated

and used to determine the ranks.

2) The 450K BeadChip involves two types of probes (probe-type I and probe-type

II), each interrogating different methylation sites. Often, the performances of

the normalization methods for probe-type I and probe-type II were determined

separately. In this case we averaged the rankings over the two probe types to

determine a final rank for the normalization method.

3) Performance measurements based on specific CpG islands were omitted, as

these measurements are very specific for each site/island and were not



considered representative of the overall performance of the examined

normalization methods.

4) Non-readable figures and comparisons of normalization methods for which no

ranking could be made were excluded.

The data extracted from the included papers are found in Supplementary Table 1.

Supplementary Figures

Supplementary Figure 1: Query of the PubMed literature research

Supplementary Figure 2: Flowchart of the publication selection process



Supplementary Tables

Supplementary Table 1: Method comparison data extracted from the studies and

used in the analyses

Presented are the data extracted from each paper selected for this study. Each row

presents one method from one substudy, where a substudy is a comparison between

preprocessing methods within the paper.  The table is found in the external file

data_set_of_extracted_data_Buchka_et_al.xlsx

Column name Explanation
paper Name of the paper in which the

substudy is found.

PMID PubMed ID of the paper

year Year of publication of the paper

authors First authors of the paper

introduced_method The name of the method introduced in

the paper, if any. If more than one

method is introduced in the paper, the

“better” method (as defined by the

original authors) is listed here.

nb_methods_paper Number of methods compared in the

paper

nb_methods_substudy Number of methods compared in the

substudy

nb_datasets_paper Number of datasets used in the paper

nb_datasets_substudy Number of datasets used in the

substudy

dataset_names Name(s) of the dataset(s) used in the

substudy

metric Comparison metric used in the substudy



nb_metrics_substudy Number of comparison methods used in

the substudy; Normally=1; >1 indicates

the results could not be reconstructed

and the authors’ overall rank (which

involved more than 1 metric) was

extracted

method Name of the method

method_in_paper_as_named If “y”, the method in the paper has the

same name as that given in the column

“method”. If blank, then the method in

the paper has another name (given in

the “Name_of_method_in_paper”

column).

name_of_method_in_paper If the method has a name in the paper

different to that given in the “method”

column, that name is given here.

rank Rank of the method in the substudy

comment Any additional comments

Supplementary Lists

Supplementary List 1: Selected publications

This list shows the publications selected for this study based on the query of

Supplementary Figure 1 and the selection process of Supplementary Figure 2. The

two additional included studies (i.e., beyond those resulting from the PubMed search)

are shown in bold letters.
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