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1 MEAN FIELD THEORY

We implement the mean field (MF) theory for adhesion system, wherein cell membrane adheres to planar
supported bilayer containing mobile ligand molecules. We start with the grand-canonical ensemble in
which the concentrations of adhesion proteins and lipid rafts are determined by the chemical potentials µp

and µr, respectively. The grand-canonical Hamiltonian is then given by
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where Had is the total energy of canonical ensemble as given in main text. The superscript +,−
distinguishes the upper cell membrane and lower supported bilayer. Transforming raft variables n+
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j 〉, we obtain MF Hamiltonian
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with ε+r = 1
2
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, Ueffr = u(1 + s) + 1

2µ
+
r . Then the grand-canonical partition function is

obtained as
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with β = (kBT )
−1 and
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By defining Aσ+ = wσ+(li)|θ(lb/2−|li−lc|)=0 and Bσ+ = wσ+(li)|θ(lb/2−|li−lc|)=1, the partition function
given by Eq. (S3) can be rewritten as
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where the effective binding potential Vb,eff(li) = −Ub,effθ(lb/2− |li − lc|) is a square-well potential with
the same width lb and location lc as the R-L binding potential in Eq. (2) in the main text. The effective
binding strength takes the form

Ub,eff = kBT ln

∑
σ+ Bσ+∑
σ+ Aσ+
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which is a function of parameters ub, ua, u, µp, µr and T . The free energy density is determined as
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is the free energy density for two homogeneous membranes with HamiltonianH0 = Hme +
∑

i Vb,eff(li).

Phase separation occurs if the free energy density F shows two equal minima separated by a maximum,
implying that the first-order partial derivative ∂F/∂s = 0 has three roots s1, s2, and s3, and the second-
order partial derivative ∂2F/∂s2 is negative for one of the roots and positive for the other two. We can
then obtain the self-consistent equation using the condition ∂F/∂s = 0
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where Pb = −∂F0/∂Ub,eff = 〈θ(lb/2 − |li − lc|)〉H0 is the equilibrium fraction of bound membrane
patches with lc − lb/2 < li < lc + lb/2 in the reference system, i.e., the so-called contact probability. Pb

is determined by MC simulations for homogeneous membrane system with Hamiltonian H0. We then
identify the phase transition points by numerically solving Eq. (S9) under the condition F(s1) = F(s3).
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