Science Signaling

stke.sciencemag.org/cgi/content/full/14/664/eabc8521/DC1

Supplementary Materials for

The *Campylobacter jejuni* chemoreceptor Tlp10 has a bimodal ligand-binding domain and specificity for multiple classes of chemoeffectors

Bassam A. Elgamoudi, Ekaterina P. Andrianova, Lucy K. Shewell, Christopher J. Day, Rebecca M. King, Taha, Hossinur Rahman, Lauren E. Hartley-Tassell, Igor B. Zhulin, Victoria Korolik*

*Corresponding author. Email: v.korolik@griffith.edu.au

Published 5 January 2021, *Sci. Signal.* **14**, eabc8521 (2021) DOI: 10.1126/scisignal.abc8521

The PDF file includes:

Fig. S1. Representative sensorgrams from SPR analysis of the interaction of Tlp10^{LBD} with various ligands.

Fig. S2. Mutant Tlp10^{LBD} proteins are correctly folded.

Fig. S3. Invasion of mammalian cells by WT and mutant *C. jejuni* in the presence and absence of fucose and galactose.

Table S1. HHpred search results for small subset of DAHL domains from various species.

Table S2. Molecules included in the glycan microarray.

Table S3. Molecules included in the small-molecule microarray.

Table S4. Complex glycan structures recognized by Tlp10.

Table S5. Chemotaxis responses of WT and mutant C. jejuni strains.

Table S6. Illustration of A-B-A competition SPR analysis of WT Tlp10^{LBD}.

Table S7. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}Y70A.

Table S8. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}Y115A.

Table S9. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}Y120A.

Table S10. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}H193A.

Table S11. Analysis of protein-protein interactions with Tlp10^{sig} using the yeast two-hybrid system.

Table S12. Fusion proteins for yeast two-hybrid experiments.

Table S13. Microbial strains and plasmids used in this study.

Table S14. DNA primers used in this study.

Table S15. MIRAGE glycan and small-molecule arrays for Tlp10.

Legends for movies S1 to S3

Other Supplementary Material for this manuscript includes the following:

(available at stke.sciencemag.org/cgi/content/full/14/664/eabc8521/DC1)

Movie S1 (.avi format). C. jejuni migrate toward the attractant isoleucine.

Movie S2 (.avi format). Migration of *C. jejuni* cells toward the attractant isoleucine is reduced by addition of the repellent arginine.

Movie S3 (.avi format). PBS control for the effect of arginine on the migration of WT *C. jejuni* toward isoleucine.

Data file S1 (Microsoft Excel format). Proteins included in DAHL domain MSA.

Fig. S1. Representative sensorgrams from SPR analysis of the interaction of Tlp10^{LBD} with various ligands. Single-cycle SPR curves showing concentration-dependent interactions between Tlp10^{LBD} and (A) α -ketoglutarate; (B) malate; (C) aspartate; (D) thiamine; (E) fucose; (F) mannose; (G) sialic acid; (H) isoleucine; (I) galactose; (J) rhamnose; (K) purine; (L) fumarate; and (M) arginine. Data are representative of three independent experiments (n = 3).

Fig. S2. Mutant Tlp10^{LBD} proteins are correctly folded. Far-UV CD (circular dichroism) spectrum for WT and Y70A Tlp10^{LBD}. This spectrum is representative of the similarity of all the mutant variants to that of the WT protein. Data are representative of three independent replicates (n = 3).

Fig. S3. Invasion of mammalian cells by WT and mutant *C. jejuni* in the presence and absence of fucose and galactose. Invasion analyses of Caco2, HCT166, and HCT166 overexpressing MUC1 (HCT116-MUC1) are presented as the mean of invasion from three technical replicates and are representative of three independent experiments (n = 3).

Table S1. HHpred search results for small subset of DAHL domains from various species. No known domain was detected in the periplasmic region of Tlp10 and homologous sequences. Low-confidence hits to partial human Nucleoporin_FG2 (Pfam accession number PF15967.5) domain and nuclear pore complex protein Nup155 are likely the result of α -helical nature of these proteins.

with TM regions excluded							
		Number		Proba	E-	Sc	
NCBI ID	Organism	of hits	Best hit	bility	value	ore	
WP_0028	C. jejuni subsp.	4	5IJO_T Nuclear pore	61	3.00	28	
65311.1	jejuni NCTC 11168		complex Nup155		E+02		
WP_0124	Agrobacterium	16	PF15967.5;	83.4	54	29.	
78065.1	tumefaciens		Nucleoporin_FG2			7	
WP_0144	Arcobacter sp. L	9	5IJO_T Nuclear pore	85.6	43	30.	
73835.1			complex Nup155			3	
WP_0679	Neptuniibacter	11	5IJO_T Nuclear pore	69.7	1.30	27	
81710.1	pectenicola		complex Nup155		E+02		
WP_0842	Nitratiruptor	17	5IJO_T Nuclear pore	82.6	54	29.	
74768.1	tergarcus		complex Nup155			2	
WP_0699	Magnetovibrio	10	PF15967.5;	79.1	80	28.	
56973.1	blakemorei		Nucleoporin_FG2			9	
WP_0109	Pseudomonas putida	19	5IJO_T Nuclear pore	88.4	31	31.	
53844.1	KT2440		complex Nup155			6	
WP_0151	Chroococcidiopsis	16	PF15967.5;	78.7	81	28.	
53106.1	thermalis		Nucleoporin_FG2			7	

with TMs regions included

		Number		Proba	E-	Sc
NCBI ID	Organism	of hits	Best hit	bility	value	ore
WP_0028	C. jejuni subsp.	73	PF15967.5;	95.6	3.1	38.
65311.1	jejuni NCTC 11168		Nucleoporin_FG2			7
WP_0124	Agrobacterium	44	5IJO_T Nuclear pore	92.8	11	34.
78065.1	tumefaciens		complex Nup155			2
WP_0144	Arcobacter sp. L	84	5IJO_T Nuclear pore	94.9	4.8	37
73835.1			complex Nup155			
WP_0679	Neptuniibacter	50	5IJO_T Nuclear pore	89	28	32
81710.1	pectenicola		complex Nup155			
WP_0842	Nitratiruptor	41	5IJO_T Nuclear pore	89.5	27	32.
74768.1	tergarcus		complex Nup155			2
WP_0699	Magnetovibrio	54	5IJO_T Nuclear pore	91.5	17	33.
56973.1	blakemorei		complex Nup155			4
WP_0109	Pseudomonas putida	78	5IJO_T Nuclear pore	91.4	19	33.
53844.1	KT2440		complex Nup155			7
WP_0151	Chroococcidiopsis	29	5IJO_T Nuclear pore	89.8	25	32.
53106.1	thermalis		complex Nup155			3

Number	Spacer form of saccharide	Common name	Short name	Molecula r weight
	MOI	NOSACCHARIDES		
1	Fucα-sp3	L-α-Fuc	aF	221.3
2	Gala-sp3	α-Gal	aA	237.3
3	Galβ-sp3	β-Gal	bA	237.3
4	GalNAca-sp0	TnSer	TnSer	308.3
5	GalNAca-sp3	T _n	Tn	278.3
6	GalNAcβ-sp3	β-GalNAc	bAN	278.3
7	Glca-sp3	α-Glc	aG	237.3
9	Glcβ-sp3	β-Glc	bG	237.3
10	GlcNAcβ-sp3	β-GlcNAc	GN	278.3
14	GlcN(Gc)β-sp4	β-GlcN(Gc)	bGN(Gc)	293.3
15	HOCH2(HOCH)4CH2NH2	aminoglucitol	glucitol	181.2
16	Mana-sp3	α-Man	aM	273.3
18	Manβ-sp4	β-Man	bM	236.2
19	ManNAcβ-sp4	β-ManAc	bMN	277.3
20	Rhaα-sp3	L-α-Rha	aR	221.3
22	GlcNAcβ-sp4	β-GlcNAc	GN-Gly	277.3
37	3-O-Su-Galβ-sp3	3-O-Su-β-Gal	bA3Su	317.3
38	3-O-Su-GalNAcα-sp3	3-O-Su-β-GalNac	bAN3Su	358.4
43	6-O-Su-GlcNAcβ-sp3	6-O-Su-β-GlcNAc	GN6su	358.4
44	GlcAa-sp3	α-glucoronic acid	aGU	251.2
45	GlcAβ-sp3	β-glucoronic acid	bGU	251.2
46	6-H2PO3Glcβ-sp4	β-Glc6P	G6P	316.2
47	6-H ₂ PO ₃ Manα-sp3	α-Man6P	M6P	339.2
48	Neu5Aca-sp3	α-Neu5Ac	Sia	366.4
49	Neu5Aca-sp9	α-Neu5AcBn	Sia-Bn	471.5
52	Neu5Gca-sp3	α-Neu5Gc	aNeuGc	382.4
54	9-NAc-Neu5Aca-sp3	9-Nac-α-Neu5Ac	9NAcSia	407.4
55	3-O-Su-GlcNAcβ-sp3	3-O-Su-β-GlcNAc	GN3Su	358.4
	DISAC	CHARIDES		
71	Fucα1-2Galβ-sp3	H _{di}	Hdi	383.4
72	Fuca1-3GlcNAcβ-sp3		Fa3GN	424.5

 Table S2. Molecules included in the glycan microarray.

73	Fuca1-4GlcNAcβ-sp3	Le	LeC	424.5
75	Gala1-2Galβ-sp3		Aa2A	399.4
76	Gala1-3Galβ-sp3	Bdi	Bdi	399.4
77	Galα1-3GalNAcβ-sp3	Ταβ	Tab	440.5
78	Gala1-3GalNAca-sp3	Ταα	Taa	440.5
80	Galα1-3GlcNAcβ-sp3		Aa3GN	440.5
81	Galα1-4GlcNAcβ-sp3	α-LacNAc	aLN	440.5
83	Galα1-6Glcβ-sp4	Melibiose	Aa3G	398.4
84	Gal ^β 1-2Gal ^β -sp3		Ab2A	399.4
85	Gal ^β 1-3GlcNaAcβ-sp3	Le ^c	LeC	440.5
87	Galß1-3Galß-sp3		Ab3A	399.4
88	Galβ1-3GalNAcβ-sp3	Τ _{ββ}	Tbb	440.5
89	Galβ1-3GalNAcα-sp3	TF	TF	440.5
93	Gal ^β 1-4Glcβ-sp4	Lac	Lac-Gly	398.4
94	Galß1-4Galß-sp4		Ab4A	398.4
97	Galβ1-4GlcNAcβ-sp3	LacNAc	LN	440.5
100	Galβ1-6Galβ-sp4		Ab6A	398.4
101	GalNAcα1-3GalNAcβ-sp3	Fs-2	Fs-2	481.5
102	GalNAcα1-3Galβ-sp3	Adi	Adi	440.5
103	GalNAca1-3GalNAca-sp3	core 5	core 5	481.5
104	GalNAcβ1-3Galβ-sp3		ANb3A	440.5
106	GalNAcβ1-4GlcNAcβ-sp3	LacdiNAc	LacdiNA c	481.5
110	Glca1-4Glcβ-sp3	maltose	Malt2	399.4
111	Glcβ1-4Glcβ-sp4	cellobiose	cello	398.4
112	Glcβ1-6Glcβ-sp4	gentiobiose	gent	398.4
113	GlcNAcβ1-3GalNAcα-sp3	core 3	core 3	481.5
114	GlcNAcβ1-3Manβ-sp4		GN3M	439.4
115	GlcNAcβ1-4GlcNAcβ-Asn	chitobiose-Asn	Ch2-Asn	538.5
117	GlcNAcβ1-4GlcNAcβ-sp4	chitobiose	Ch2-Gly	480.5
118	GlcNAcβ1-6GalNAcα-sp3	core 6	core 6	481.5
119	Manα1-2Manβ-sp4		Ma2Mb	398.4
120	Manα1-3Manβ-sp4		Ma3M	398.4
121	Manα1-4Manβ-sp4		Ma4M	398.4
122	Manα1-6Manβ-sp4		Ma6M	398.4
123	Manβ1-4GlcNAcβ-sp4		Mb4GN	439.4

124	Mana1-2Mana-sp4		Ma2Ma	398.4
145	Gal ^β 1-3(6-O-Su)GlcNAcβ-sp3	6-O-Su-Le ^c	LeC6Su	520.5
146	Galβ1-4(6-O-Su)Glcβ-sp2	6-O-Su-Lac	Lac6Su	465.5
147	Galβ1-4(6-O-Su)GlcNAcβ-sp3	6-O-Su-LacNAc	LN6Su	520.5
149	GlcNAcβ1-4(6-O- Su)GlcNAcβ-sp2	6-O-Su-chitobiose	Ch2-6Su	547.5
150	3-O-Su-Galβ1-3GalNAcα-sp3	3`-O-Su-TF	TF3`Su	520.5
151	6-O-Su-Galβ1-3GalNAcα-sp3	6`-O-Su-TF	TF6`Su	520.5
152	3-O-Su-Galβ1-4Glcβ-sp2	SM3	Lac3`Su	465.3
153	6-O-Su-Galβ1-4Glcβ-sp2	6`-O-Su-Lac	Lac6`Su	465.3
155	3-O-Su-Galβ1-3GlcNAcβ-sp3	3 ⁻ O-Su-Le ^c	LeC3`Su	520.5
157	3-O-Su-Gal\beta1-4GlcNAc\beta-sp3	3`-O-Su-LacNAc	LN3`Su	520.5
159	4-O-Su-Galβ1-4GlcNAcβ-sp3	4`-O-Su-LacNAc	LN4`Su	520.5
161	6-O-Su-Galβ1-3GlcNAcβ-sp3	6`-O-Su-Le ^c	LeC6`Su	520.5
163	6-O-Su-Galβ1-4GlcNAcβ-sp3	6`-O-Su-LacNAc	LN6`Su	520.5
164	GlcAβ1-3GlcNAcβ-sp3		GUb3GN	454.4
165	GlcA β 1-3Gal β -sp3		GUb3A	413.4
166	GlcA\beta1-6Gal\beta-sp3		GUb6A	413.4
167	GlcNAcβ1-4- [HOOC(CH ₃)CH]-3-O- GlcNAcβ-sp4	GlcNAc-Mur	GN-Mur	522.5
168	GlcNAcβ1[HOOC(CH ₃)CH]- 3-O-GlcNAcβ-L-alanyl-D-i- glutaminyl-L-lysine	GMDP-Lys	GMDPL ys	823.9
169	Neu5Aca2-3Galβ-sp3	GM4	GM4	528.5
170	Neu5Acα2-6Galβ-sp3		Sia6A	528.5
171	Neu5Acα2-3GalNAcα-sp3	3-SiaT _n	3-SiaTn	569.6
172	Neu5Acα2-6GalNAcα-sp3	SiaTn	SiaTn	569.6
174	Neu5Gcα2-6GalNAcα-sp3	NeuGc-T _n	Neu5GC Tn	585.6
176	3-O-Su-Galβ1-4(6-O-Su)Glcβ- sp2	3`,6-di-O-Su-Lac	Lac3`,6S u2	567.5 (Na+)
177	3-O-Su-Galβ1-4(6-O- Su)GlcNAcβ-sp2	3`,6-di-O-Su- LacNAc	LN3`6Su 2	622.6 (Na+)
178	6-O-Su-Galβ1-4(6-O-Su)Glcβ- sp2	6,6`-di-O-Su-Lac	Lac6,6`S u2	567.5 (Na+)
179	6-O-Su-Galβ1-3(6-O- Su)GlcNAcβ-sp2	6,6`-di-O-Su-Le ^c	LeC6,6`S u2	608.5 (Na+)
180	6-O-Su-Galβ1-4(6-O- Su)GlcNAcβ-sp2	6,6`-di-O-Su- LacNAc	LN66`Su 2	608.5 (Na+)
181	3,4-O-Su ₂ -Galβ1-4GlcNAcβ- sp3	3`,4`-di-O-Su- LacNAc	LN3`4`S u2	622.6 (Na+)

192	3,6-O-Su ₂ -Galβ1-4GlcNAcβ-	3`,6`-di-O-Su-	LN3`6`S	608.5
182	sp2	LacNAc	u2	(Na+)
102	4,6-O-Su ₂ -Galβ1-4GlcNAcβ-	4`,6`-di-O-Su-	LN4`6`S	608.5
185	sp2	LacNAc	u2	(Na+)
194	4,6-O-Su ₂ -Galβ1-4GlcNAcβ-	4`,6`-di-O-Su-	LN4`6`S	622.6
104	sp3	LacNAc	u2-C3	(Na+)
186		(Sia)2	(Sia)2	679.6
	Neu5Aca2-8Neu5Aca2-sp3	(514)2	(610)2	(Na+)
189	$3,6-O-Su_2-Gal\beta 1-4(6-O-$	3`,6,6`-tri-O-Su-	LN3`66`	710.6
	Su)GlcNAcβ-sp2	LacNAc	Su3	(Na+)
192	GalNAcβ1-4(6-O-	6-O-Su-LacdiNAc	LacdiNA	561.5
	Su)GlcNAcβ-sp3		c6Su	
193	3-O-Su-GalNAcp1-4GlcNAcp-	3 ⁻ O-Su-LacdiNAc	LacdiNA	561.5
	sp_3		C3 SU	
194	6-O-Su-GainAcp1-4GicnAcp-	6`-O-Su-LacdiNAc		561.5
	sp5			
105	$6 - \Omega - Su - GalNA cB1 - 4 - (3 - \Omega)$	6`-Su-3-O-Ac-	JAC-	603 5
175	Su)GlcNAcB-sn3	LacdiNAc	c6`Su	005.5
	$3-O-Su-GalNAc\beta1-4(3-O-Su)-$	3 3`-O-Su2-	LacdiNA	663 5(Na
196	GlcNAcβ-sp3	LacdiNAc	c3.3 Su2	+)
	3.6-O-Su ₂ -GalNAc _{B1} -		LacdiNA	663.5(Na
197	4GlcNAcβ-sp3	3`,6`-Su ₂ -Lacd1NAc	c3`,6`Su2	+)
109	4,6-O-Su ₂ -GalNAcβ1-		LacdiNA	663.5(Na
198	4GlcNAcβ-sp3	4,0-Su2-LacuiNAC	c4`,6`Su2	+)
		$A^{(-)}_{1} = S_{112} = 3 = O_{1-} A_{1-}$	3Ac-	705 5(Na
199	4,6-O-Su ₂ -GalNAcβ1-4-(3-O-	LacdiNAc	LacdiNA	+)
	Ac)GlcNAcβ-sp3		c4`,6`Su2	· /
200	4-O-Su-GalNAcβ1-4GlcNAcβ-	4`-O-Su-LacdiNAc	LacdiNA	561.5
	sp3		c4`Su	
201	$3,4-O-Su_2-Gal\beta 1-4GlcNAc\beta$	3`,4`-Su ₂ -LacdiNAc	LacdiNA	663.5(Na
	sp3		c_3 ,4 Su2	+)
202	6-0-5u-GainAcp1-4(6-0-	0,0 -O-Su-	Lacoina	663.5(Na
202	Su)dicinAcp-sp5			+)
203	Galβ1-4(6-O-Su)GlcNAcβ-sp2	0-U-Su-LacinAc	LINOSU	506.5
204	4-O-Su-GalNAcβ1-4GlcNAcβ-	4`-O-Su-LacdiNAc	LacdiNA	547.5
	sp2		c4 [°] Su-C2	
205	Neu5Aca2-6GalNAcβ-sp3		6SiaANb	569.6
206		NeuGca3Gal	Neu5Gc3	544 5
200	Neu5Gca2-3Gal-sp3	11eu0eu50ai	A	544.5
	TRISAC	CHARIDES		
215	Fuca1-2GalB1-3GlcNAcB-sp3	Le ^{d,} H (type 1)	LeD	586.6
216	Fucal-2GalR1-4GleNAcR-en3	H (type 2)	Htype2	586.6
217	$= 1 \operatorname{det} - 2 det$	H (type 3)	Htype3	586.6
217	Fuca1-2Galp1-3GalNAcα-sp3	II (type 5)	пурся	
219	Fucα1-2Galβ1-4Glcβ-sp4	н (туре б	нтуреб	544.5
220	Galα1-3Galβ1-4Glcβ-sp2		Aa3 Lac- C2	547.5

222	Galα1-3Galβ1-4GlcNAcβ-sp3	Galili (tri)	Galili3	602.6
224	Galα1-4Galβ1-4Glcβ-sp3	P ^k , Gb3, GbOse ₃	Pk	561.5
225	Galα1-4Galβ1-4GlcNAc-sp2	P ₁	P1	588.6
226	Fucα1-2(Galα1-3)Galβ-sp3	Btri	Btri	545.5
228	Galβ1-2Galα1-4GlcNAcβ-sp4		Ab2aLN	601.6
229	Galβ1-3Galβ1-4GlcNAcβ-sp4		Ab3`LN	601.6
231	Galβ1-4GlcNAcβ1- 3GalNAcα-sp3		LN3Tn	643.6
232	Galβ1-4GlcNAcβ1- 6GalNAcα-sp3		LN6Tn	643.6
233	Galβ1-3(Fucα1-4)GlcNAcβ- sp3	Le ^a	LeA	586.6
234	Fucα1-3(Galβ1-4)GlcNAcβ- sp3	Le ^x	LeX	586.6
235	Fucα1-2(GalNAcα1-3)Galβ- sp3	A _{tri}	Atri	586.6
238	GalNAcβ1-4Galβ1-4Glcβ-sp3	GA ₂ , GgOse ₃	GA2	602.6
240	$(Glc\alpha 1-4)_{3}\beta-sp4$	maltotriose	(Ga4)3b	560.5
241	(Glca1-6) ₃ β-sp4	isomaltotriose	(Ga6)3b	560.5
246	GlcNAcβ1-2Galβ1- 3GalNAcα-sp3		GN2`TF	643.6
247	GlcNAcβ1-3Galβ1- 3GalNAcα-sp3		GN3`TF	643.6
248	GlcNAcβ1-3Galβ1-4Glcβ-sp2		GN3`Lac	588.6
250	GlcNAcβ1-3Galβ1- 4GlcNAcβ-sp3		GN3`LN	643.6
251	GlcNAcβ1-4Galβ1- 4GlcNAcβ-sp2		GN4`LN	629.6
252	GlcNAcβ1-4GlcNAcβ1- 4GlcNAcβ-sp4	chitotriose	Ch3	683.6
253	GlcNAcβ1-6Galβ1- 4GlcNAcβ-sp2		GN6`LN	629.6
254	Galβ1-3(GlcNAcβ1- 6)GalNAcα-sp3	core 2	core 2	643.6
255	GlcNAcβ1-3(GlcNAcβ1- 6)GalNAcα-sp3	core 4	core 4	684.7
258	Manα1-3(Manα1-6)Manβ-sp4	Man ₃	(Ma)3b	560.5
262	Galβ1-3GalNAcβ1-3Gal-sp4	Τ _{ββ} -Gal	Tbb-A	601.6
264	Gal ^{β1-4} Gal ^{β1-4} GlcNAc-sp3		Ab4`LN	602.6
287	3-O-Su-Galβ1-3(Fucα1- 4)GlcNAcβ-sp3	Su-Le ^a	3`SuLeA	666.7
288	Fucα1-3(3-O-Su-Galβ1- 4)GlcNAcβ-sp3	Su-Le ^x	3`SuLeX	666.7
289	Galα1-3(Neu5Acα2-	6-SiaTF	6SiaTF	731.7

	6)GalNAcα-sp3			
290	Galβ1-3(Neu5Aca2-6) GalNAcα-sp3		A3a(Sia) Tn	731.7
292	Neu5Acα2-3Galβ1- 3GalNAcα-sp3	3`-Sia-TF	Sia3`TF	731.7
293	Neu5Aca2-3Galβ1-4Glcβ-sp3	3`SL	3`SL	690.7
294	Neu5Aca2-3Galβ1-4Glcβ-sp4	3`SL	3`SL-Gly	689.6
295	Neu5Aca2-6Galβ1-4Glcβ-sp2	6`SL	6`SL-C2	676.6
298	Neu5Acα2-3Galβ1- 4GlcNAcβ-sp3	3`SLN	3`SLN	731.7
299	Neu5Aca2-3Galβ1- 3GlcNAcβ-sp3	3`-SiaLe ^c	3`SiaLeC	731.7
300	Neu5Aca2-6Galβ1- 4GlcNAcβ-sp3	6`SLN	6`SLN	731.7
303	Neu5Gcα2-3Galβ1- 4GlcNAcβ-sp3	3`SLN (Gc)	3`SLN(G c)	747.7
304	Neu5Gcα2-6Galβ1- 4GlcNAcβ-sp3	6`SLN (Gc)	6`SLN(G c)	747.7
306	9-NAc-Neu5Acα2-6Galβ1- 4GlcNAcβ-sp3		9NAc- 6`SLN	788.8
315	Neu5Aca2-3Galβ1-4-(6-O- Su)GlcNAcβ-sp3	6-Su-3`SLN	3`SLN6S u	833.8 (Na+)
317	Neu5Aca2-3Galβ1-3-(6-O- Su)GalNAcβ-sp3	6-Su-3`SiaTF	3`SiaTF6 Su	833.8 (Na+)
318	Neu5Acα2-6Galβ1-4-(6-O- Su)GlcNAcβ-sp3	6-Su-6`SLN	6`SLN6S u	833.8 (Na+)
319	Neu5Aca2-3-(6-O-Su)Galβ1- 4GlcNAcβ-sp3	6`-Su-3`SLN	3`SLN6` Su	833.8 (Na+)
321	(Neu5Aca2-8) ₃ -sp3	(Sia) ₃	(Sia)3	992.9 (Na+)
323	Neu5Aca2-6Galβ1-3GlcNAc- sp3	6`-SiaLe ^c	6`SiaLeC	731.7
324	Neu5Acα2-6Galβ1-3(6-O- Su)GlcNAc-sp3	6Su-6`-SiaLe ^c	6`SiaLeC 6Su	883.8 (Na+)
331	Neu5Gcα2-3Galβ1- 3GlcNAcβ-sp3	3`SiaLe ^c (Gc)	3`SiaLeC (GC)	747.7
	TETRASA	CCHARIDES		
359	Fucα1-2(Galα1-3)Galβ1- 3GlcNAcβ-sp3	B (type 1)	Btype1	748.7
360	Fucα1-2(Galα1-3)Galβ1- 4GlcNAcβ-sp3	B (type 2)	Btype2	748.7
362	Fucα1-2(Galα1-3)Galβ1- 3GalNAcα-sp3	B (type 3)	Btype3	748.7
363	Fucα1-2(Galα1-3)Galβ1- 3GalNAcβ-sp3	B (type 4)	Btype4	748.7
364	Fucα1-3(Galα1-3Galβ1- 4)GlcNAcβ-sp3	αGalLe ^x	aGalLeX	748.7

366	Fucα1-2(GalNAcα1-3)Galβ1- 3GlcNAcβ-sp3	A (type 1)	Atype1	789.8
368	Fuc α 1-2(GalNAc α 1-3)Gal β 1- 4GlcNAc β -sp3	A (type 2)	Atype2	789.8
371	Fuc α 1-2Gal β 1-3(Fuc α 1- 4)GlcNAc β -sp3	Le ^b	LeB	732.7
372	Fucal-3(Fucal-2Gal β 1- 4)GlcNAc β -sp3	Le ^y	LeY	732.7
373	Galα1-3Gal β 1-4GlcNAc β 1- 3Gal β -sp3	Galili (tetra)	Galili4	764.7
375	Gala1-4GlcNAcβ1-3Galβ1- 4GlcNAcβ-sp3		aLN3`LN	805.8
376	$Gal\beta1-3GlcNAc\beta1-3Gal\beta1-$ $4Glc\beta-sp4$	LNT	LNT	763.7
377	$Gal\beta1-3GlcNAc\beta1-3Gal\beta1-$ $3GlcNAc\beta-sp2$		LeCb3`L	791.8
378	Galβ1-3GlcNAcα1-3Galβ1- 4GlcNAcβ-sp3		LeCa3`L N	805.8
379	$Gal\beta1-3GlcNAc\beta1-3Gal\beta1-$ $4GlcNAc\beta-sp3$		LeCb3`L	805.8
380	Gal β 1-3GlcNAc α 1-6Gal β 1- 4GlcNAc β -sp2		LeCa6`L N	791.8
381	$Gal\beta 1-3GlcNAc\beta 1-6Gal\beta 1-$ $4GlcNAc\beta-sp 2$		LeCb6`L N	791.8
382	Gal β 1-3GalNAc β 1-4Gal β 1- 4Glc β -sp3	Asialo-GM1	aGM1	764.7
383	Galβ1-4GlcNAcβ1-3Galβ1- 4Glcβ-sp2	LNnT	LNnT	763.7
385	Galβ1-4GlcNAcβ1-3Galβ1- 4GlcNAcβ-sp3	i	LNb3`L N	805.8
387	Galβ1-4GlcNAcβ1-6Galβ1- 4GlcNAcβ-sp2		LNb6`L N	791.7
388	Gal β 1-3(Gal β 1-4GlcNAc β 1- 6)GalNAcα-sp3		LNb6TF	805.8
389	GalNAcβ1-3Galα1-4Galβ1- 4Glcβ-sp3	Gb4, P	Gb4	764.7
390	$(Glc\alpha 1-4)_4\beta$ -sp4	maltotetraose	(Ga4)4b	722.7
391	$(G c\alpha -6)_4\beta-sp4$	isomaltotetraose	(Ga6)4b	722.7
392	Fuc α 1-2(GalNAc α 1-3)Gal β 1- 3GalNAc α -sp3	A (type 3)	A(type3)	789.8
395	GlcNAcβ1-3(GlcNAcβ1- 6)Galβ1-4GlcNAcβ-sp3	Tk	Tk	832.8
401	Galβ1-3GlcNAcβ1-3Galβ1- 3GlcNAcβ-sp3	Le ^c 3Le ^c	Le ^c 3Le ^c	805.8
419	3-O-SuGalβ1-4GlcNAcβ1- 3Galβ1-4GlcNAcβ-sp3		(3`SuLN) 3`LN	907.8
420	4-O-SuGalβ1-4GlcNAcβ1- 3Galβ1-4GlcNAcβ-sp3		(4`SuLN) 3`LN	907.8

421	Neu5Ac α 2-3(GalNAc β 1- 4)Gal β 1-4Glc β -sp2	GM2	GM2	879.8
	Nov5 A or 2 2 Co101		2°CI Mb2	
422	4GlcNAcβ1-3Galβ-sp3		A SLINDS	893.9
423	Fucα1-3(Neu5Acα2-3Galβ1- 4)GlcNAcβ-sp3	SiaLe ^x	SiaLeX	877.9
426	Neu5Ac α 2-3Gal β 1-3(Fuc α 1- 4)GlcNAc β -sp3	SiaLe ^a	SiaLeA	877.9
428	Fuc α 1-3(Neu5Ac α 2-3Gal β 1- 4)6-O-Su-GlcNAc β -sp3		SiaLeX6	979.9
429	Fucal-3(Neu5Aca2-3(6-O- Su)Gal β_{1-4})GlcNAc β_{-} sp3		SiaLeX6`	979.9
433	Neu5Ac α 2-3Gal β 1- 3(Neu5Ac α 2-6)GalNAc α -sp3	Sia ₂ -TF	Sia2- 3` 6TF	1044.9
434	Neu $5Aca2$ -8Neu $5Aca2$ - 3Gal β 1-4Glc β -sp4	GD3	GC3	1002.9 (Na+)
	PENTA-NONA	A SACCHARIDES		(1,4,1)
470	Fucα1-2Galβ1-3GlcNAcβ1-		Htype1L	000.0
479	3Galβ1-4Glcβ-sp4	LNFP-I	ac	909.9
480	Fucα1-2Galβ1-3GlcNAcβ1- 3Galβ1-4GlcNAcβ-sp2	H (type1) penta	HtypeIL N	937.91
481	Galα1-3Galβ1-4GlcNAcβ1- 3Galβ1-4Glcβ-sp4	Galili (penta)	Galili5	925.8
483	Fucα1-3(Fucα1-2 (Galα1- 3)Galβ1-4)GlcNAcβ-sp3	Ble ^y	BLeY	894.9
488	Galβ1-4GlcNAcβ1-3(Galβ1- 4GlcNAcβ1-6)GalNAcα-sp3		LN2- 3,6Tn	1008.9
489	Galβ1-4GlcNAcβ1- 3(GlcNAcβ1-6)Galβ1- 4GlcNAc-sp2		LN3`(GN 6`)LN	994.9
490	GlcNAcβ1-3(Galβ1- 4GlcNAcβ1-6)Galβ1- 4GlcNAcβ-sp2		LN6`(GN 3`)LN	994.9
492	(Glcα1-6)5β-sp4	isomaltopentaose	(Ga6)5b	884.8
493	(GlcNAcβ1-4) ₅ β-sp4	chitopentaose	Ch5	1090
495	Man α 1-3(Man α 1-3(Man α 1- 6)Man α 1-6)Man β -sp4	Man5	(Ma)5b	966.9
496	Fucα1-2Galβ1-3(Fucα1- 4)GlcNAcβ1-3Galβ1-4Glcβ- sp4	Le ^b -Lac	LeBLac	1056
497	Fucα1-3(Fucα1-2Galβ1- 4)GlcNAcβ1-3Galβ1-4Glcβ- sp4	Le ^y -Lac	LeYLac	1056
498	$(Gal\beta 1-4GlcNAc\beta 1-3)_3-sp3$	(LN)3	(LNb3`)3	1171.1
499	$\begin{array}{c} Gal\beta 1-4GlcNAc\beta 1-3(Gal\beta 1-\\ 4GlcNAc\beta 1-6)Gal\beta 1-\\ 4GlcNAc-sp 2\end{array}$	Ι	LN2- 3`,6`LN	1157.1

501	Galβ1-3GalNAcβ1-3Galα1- 4Galβ1-4Glcβ-sp4	Gb5	Gb5	925.8
502	(Glcα1-6) ₆ β-sp4	maltohexaose	(Ga6)6b	1046.9
503	$(GlcNAc\beta1-4)_{6}\beta-sp4$	chitohexaose	Ch6	1293.3
504	(A-GN-M) ₂ -3,6-M-GN-GNβ- sp4	9-OS	9-OS	1697.6
505	(GN-M)2-3,6-M-GN-GNβ-sp4	7-OS	7-OS	1373.3
527	Neu5Aca2-3Galβ1- 4GlcNAcβ1-3Galβ1- 4GlcNAcβ-sp2	3`SLN-LacNAc	3`SLN- LN	1083
528	Fucα1-3(Neu5Acα2-3 Galβ1- 4)GlcNAcβ1-3Galβ-sp3	SiaLe ^x -3Gal	SiaLeX3 A	1040
529	Neu5Aca2-6(Galβ1- 3)GlcNAcβ1-3Galβ1-4Glcβ- sp4	LSTb	LSTb	1055
531	GalNAcβ1-4(Neu5Acα2- 8Neu5Acα2-3)Galβ1-4Glc-sp2	GD2	GD2-C2	1193.1 (Na+)
532	Neu5Aca2-8Neu5Aca2- 8Neu5Aca2-3Galβ1-4Glc-sp2	GT3	GT3	1303.1 (2Na+)
533	(Neu5Aca2-8)2Neu5Aca2- 3(GalNAcβ1-4)Galβ1-4Glc- sp2	GT2	GT2	1506.3 (2Na+)
534	Neu5Aca2-3Galβ1- 4GlcNAcβ1-3Galβ1- 4GlcNAcβ-sp3	6`SLN-LacNAc	6`SLN- LN	1097.1
536	Neu5Acα2-3Galβ1- 3GlcNAcβ1-3Galβ1-4Glcβ- sp4	LSTa	LSTa	1055
537	Neu5Acα2-3Galβ1- 4GlcNAcβ1-3Galβ1-4Glcβ- sp4	LSTd	LSTd	1055
538	Le ^x 1-6'(Le ^c 1-3')Lac-sp4	MFLNH III	MFLNH III	1389.2
539	LacNAc1-6'(Le ^d 1-3')Lac-sp4	MFLNH I	MFLNH I	1389.2
540	Le ^x 1-6'(6'SLN1-3')Lac-sp4	MSMFLNnH	MSMFL NnH	1566.5
541	Le ^x 1-6'(Le ^d 1-3')Lac-sp4	DFLNH (a)	DFLNH (a)	1535.4
542	Le ^c Le ^x 1-6'(Le ^c 1-3')Lac-sp4	MF(1-3)iLNO	MF(1- 3)iLNO	1754.6
543	Le ^x 1-6'(Le ^b 1-3')Lac-sp4	TFLNH	TFLNH	1681.5
	HIGER OLIGO	OSACCHARIDES		
625	(GlcAβ1-4GlcNAcβ1-3)8-NH2- ol	hyaluroninc acid	HyalU-ol	3207.5
627	(Sia2-6A-GN-M)2-3,6-M-GN- GNβ-sp4	11-OS, YDS	11-OS	2302.1 (Na+)

TERMINAL GALACTOSE				
1A	Gal ^{β1-3} GlcNAc	Lacto-N-Biose I	383.35	
1 B	Galβ1-4GlcNAc	N- Acetyllactosamine	383.35	
1C	Galβ1-4Gal	β-1-4-galactosyl-galactose	342.3	
1D	Galβ1-6GlcNAc	β-1-6 Galactosyl-N-acetyl glucosamine	383.35	
1E	Galβ1-3GalNAc	β-1-3 Galactosyl-N-acetyl galactosamine	383.35	
1F	Galβ1-3GalNAcβ1-4Galβ1- 4Glc	asialo GM1	707.63	
1G	Galβ1-3GlcNAcβ1-3Galβ1- 4Glc	Lacto-N-tetraose	707.63	
1H	Galβ1-4GlcNAcβ1-3Galβ1- 4Glc	Lacto-N-neotetraose	707.63	
11	Galβ1-4GlcNAcβ1-6(Galβ1- 4GlcNAcβ1-3)Galβ1-4Glc	Lacto-N-neohexaose	1072.96	
1J	Galβ1-4GlcNAcβ1-6(Galβ1- 3GlcNAcβ1-3)Galβ1-4Glc	Lacto-N-hexaose	1072.96	
1K	Gala1-4Gal B1-4Glc	Globotriose	504.44	
1L	GalNAca1-O-Ser	Tn Antigen GalNAca1-O-Ser	308.29	
1M	Galβ1-3GalNAcα1-O-Ser	Galactosyl-Tn Antigen	470.43	
1N	Gala1-3Gal	α1-3 Galactobiose	342.24	
10	Galα1-3Galβ1-4GlcNAc	Linear B-2 Trisaccharide	545.49	
1P	Galα1-3Galβ1-4Glc	Linear B-6 Trisaccharide	504.44	
2A	Galα1-3Galβ1-4Galα1-3Gal	α 1-3, β 1-4, α 1-3 Galactotetraose	666.58	
2B	Galβ1-6Gal	beta1-6galactobiose	342.3	
2C	GalNAcβ1-3Gal	terminal disaccharide of Globotriose	383.35	
2D	GalNAcβ1-4Gal	receptor for P.aureginosa	383.35	
2E	Gala1-4Gal	P1 antigen	545.49	
2F	GalNAcα1-3Galβ1-4Glc	a-D-N- acetylgalactosamine 1-3Galβ1-4Glc	545.49	
2G	Galβ1-3GlcNAcβ1-3Galβ1- 4GlcNAcβ1-6(Galβ1- 3GlcNAcβ1-3)Galβ1-4Glc	iso-Lacto-N-octaose (iLNO)	1438.3	
2H	Galβ1-3GlcNAcβ1-3Galβ1- 4GlcNAcβ1-3Galβ1-4Glc	para-Lacto-N- hexaose (pLNH)	1072.96	
18B	Galβ1-3GalNAcβ1-3Galα1- 4Galβ1-4Glc	Globopentaose	869.76	

18C	Galβ1-3GalNAcβ1-3Gal	Core type 4/Gb5	545.48	
		triose structure		
191	GalB1 4Glc	4-O-(B-D-	342.3	
IOL	Gaip1-40ic	B-D-glucose	542.5	
		4-O-(B-D-galactopyranosyl)-B-		
18M	Galβ1-4Gal	D-galactose	360.3	
1011		6-O-(B-D-galactopyranosyl)-B-	2.12.2	
18N	Gal ^{β1-6} Gal	D-galactose	342.3	
	TERMIN	JAL GlcNAc		
1 1	ClaNA appl 4ClaNA a	N,N'-Diacetyl	424.4	
4A	GicinAcp1-4GicinAc	chitobiose	424.4	
/D	GlcNAcβ1-4GlcNAcβ1-	N N' N" Triggetyl chitotrioso	627 50	
4D	4GlcNAc	IN, IN, IN - I Hacetyr chitotriose	027.39	
4 C	GlcNAcβ1-4GlcNAcβ1-	N,N',N'',N'''-Tetraacetyl	830 79	
	4GlcNAcβ1-4GlcNAc	chitotetraose	050.77	
	GlcNAcβ1-4GlcNAcβ1-	N.N'.N".N"".N""-Hexaacetyl	1237.17	
4D	4GlcNAcβ1-4GlcNAcβ1-	chitohexaose		
	4GlcNAc ^{β1-4} GlcNAc			
4E	Bacterial cell wall muramyl	GICNACEI-	496.46	
	ClaNA aP1 4ClaNA aP1	4MumAC		
4F	AGIeNAcB1 AGIeNAcB1	Pentacetyl	1033.08	
41'	AGICNAC	chitopentaose	1000.70	
		N-Acetyl-D-Glucosamine 6-O-		
18G	6-O-Su-GlcNAc	sulfate	323.25	
1011		N-Acetyl-D-	221.21	
18H	GICNAC	Glucosamine	221.21	
	MANNOSYL CON	ITAINING GLYCANS		
		β1-2 N-		
5A	GlcNAcβ1-2Man	Acetylglucosamine-	383.35	
		mannose		
5B	GlcNAcβ1-2Manα1-	Bianntennary N-linked core	910.8	
	6(GlcNAcβ1-2Manα1-3)Man	pentasaccharide	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5C	Mana1-2Man	α1-2-Mannobiose	342.3	
5D	Mana1-3Man	α1-3-Mannobiose	342.3	
5E	Manα1-4Man	α1-4-Mannobiose	342.3	
5F	Manα1-6Man	α1-6-Mannobiose	342.3	
5G	Mana1-6(Mana1-3)Man	α1-3,α1-6-	504 44	
	Mongel ((Margel 2)) Margel	Mannobiose		
5H	$V(an\alpha 1-0)$ $V(an\alpha 1-3)$ $V(an\alpha 1-6)$	Mannopentaose	828.72	
	Eugel 2Col81 2CloNA of 1			
7A	$\frac{1}{3} \frac{1}{3} \frac{1}$	Lacto-IN-	853.77	
	GalB1-3(Fuca1-4)GleNAcB1	Lacto-N-		
7B	3GalB1-4Glc	fucopentaose II	853.77	
			1	

7C	Gal β 1-4(Fuc α 1-3)GlcNAc β 1-	Lacto-N-	853.77
	$\frac{3\text{Gal}\beta\text{I}-4\text{Glc}}{1-2(1-2)(1-2)(1-2)}$	tucopentaose III	
7D	Fucal-2Gal β I-3(Fucal-	Lacto-N-	999.91
	$G_{2}[B_{1-3}(E_{1-3})G_{1-3$	Lacto-N-	
7E	$3Gal\beta 1-4(Fuc\alpha 1-3)Glc$	difucohexaose II	999.91
7F	Fuca1-2Gal	H-disaccaride	326.3
7G	Fucα1-2Galβ1-4Glc	2'-Fucosyllactose	488.44
7H	Gal ^{β1-4} (Fuca1-3)Glc	3'-Fucosyllactose	488.44
7I	Galβ1-4(Fucα1-3)GlcNAc	Lewis ^x	529.49
7J	Gal ^{β1-3} (Fuca1-4)GlcNAc	Lewis ^a	529.49
7K	GalNAca1-3(Fuca1-2)Gal	Blood Group A trisaccharide	529.49
7L	Fucα1-2Galβ1-4(Fucα1-3)Glc	Lactodifucotetraose (LDFT)	
7M	Gal ^{β1-3} (Fuca1-2)Gal	Blood Group B Trisaccharide	488.44
7N	Fucα1-2Galβ1-4(Fucα1- 3)GlcNAc	Lewis ^y	675.63
70	Fucα1-2Galβ1-3GlcNAc	Blood Group H Type II Trisaccharide	529.49
7P	Fucα1-2Galβ1-3(Fucα1- 4)GlcNAc	Lewis ^b tetrasaccharide	675.63
8A	SO ₃ -3Galβ1-3(Fucα1- 4)GlcNAc	Sulpho Lewis ^a	631.53
8B	SO ₃ -3Galβ1-4(Fucα1- 3)GlcNAc	Sulpho Lewis ^x	631.53
8C	Galβ1-3GlcNAcβ1-3Galβ1- 4(Fucα1-3)GlcNAcβ1-3Galβ1- 4Glc	Monofucosyl-para-Lacto-N- hexaose IV	1219.1
8D	Galβ1-4(Fucα1-3)GlcNAcβ1- 6(Galβ1-3GlcNAcβ1-3)Galβ1- 4Glc	Monofucosyllacto-N-hexaose III	1219.1
8E	Galβ1-4(Fucα1-3)GlcNAcβ1- 6(Fucα1-2Galβ1-3GlcNAcβ1- 3)Galβ1-4Glc	Difucosyllacto-N- hexaose	1365.25
8F	Galβ1-4(Fucα1-3)GlcNAcβ1- 6(Fucα1-2Galβ1-3(Fucα1- 4)GlcNAcβ1-3)Galβ1-4Glc	Trifucosyllacto-N-hexaose	1511.39
8G	Galβ1-4GlcNAcβ1-3Galβ1- 4(Fucα1-3)Glc	Lacto-N-fucopentaose VI (LNFP VI)	853.77
8H	Fucα1-2Galβ1-4(Fucα1- 3)GlcNAcβ1-3Galβ1-4Glc	Lacto-N-neodifucohexaose I (LNnDFH I)	999.91
81	Fucα1-3Galβ1-4GlcNAcβ1- 3Galβ1-4(Fucα1-3)Glc	Lacto-N-neodifucohexaose II (LNnDFH II)	999.91
8J	Fucα1-2Galb1-4(Fucα1- 3)GlcNAcb1-3(Fucα1- 2)Galb1-4Glc	Trifucosyllacto-N-neoteraose I (TFLNnTI)	1146.05

8K	Galβ1-4(Fucα1-3)GlcNAcβ1- 6(Galβ1-4GlcNAcβ1-3)Galβ1- 4Glc	Monofucosyllacto- N- neohexaose I (MFLN	nHI)	1219.1
8L	Galβ1-4(Fucα1-3)GlcNAcβ1- 6(Galβ1-4(Fucα1- 3)GlcNAcβ1-3)Galβ1-4Glc	Difucosyllacto-N-neo (DFLNnH I)	hexaose I	1365.25
8M	Fucα1-2Galβ1-4(Fucα1- 3)GlcNAcβ1-6(Galβ1- 4GlcNAcβb1-3)Galβ1-4Glc	Difucosyllacto-N-neol (DFLNnH II)	hexaose II	1365.25
8N	Galβ1-3GlcNAcβ1-3Galβ1- 4(Fucα1-3)GlcNAcβ1- 6(Galβ1-3GlcNAcβ1-3)Galβ1- 4Glc	Monofucosyl(1-3)-iso octaose (MFiLNO)	-lacto-N-	1584.44
80	Fucα1-2Galβ1-3GlcNAcβ1- 3Galβb1-4(Fucα1- 3)GlcNAcβ1-6(Galβ1- 3GlcNAcβ1-3)Galβ1-4Glc	Trifucosyl(1-2,1-2,1-3 lacto-N-octaose (TFiL 2,1-2,1-3))	3)-iso- NO (1-	1876.72
8P	GalNAcα1-3(Fucα1-2)Galβ1- 4GalNAc	Blood Group A tetrasa	accharide	732.68
9A	Gal α 1-3(Fuc α 1-2)Gal β 1- 4(Fuc α 1-3)Glc	Blood Group B pentas	saccharide	796.72
9B	Gal β 1-4GlcNAc β 1-6(Fuc α 1- 2Gal β 1-3GlcNAc β 1-3)Gal β 1- 4Glc	Monofucosyllacto-N-I	hexaose I	1219.1
18D	Galα1-3(Fucα1-2)Galβ1-4Glc	Blood group B antiger type 5	n tetraose	650.57
18E	GalNAc α 1-3(Fuc α 1-2)Gal β 1- 4(Fuc α 1-3)Glc	Blood group A pentas	accharide	837.77
19J	Gal β 1-4(Fuc α 1-3)GlcNAc β 1- 3Gal	Lewis ^x tetraose		691.62
19L	Fuc α 1-2Gal β 1-4(Fuc α 1- 3)GlcNAc β 1-3Gal	Lewis ^y pentaose		837.77
19M	Gal β 1-3(Fuc α 1-4)GlcNAc β 1- 3Gal	Lewis ^a tetraose		691.62
19N	Fucα1-2Galβ1-3(Fucα1- 4)GlcNAcβ1-3Gal	Lewis ^b pentaose		837.77
20A	Fucα1-2Galβ1-3GalNAcβ1- 3Gal	Blood group H antiger type 4	n tetraose	691.27
20B	GalNAcα1-3(Fucα1-2)Galβ1- 3GalNAcβ1-3Gal	Blood group A antigen pentaose		894.82
20C	Galα1-3(Fucα1-2)Galβ1- 3GalNAcβ1-3Gal	Blood group B antiger pentasaccaride type 4	1	853.76
	SIALYLAT	ED GLYCANS		
10A	Neu5Acα2-3Galβ1-3(Fucα1- 4)GlcNAc	Sialyl Lewis ^a (S Lea)		820.74
10B	Neu5Acα2-3Galβ1-4(Fucα1- 3)GlcNAc	Sialyl Lewis ^x (S Lex)		820.74
10C	Neu5Acα2-3Galβ1- 3GlcNAcβ1-3Galβ1-4Glc	Sialyllacto-N- tetraose a		

10D	Gal β 1-4(Fuc α 1-3)GlcNAc β 1- 6(Neu5Ac α 2-6Gal β 1- 4GlcNAc β 1-3)Gal β 1-4Glc	Monosialyl, monofucosyllacto- N-neohexose	1510.36
10E	Neu5Aca2-3Galβ1- 3(Neu5Aca2-6)GalNAc	Disialyl-TF	965.86
10H	Neu5Acα2-6Galβ1- 3GlcNAcβ1-3Galβ1-4(Fucα1- 3)Glc	Sialyllacto-N-fucopentaose VI	1145.03
101	Galβ1-3GlcNAcβ1- 3(Neu5Acα2-6Galβ1- 4GlcNAcβ1-6)Galβ1-4Glc	Monosialyllacto-N-hexaose	1364.22
10J	Neu5Acα2-6Galβ1- 3GlcNAcβ1-3(Galβ1- 4GlcNAcβ1-6)Galβ1-4Glc	Monosialyllacto-N-neohexaose	1364.22
10K	Neu5Acα2-3Galβ1-4GlcNAc	3'-Sialyllactosamine	674.6
10L	Neu5Aca2-6Galβ1-4GlcNAc	6'-Sialyllactosamine	674.6
10M	Neu5Acα2-3Galβ1- 3GlcNAcβ1-3Galβ1-4Glc	LS-Tetrasaccharide a (LSTa)	998.88
10N	Galβ1-3(Neu5Acα2- 6)GlcNAcβ1-3Galβ1-4Glc	LS-Tetrasaccharide b (LSTb)	998.88
100	Neu5Acα2-6Galβ1- 4GlcNAcβ1-3Galβ1-4Glc	LS-Tetrasaccharide c (LSTc)	998.88
10P	Neu5Acα2-3Galβ1- 3(Neu5Acα2-6)GlcNAcβ1- 3Galβ1-4Glc	Disialyllacto-N- tetraose	1290.14
11A	Neu5Aca2-3Galβ1-4Glc	3'-Sialyllactose	633.55
11 B	Neu5Aca2-6Galβ1-4Glc	6'-Sialyllactose	633.55
11C	(Neu5Aca2-8Neu5Ac)n (n<50)	Colominic acid	
18A	Neu5Acα2-3Galβ1- 4GlcNAcβ1-3Galβ1-4Glc	LS-Tetrasaccharide d	1020.86
18K	9-NAc-Neu5Ac	9-acetamido-9-deoxy-N-acetyl- a-D-neurminic acid	351.31
180	Neu5Gc	N- glycolylneuraminic acid	325.27
19K	Neu5Acα2-3Galβ1-4(Fucα1- 3)GlcNAcβ1-3Gal	Sialyl lewis X pentaose	1004.86
	GLYCOSAMINOGLYCANS	- high and low molecular weight	
12A	Neocarratetraose-41, 3-di-O- sulphate (Na+)	C ₂₄ H ₃₆ O ₂₅ S ₂ Na ₂ (Mixed anomers. Tetrasaccharide of regular κ - carrageenan)	834.64
12B	Neocarratetraose-41-O- sulphate (Na+)	C ₂₄ H ₃₇ O ₂₂ SNa (Mixed anomers. Derived from C1003 by removal of the non-reducing terminal 4- sulphate)	732.59

	Neocarrahexaose-24.41 3 5-	C26H52O40S4N24 (Mixed	
	tetra- Ω -sulphate (Na+)	anomers A hybrid sequence	
	terra-O-surpliate (14a+)	comprising carrageenan	
12C		disaccharides in the order k-i-k	1344.99
		derived from the corresponse	
		from Chondrus arispus)	
	Naccorrection de la 5 tri	C H O S No (Minod	
100	Neocalitaliexaose-41, 5, 5 -ul-	C36H53O37S3INa3 (M1Xed	1040.05
12D	O-sulpliate (Na+)	anomers. Hexasaccharde of	1242.95
	N	regular k-carrageenan)	
	Neocarraoctaose-41, 3, 5, /-	C48H70O49S4Na4 (Mixed	
12E	tetra-O-sulphate (Na+)	anomers. Octasaccharide of	1651.26
		regular κ-carrageenan)	
	Neocarradecaose-41, 3, 5, 7, 9-	C60H87O61S5Na5 (Mixed	
12F	penta-O-sulphate (Na+)	anomers. Decasaccharide of	2059.57
		regular к- carrageenan)	
	$\Delta UA-2S$ -GlcNS-6S	C12H15NO19S3Na4 (Predominant	
12G		disaccharide produced from	665.4
		heparin by heparinase I and II)	
	ΔUA-GlucNS-6S	C ₁₂ H ₁₆ NO ₁₆ S ₂ Na ₃ (Produced	
12H		from heparinase II digestion of	563.35
		heparin and heparin sulphate)	
	ΔUA-2S-GlucNS	C12H16NO16S2Na3 (Produced	
12I		from heparin by digestion with	563.35
		heparinase I and II)	
	AUA-2S-GlcNAc-6S	C14H18NO17S2Na3 (Minor	
121		component produced from	605 39
1 20		heparin by heparinase II)	000.07
	AUA-GlcNAc-68	CutHioNOuSNaa (Product of the	
12K		action of heneringses II and III	503 34
121		on heparin and heparan sulphate)	505.54
	AUA 28 GloNAs	C. H. NO. SNo. (Minor and dust	
101	20A-25-01CNAC	C14H19NO14SINa2 (Willior product	502.24
12L		benerin)	505.54
		C II NO No (Drochood from	
1014	ΔUA-GICNAC	C14H20INO11INa (Produced Ifom	401.2
12111		With honoringgo III)	401.5
	AUA GalNAA AS (Dalta Di	C. H. NO. SNo. (Produced	
	$\Delta OA - Oan AC - 45 (Delta DI - 45)$	from various chondroitin	
12N	43)	sulphates By the action of	503 34
121		chondroitingses ABC B and	505.54
		AC-1	
	AUA-GalNAC 68 (Dalta Di	C14H10NO14SNo2 (Produced	
	68)	from various chondroitin	
120		sulphates By the action of	503 34
120		chondroitinases ABC AC-1 and	202.24
		C)	
	1	-/	1

12P	ΔUA-GalNAc-4S,6S (Delta Di-disE)	C ₁₄ H ₁₈ NO ₁₇ S ₂ Na ₃ (Produced from various chondroitin sulphates By the action of chondroitinases ABC, B and AC-1)	605.39
13A	ΔUA-2S-GalNAc-4S (Delta Di-disB)	C ₁₄ H ₁₈ NO ₁₇ S ₂ Na ₃ (Produced from various chondroitin sulphates by action of chondroitinase ABC and/or B. Most typically from chondroitin sulphate B (dermatan sulphate))	605.39
13B	ΔUA-2S-GalNAc-6S (Delta Di-disD)	C ₁₄ H ₁₈ NO ₁₇ S ₂ Na ₃ (Produced from various chondroitin sulphates by the action of chondroitinase ABC)	605.39
13C	ΔUA-2S-GalNAc-4S-6S (Delta Di-tisS)	C ₁₄ H ₁₇ NO ₂₀ S ₃ Na ₄ (Produced as a minor component by the action of chondroitinase ABC on various chondroitin sulphates, particularly B)	707.43
13D	ΔUA-2S-GalNAc-6S (Delta Di-UA2S)	C ₁₄ H ₁₉ NO ₁₄ SNa ₂ (Produced as a minor component from various chondroitin sulphates by the action of chondroitinase ABC)	503.34
13E	ΔUA-GlcNAc (Delta Di-HA)	C ₁₄ H ₂₀ NO ₁₁ Na (The only unsaturated disaccharide produced from hyaluronic acid by the action of chondroitinase ABC or AC-1)	401.3
13F	$(GlcA\beta 1-3GlcNAc\beta 1-4)n$ (n=4)	Hyaluronan fragments (4mer)	
13G	$(GlcA\beta1-3GlcNAc\beta1-4)n$ (n=8)	Hyaluronan fragment (8mer)	
13H	$(GlcA\beta1-3GlcNAc\beta1-4)n$ (n=10)	Hyaluronan fragment (10mer)	
13I	$(GlcA\beta 1-3GlcNAc\beta 1-4)n$ (n=12)	Hyaluronan fragment (12mer)	
13J	$(GlcA/IdoA\alpha/\beta1-4GlcNAc\alpha1-4)n (n=200)$	Heparin	
13K	$(GlcA/IdoA\beta1-3(\pm 4/6S)GalNAc\beta1-4)n$ (n<250)	Chondroitin sulfate	
13L	$\begin{array}{l} ((\pm 2S)GlcA/IdoA\alpha/b1-\\ 3(\pm 4S)GalNAc\beta1-4)n \ (n<250) \end{array}$	Dermatan sulfate	
13M	(GlcA/IdoAβ1- 3(±6S)GalNAcβ1-4)n (n<250)	Chondroitin 6- sulfate	
13N	HA - 4 10mM		775
130	HA - 6 10mM		1155.6

13P	HA - 8 9.7mM			1534.7
14A	HA 10 7.83mM			1913.8
14B	HA-12 6.5mM			2293.4
14C	HA-14 5.6mM			2672.5
14D	HA-16 4.9mM			
14E	HA 30000 da 2.5mg/ml			
14F	HA 107000 da 2.5mg/ml			
14G	HA 190000 da 2.5 mg/ml			
14H	HA 220000 da 2.5 mg/ml			
14I	HA 1600000 da 2.5 mg/ml			
14J	Heparin sulfate 5 mg/ml			
14K	β1-3Glucan			
14L	Chondroitin disaccharide ∆di- OS, sodium salt	C ₁₄ H ₂₀ NNaO ₁₁ (produ various chondriotin su the action of chondrio ABC, AC-1 and C)	ced from lfates by tinases	401.3
14M	ΔUA→2S-GlcN-6S	Heparin unsaturated d I-H, the major compor the action of heparinas N-sulfated heparin	isaccharide nent from se II on de-	541.37
14N	ΔUA→GlcN-6S	Heparin unsaturated disaccharid II-H, the major component from the action of heparinase II on de N-sulfated heparin		439.32
140	ΔUA→2S-GlcN	N-sulfated heparin Heparin unsaturated disaccharic III-H, the major component from the action of heparinase II on de N-sulfated heparin		439.32
14P	ΔUA→GlcN	Heparin unsaturated d iV-H is obtained from of heparinases on hepa	isaccharide the action arin	337.28
18I	GlcA	D-Glucuronic acid		194.14
	TERMINAL GLU	COSE STRUCTURES		
18J	6-O-(H ₂ PO ₄)-Glc	D-Glucose-6- phosphate		260.14
190	Glca1-4Glca1-4Glc	Maltotriose		504.44
19P	Glca1-4Glca1-4Glca1-4Glc	Maltotetraose		666.58
	GANGLIOSID	E STRUCTURES		
17A	GalNAc	asialo GM2		545.48
17B	Galβ1-3GalNAcβ1-4Galβ1- 4Glc	asialo GM1		707.62

17C	Galβ1-3GalNAcβ1- 4(Neu5Acα2-8Neu5Acα2-	GT1c ganglioside	1647.33
	8 Neu5Acα2-3)Galβ1-4Glc	sugar	
170	Neu5Aca2-8Neu5Aca2-	GT1a ganglioside	1 (17 00
1/D	3 Gal β I- 3 Gal $NAC\beta$ I- $4(Neu5Aca2-3)Gal\beta$ I- $4Glc$	sugar	1647.33
	$Gal\beta 1-3GalNAc\beta 1-$	CD1h conclination	
17E	4(Neu5Aca2-8Neu5Aca2-	Sugar	1334.09
	$\frac{3)\text{Gal}\beta1-4\text{Glc}}{\text{New5A arg2 2 Cal}\beta1}$	- Sugar	
1 7 F	3GalNAcB1-4(Neu5Acg2-	GD1a Ganglioside	1334.09
	3)Galβ1-4Glc	sugar	
17G	Neu5Aca2-3Galβ1-	GM1b ganglioside	1020.86
	3 GalNAc β 1-4Gal β 1-4Glc	sugar	1020100
17H	$4(\text{Neu5Ac}\alpha^2-3)\text{GalB1-4Glc}$	GM Ta ganghoside	1020.86
171	$Fucal-2Gal\beta I-3GalNAc\beta I-$	for and CM1 constraints and	11(0
1/1	4(Neu5Acα2-3)Galβ1-4Glc	fucosyl GM1 ganglioside sugar	1108
171	$GalNAc\beta1-4(Neu5Ac\alpha2-$	GT2 ganglioside	1495 10
1 / J	3)Gal β 1-4Glc	sugar	1485.19
171	GalNAcβ1-4(Neu5Acα2-	GD2 gangliosifde	1171.05
1/K	8Neu5Acα2-3)Galβ1-4Glc	sugar	11/1.95
17L	GalNAc β 1-4(Neu5Ac α 2-	GM2 ganglioside	858.72
	Neu $5Aca^2-8Neu5AcB^2-$	GT3 ganglioside	
17M	8Neu5Acα2-3Galβ1-4Glc	sugar	1282
17N	Neu5Aca2-8Neu5Aca2-	GD3 ganglioside	968.76
	3Galβ1-4Glc	sugar	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
170	Neu5Acα2-3Galβ1-4Glc	SWIS ganghoside	655.53
	Neu5Ac α 2-3Gal β 1-	CT1h conclination	
17P	3GalNAcβ1-4(Neu5Acα2-	sugar	
	8Neu5Acα2-3)Galβ1-4Glc		
	COMPLEX TY	(PE N-GLYCANS	
	$Gal\beta 1-4GlcNAc\beta 1-2Man\alpha 1-$ 3(Gal\beta 1-4GlcNAc\beta 1-2Man\alpha 1-	Asialo galactosylated	
19A	6 Man) β 1-4GlcNAc β 1-	fucosylated biantennary	1787.63
	4(Fuca1-6)GlcNAc		
	$Gal\beta 1-4GlcNAc\beta 1-2(Gal\beta 1-4GlcNAc\beta 1-4GlcNAc \beta 1-4GlcNAc 1-4Gl$		
	3(GalB1-4GlcNAcB1-2)(GalB1-	Asialo galactosylated	
19B	4 GlcNAc β 1-6)Man α 1-	tetranatennary, N-linked glycan	2372.15
	6Man)β1-4GlcNAcβ1-		
	4GlcNAc		
	4GlcNAcB1-2Mang1-3(GalB1-	Monosialo(2.6), biantennary	
19C	4GlcNAcβ1-2Manα1-	(A1)	1932.74
	$3)Gal\beta1-4Glc Sugar Sug$		

	4GlcNAc		
19D	Neu5Aca2-6Galβ1- 4GlcNAcβ1-2Manα1- 3(Neu5Aca2-6Galβ1- 4GlcNAcβ1-2Manα1- 6)Manβ1-4GlcNAcβ1- 4GlcNAc	Disialo (2,6) biantennary (A2)	2224
19E	Galβ1-4GlcNAcβ1-2Manα1- 3(Galβ1-4GlcNAcβ1-2Manα1- 6)Manβ1-4GlcNAcβ1- 4GlcNAc	Asialo, galactoyslated, biantennary (NA2)	1641.49
19F	Neu5Aca2-6Galβ1- 4GlcNAcβ1-2Manα1- 3(Neu5Aca2-6Galβ1- 4GlcNAcβ1-2Manα1- 6)Manβ1-4GlcNAcβ1- 4(Fucα1-6)GlcNAc	Disialo, galactosylated, fucosylated, biantennary (A2F)	2370.14
19G	Neu5Aca2-6Galβ1- 4GlcNAcβ1-2(Neu5Aca2- 6Galβ1-4GlcNAcβ1-4)Manα1- 3(Neu5Aca2-6Galβ1- 4GlcNAcβ1-2Manα1- 6)Manβ1-4GlcNAcβ1- 4GlcNAcβ1-2Manα1- 6)Manβ1-4GlcNAcβ1-	Trisialylated, galactosylated, triantennary (A3)	2880.59
19H	GlcNAcβ1-2(GlcNAcβ1- 4)Manα1-3(GlcNAcβ1- 2Manα1-6)GlcNAcβ1- 4Manβ1-4GlcNAcβ1- 4GlcNAc	Asialo, agalacto, bisected triannary (NGA3B)	1723.59

Ligands	Short name	Molecular weight
alanine	Ala	89.09 g/mol
arginine	Arg	174.2 g/mol
cysteine	Cys	121.16 g/mol
glutamine	GluA	146.14 g/mol
proline	Pro	115.13 g/mol
tryptophane	Тгур	204.23 g/mol
α-ketoglutarate	a-keto	146.11 g/mol
aspartate	Asp	133.11 g/mol
asparagine	Asn	132.12 g/mol
glutamate	Glu	147.13 g/mol
glycine	Gly	75.07 g/mol
isoleucine	Iso	131.17 g/mol
serine	Ser	105.09 g/mol
valine	Val	117.151 g/mol
purine	Pur	120.11 g/mol
leucine	Leu	131.17 g/mol
methionine	Met	149.21 g/mol
threonine	Thr	119.1192 g/mol
malic acid	Malic	134.0874 g/mol
glucosamine	GlucA	179.17 g/mol
lysine	Lys	146.19 g/mol
phenylalanine	Phe	165.19 g/mol
tryrosine	Try	181.19 g/mol
fumarate	Fum	116.07 g/mol
thiamine	Thia	265.355 g/mol
succinate	Suc	118.09 g/mol

 Table S3. Molecules included in the small-molecule microarray.

Number	Spacer form of saccharide
	MONOSACCHARIDES
6	GalNAcβ-sp3
22	GlcNAcβ-sp4
48	Neu5Aca-sp3
20	Rhaa-sp3
3	Galβ-sp3
16	Manα-sp3
49	Neu5Aca-sp9
	DISACCHARIDES
73	Fuca1-4GlcNAcβ-sp3
78	Gala1-3GalNAca-sp3
100	Galβ1-6Galβ-sp4
115	GlcNAcβ1-4GlcNAcβ-Asn
168	GMDP-Lys
72	Fuca1-3GlcNAcβ-sp3
87	Galβ1-3Galβ-sp3
84	Galβ1-2Galβ-sp3
93	Galβ1-4Glcβ-sp4
104	GalNAcβ1-3Galβ-sp3
120	Manα1-3Manβ-sp4
149	GlcNAcβ1-4(6-O-Su)GlcNAcβ-sp2
151	6-O-Su-Galβ1-3GalNAcα-sp3
171	Neu5Aca2-3GalNAcα-sp3
	TRISACCHARIDES
233	
293	Neu5Aca2-3Galβ1-4Glcβ-sp3
241	$\frac{(Glc\alpha l-6)_{3}\beta-sp4}{(Glc\alpha l-6)_{3}\beta-sp4}$
252	GICNACBI-4GICNACBI-4GICNACB-sp4
254	$\frac{\text{Gal}\beta\text{I}-3(\text{GlcNAc}\beta\text{I}-6)\text{Gal}\text{NAc}\alpha\text{-sp}3}{\text{Gl}\text{NAc}\alpha\text{-sp}3}$
250	GlcNAcp1-3Galp1-4GlcNAcp-sp3
100	Glycosaminoglycans - high and low molecular weight
12G	$\Delta UA-2S-GICNS-6S$
12D	Neocarrahexaose-41, 3, 5-tri-O-sulphate (Na+)
14F	HA 107000 da 2.5mg/ml
75	Fucosylated glycans
/E	
19M	Galp1-3(Fuca1-4)GicNAcp1-3Gal
	Ganglioside structures
17I	fucosyl GM1 ganglioside sugar
1H	Lacto-N-neotetraose
	Mannosyl containing glycans
5E	Mana1-4Man
	Terminal galactose
2G	iso-Lacto-N-octaose (iLNO)
18N	Galβ1-6Gal

Table S4. Complex glycan structures recognized by Tlp10.

Table S5. Chemotaxis responses of WT and mutant *C. jejuni* strains. Nutrient depleted chemotaxis assays and μ -slide chemotaxis assays. Chemotaxis assays were performed using the indicated ligands as test compounds. The universal attractant mucin was used a positive control. The *C. jejuni* non-motile mutant (81116 Δ *flaA*/*flaB*) and PBS were used as negative controls. Data (Log 10 CFU/mL) are from three technical replicates and are representative of three independent experiments (n = 3).

Ligands	C. jejuni W	<i>С. jejuni</i> 11168-О <i>Дtlp10</i> ^{LBD} WT		<i>∆tlp10</i> ^{LBD} c		81116 ∆flaA/f laB	
	2 mM	5 mM	2 mM	5 mM	2 mM	5 mM	2 mM
mucin	5.8 ± 0.56	6.2 ± 0.68	5.8 ± 0.76	6± 0.9	5.7 ± 0.64	5.9 ± 0.32	0
arginine	3.6 ± 0.56	3.1±0.3	4.6± 0.31	4.9 ± 0.57	3.4 ± 0.54	3.8 ± 0.77	0
aspartate	5.6 ± 0.75	5.8 ± 0.9	3.3 ± 0.52	3.8 ± 0.21	4.7 ± 0.67	5.3 ± 0.51	0
isoleucine	5.7 ± 0.42	6.2 ± 0.6	3.5 ± 0.5	4.2 ± 0.32	4.9 ± 0.69	5.2 ± 0.24	0
thiamine	3.9±0.19	4.1±0.3	4.6±0.24	4.9±0.37	3.8±0.59	3.2±0.16	0
purine	4.7 ± 0.67	4.2 ± 0.1	4.5 ± 0.66	4.8 ± 0.28	5.6 ± 0.75	5.7 ± 0.36	0
malate	5.8 ± 0.51	6.1 ± 0.42	4.4 ± 0.45	4.2 ± 0.19	5.2 ± 0.72	5.9 ± 0.24	0
fumarate	5.7 ± 0.76	5.5 ± 0.3	3.6 ± 0.56	3.9 ± 0.85	4.2 ± 0.63	4.8 ± 0.11	0
α-ketoglutarate	4.7 ± 0.68	4.9 ± 0.57	4.3 ± 0.64	4.2 ± 0.45	4.7 ± 0.67	4.8 ± 0.14	0
galactose	4.6 ± 0.45	4.6± 0.2	5.6 ± 0.25	5.9 ± 0.17	4.5 ± 0.55	4.8 ± 0.11	0
mannose	3.9±0.25	3.4 ± 0.16	3.08±0.33	3.2 ± 0.28	3.7 ± 0.59	3.8 ± 0.25	0
rhamnose	3.3 ± 1.07	3.6 ± 0.49	3.2 ± 0.28	3.5 ± 0.39	3.6 ± 0.08	3.9 ± 0.27	0
fucose	5.8 ± 0.66	5.9 ± 0.43	3.8 ± 0.68	3.1 ± 0.32	4.5 ± 0.71	5.3 ± 0.42	0
PBS	0	0	0	0	0	0	0
		μ-	slide chemo	taxis assay			
Ligands	<i>C. jejuni</i> 11168-O WT		$\Delta t l p 1 0^{LBD}$		∆tlp1	ℓ ^{lBD} c	81116⊿ laA/flai
galactose	3.3±0.16		$4.09{\pm}0.34$		3.6±	0.44	0
mannose	3.7± 0.21		3.3±0.17		3.4± 0.02		0
rhamnose	3.4 ± 0.24		3.08± 0.06		3.5±0.69		0
fucose	4.9 ± 0.41		3.6 ± 0.65		4.3±0.28		0
sialic acid	2.3 ± 0.28		2.7 ± 0.14		2.4±	0.05	0

Table S6. Illustration of A-B-A competition SPR analysis of WT Tlp10^{LBD}. The table shows where a cumulative response is observed when a second analyte (B) is flown across the bound protein while the first analyte (A) is present. The experimental value (value determinant) is actual response units (RU) values calculated from competition SPR data. The theoretical value (mathematical prediction) is response units (RU) values based on math theory. For each pair of ligands, binding was categorized as independent, shared, or preferential shared. All response data were normalised to 100Da molecular weight for each analyte, allowing direct comparison of responses. The data represent mean values (\pm SD) of three replicates in three independent experiments (n = 3).

Liga nd (A)	Resp onse units (RU± SD)	Ligand (B)	Resp onse units (RU± SD)	Experim ental RU (RU B +A ±SD)	Experim ental RU (RU A + B ±SD)	Theoreti cal RU (Indepen dent)	Theore tical RU (Share d)	Binding Status (B +A)	Binding Status (A+B)
argin ine	1.18								
	±0.20								
	+	fumarat	3.07	2.1	2.86	4.24	2.12	Shared	Shared
		е	±0.30	±0.21	±0.26				
	+	α-	2.16	1.53	1.28	3.33	1.67	Shared	Shared
		arate	±0.24	±0.22	±0.23				
	+	malate	3.26	4.7	4.31	4.44	2.22	Indepe	Indepe
			±0.6	±0.2	±0.2			ndent	ndent
	+	isoleuci	2.25	1.6	2.19	3.43	1.71	Shared	Shared
		ne	±0.2	±0.1	±0.1				
	+	thiamin	3.00	4.39	2.3	4.17	2.09	Indepe	Shared
		C	±0.1	±0.1	±0.1			ndent	
	+	purine	2.41	2	2.62	3.58	1.79	Shared	Shared
			±0.2	±0.2	±0.2				
	+	aspartat	2.14	2.25	2.64	3.32	1.66	Shared	Shared
		е	±0.2	±0.2	±0.1				
	+	galactos	1.25	3.08	2.96	2.43	1.21	Indepe	Indepe
		e	±0.2	±0.1	±0.09			ndent	ndent
	+	mannos	1.53	1.61	2.23	2.7	1.35	Shared	Shared
		e	±0.2	±0.1	±0.2				
	+	rhamno	1.68	2.1	2.99	2.85	1.43	Shared	Indepe

		se	±0.1	±0.1	±0.1				ndent
	+	fucose	2.77	2.39	3.81	3.95	1.97	Shared	Indepe
			±0.1	±0.1	±0.2				ndent
	+	Sialic	0.79	1.22	1.53	1.97	0.98	Shared	Shared
		acid	±0.02	±0.6	±0.06				
mala	3.3								
te	±0.65 2								
	+	fumarat	3.06	6.27	5.636	6.330	3.165	Indepe	Shared
		e	±0.33	±0.25	±0.28			ndent	
	+	α-	2.2	4.1	4.7	5.4	2.709	Shared	Shared
		ketoglut arate	±0.24	±0.27	±0.16				
	+	isoleuci ne	2.24± 0.21	4.562±0. 21	4.788±0. 11	5.512	2.756	Shared	Shared
	+	thiamin	2.99	4.381	6.484±0.	6.259	3.129	Shared	Indepe
		e	±0.13	±0.18	16				ndent
	+	purine	2.406	4.839	5.390	5.669	2.834	Indepe	Indepe
			±0.29	±0.3	±0.27			ndent	ndent
-	+	aspartat	2.141	4.229	3.93	5.404	2.702	Indepe	Shared
		e	±0.26	±0.65	±0.5			naent	
	+	galactos	1.24	2.972	4.188	4.512	2.256	Shared	Prefere
		e	±0.19 6	±0.214	±0.039				Shared
	+	mannos	1.526	3.787	4.360	4.789	2.395	Shared	Prefere
		e	±0.14 1	±0.225	±0.136				ntial Shared
	+	rhamno	1.675	4.325	4.526	4.938	2.469	Shared	Shared
		se	±0.21	±0.15	±0.17				
	+	fucose	2.772	3.588	4.929	6.034	3.017	Shared	Shared
			±0.25	±0.080	±0.188				
	+	Sialic	0.792	2.639	2.471	4.055	2.027	Shared	Shared
		acid	±0.01	±0.018	±0.059				

Table S7. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}Y70A. The table shows where a cumulative response is observed when a second analyte (B) is flown across the bound protein while the first analyte (A) is present. The experimental value (value determinant) is actual response units (RU) values calculated from competition SPR data. The theoretical value (mathematical prediction) is response units (RU) values based on math theory. For each pair of ligands, binding was categorized as independent, shared, or preferential shared. All response data was normalised 100Da molecular weight for each analyte allowing direct comparison of responses. The data represents as mean values (\pm SD) of three replicates of three independent experiments (n = 3).

Liga nd (A)	Respo nse units (RU ±s.d)	Ligand (B)	Respo nse units (RU ±s.d)	Experime ntal RU (RU ^{B+A} ±s.d)	Experime ntal RU (RU ^{A+B} ±s.d)	Theore tical RU (Indep endent)	Theore tical RU (Share d)	Binding Status (B +A)	Binding Status (A+B)
argin ine	1.09 ±0.3								
	+	fumarate	4.00	2.65	3.51	5.09	2.54	Shared	Shared
			±0.4	±0.3	±0.2				
	+	α-	1.37	1.19	1.25	2.46	1.23	Shared	Shared
		rate	±0.2	±0.3	±0.1				
	+	malate	2.16	3.49	3.43	3.25	1.62	Independe	Independ
			±0.13	±0.5	±0.6			nt	ent
	+	isoleucin	3.30	2.54	3.32	4.39	2.19	Shared	Shared
		e	±0.4	±0.3	±0.1				
	+	thiamine	1.83	2.91	1.3	2.92	1.46	Independe	Shared
			±0.2	±0.2	±0.2			iit	
	+	purine	3.41	3.64	3.88	4.50	2.25	Shared	Shared
			±0.4	±0.8	±0.3				
	+	aspartate	2.18	2.47	1.50	3.27	1.63	Shared	Shared
			±0.4	±0.3	±0.2				
	+	galactose	1.72	3.95	2.43	2.81	1.41	Independe	Independ
			±0.3	±0.2	±0.3			111	CIII
	+	mannose	1.78	2.20	1.69	2.87	1.43	Shared	Shared
			±0.3	±0.3	±0.3				
	+	rhamnos	2.74	1.89	1.66	3.83	1.92	Shared	Shared

		e	±0.3	±0.3	±0.2				
	+	fucose	2.31	1.89	3.37	3.41	1.70	Shared	Shared
			±0.2	±0.1	±0.2				
	+	Sialic	0.82	2.03	1.13	1.91	0.95	Independe	Shared
		acid	±0.1	±0.2	±0.2			nt	
malat	2.16								
e	±0.13								
	+	fumarate	3.997	5.7	5.4	6.15	3.076	Shared	Shared
			±0.4	±0.89	±0.49				
	+	α-	1.35	3.1	3.3	3.52	1.76	Shared	Shared
		rate	±0.2	±0.22	±0.62				
	+	isoleucin	3.2	4.2	4.8	5.45	2.72	Shared	Shared
		e	±0.4	±0.3	±0.53				
	+	thiamine	1.9	2.35	4.13	3.98	1.99	Shared	Independ
			±0.2	±0.38	±0.66				ent
	+	purine	3.4	3.36	4.21	5.56	2.78	Shared	Shared
			±0.4	±0.38	±0.31				
	+	aspartate	2.2	2.92	4.01	4.33	2.16	Shared	Shared
			±0.4	±0.45	±0.45				
	+	galactose	1.7	3.2	2.03	3.87	1.93	Shared	Shared
			±0.3	±0.52	±0.16				
	+	mannose	1.7	3.8	3.1	3.93	1.96	Shared	Shared
			±0.5	±0.43	±0.74				
	+	rhamnos	2.74	4.05	3.3	4.89	2.44	Shared	Shared
		e	±0.3	±0.19	±0.23				
	+	fucose	2.3	4.1	3.2	4.47	2.23	Shared	Shared
			±0.2	±0.46	±0.51				
	+	Sialic	0.8	2.8	1.9	2.97	1.48	Shared	Shared
		aciu	±0.1	±0.32	±0.17				

Table S8. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}Y115A. The table shows where a cumulative response is observed when a second analyte (B) is flown across the bound protein while the first analyte (A) is present. The experimental value (value determinant) is actual response units (RU) values calculated from competition SPR data. The theoretical value (mathematical prediction) is response units (RU) values based on math theory. For each pair of ligands, binding was categorized as independent, shared, or preferential shared. All response data was normalised 100Da molecular weight for each analyte allowing direct comparison of responses. The data represents as mean values (\pm s.d) of three replicates of three independent experiments (n = 3).

Liga nd (A)	Respo nse units (RU±s .d)	Ligand (B)	Respo nse units (RU±s. d)	Experim ental RU (RU ^{B+A} ±s.d)	Experim ental RU (RU ^{A+B} ±s.d)	Theoreti cal RU (Indepen dent)	Theore tical RU (Share d)	Binding Status (B +A)	Binding Status (A+B)
argin	1.18								
ine	±0.1								
	+	fumarate	2.71	3	3.07	3.89	1.95	Shared	Shared
			±0.1	±0.1	±0.1				
	+	α-	1.81	1.78	1.97	2.99	1.5	Shared	Shared
		arate	±0.1	±0.1	±0.1				
	+	malate	3.64	4.25	4.51	4.81	2.41	Shared	Shared
			±0.8	±0.1	±0.1				
	+	isoleucin	2.33	2.59	2.78	3.51	1.75	Shared	Shared
		е	± 0.1	±0.1	±0.1				
	+	thiamine	3.49	5.39	3.12	4.66	2.33	Independ	Preferenti
			±0.08	±0.1	±0.1			ent	al Shareu
	+	purine	2.37	2.75	3.23	3.55	1.77	Shared	Shared
			±0.1	±0.1	±0.1				
	+	aspartate	2.14	2.9	2.96	3.32	1.66	Shared	Shared
			±0.1	±0.1	±0.1				
	+	galactos	1.36	3.7	3.53	2.54	1.27	Independ	Independe
		e	±0.1	±0.1	±0.1			ent	nt
	+	mannose	1.47	2.23	2.46	2.65	1.32	Preferenti	Preferenti
			±0.1	±0.1	±0.1			ai Silared	ai Shareu
	+	rhamnos	1.98	2.93	3.58	3.16	1.58	Preferenti	Independe
		C	±0.1	±0.1	±0.2			ai silated	ш

	+	fucose	2.59	3.22	4.17	3.77	1.88	Preferenti	Independe
			±0.1	±0.1	±0.15			al Shared	nt
	+	Sialic	0.86	1.76	1.95	2.03	1.02	Preferenti	preferenti
		acid	±0.07	±0.09	±0.05			al Shared	al Shared
mala	3.64								
te	±0.8								
	+	fumarate	3.067	5.23	4.67	6.7	3.3	Shared	Shared
			±0.18	±0.16	±0.16				
	+	α-	1.81	3.53	3.818	5.44	2.72	Shared	Shared
		arate	±0.14	±0.15	±0.15				
	+	isoleucin	2.24	3.73	3.95	5.88	2.94	Shared	Shared
		e	±0.21	±0.15	±0.15				
	+	thiamine	2.99	5.77	9.8	6.63	3.31	Shared	Independe
			±0.079	±0.15	±0.15				nt
	+	purine	2.4	4.2	4.91	6.04	3.02	Shared	Shared
			±0.29	±0.16	±0.16				
	+	aspartate	2.14	3.85	3.48	5.77	2.88	Shared	Shared
			±0.26	±0.15	±0.15				
	+	galactos	1.24	2.97	3.99	4.88	2.44	Shared	Shared
		e	±0.19	±0.13	±0.13				
	+	mannose	1.47	3.4	3.97	5.1	2.55	Shared	Shared
			±0.11	±0.13	±0.13				
	+	rhamnos	1.67	3.78	3.99	5.31	2.65	Shared	Shared
		e	±0.21	±0.14	±0.14				
	+	fucose	2.77	3.25	4.45	6.4	3.2	Shared	Shared
			±0.21	±0.14	±0.14				
	+	Sialic	0.79	2.41	2.37	4.42	2.21	Shared	Shared
		acid	±0.01	±0.09	±0.09				

Table S9. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}Y120A. The table shows where a cumulative response is observed when a second analyte (B) is flown across the bound protein while the first analyte (A) is present. The experimental value (value determinant) is actual response units (RU) values calculated from competition SPR data. The theoretical value (mathematical prediction) is response units (RU) values based on math theory. For each pair of ligands, binding was categorized as independent, shared, or preferential shared. All response data was normalised 100Da molecular weight for each analyte allowing direct comparison of responses. The data represents as mean values (\pm s.d) of three replicates of three independent experiments (n = 3).

Liga nd (A)	Respon se units (RU±s. d)	Ligand (B)	Respo nse units (RU±s. d)	Experim ental RU (RU ^{B+A} ±s.d)	Experim ental RU (RU ^{A+B} ±s.d)	Theoretic al RU (Indepen dent)	Theore tical RU (Share d)	Binding Status (B+A)	Binding Status (A+B)
argin	1.00								
ine	±0.06								
	+	fumarate	2.63	3.27	3	3.63	1.82	Shared	Shared
			±0.1	±0.1	±0.15				
	+	α- kataglut	1.75	1.72	1.97	2.75	1.37	Shared	Shared
		arate	±0.1	±0.1	±0.04				
	+	malate	3.08	3.80	4.12	4.08	2.04	Shared	Independe
			±0.08	±0.06	±0.06				ш
	+	isoleuci	2.33	2.59	2.46	3.33	1.66	Shared	Shared
		ne	±0.2	± 0.09	±0.1				
	+	thiamine	2.96	4.62	2.93	3.96	1.98	Indepen dent	Shared
			±0.09	±0.07	±0.1			dent	
	+	purine	2.62	3.09	3.23	3.63	1.81	Shared	Shared
			±0.06	±0.1	±0.07				
	+	aspartate	2.22	3.16	2.96	3.22	1.61	Shared	Shared
			±0.1	±0.10	±0.05				
	+	galactos e	1.58	3.53	3.25	2.59	1.29	Indepen dent	Independe nt
			±0.04	±0.04	±0.06				
	+	mannose	1.69	2.57	2.23	2.7	1.35	Shared	Shared
			±0.07	±0.1	±0.08				
	+	rhamnos e	2.28	3.34	2.99	3.29	1.64	Indepen dent	Shared
		-	±0.04	±0.1	±0.09				

	+	fucose	2.53	3.34	3.81	3.57	1.86	Shared	Independe
			±0.1	±0.09	±0.04				nt
	+	Sialic	0.99	1.96	1.53	1.99	1	Indepen	Shared
		acıd	±0.1	±0.1	±0.09			dent	
malat	3.08					L		l	
e	±0.08								
	+	fumarate	2.62	4.517	4.03	5.7	2.852	Shared	Shared
			±0.061	±0.085	±0.144				
	+	α-	1.74	3.1	3.17	4.8	2.411	Shared	Shared
		arate	±0.048	±0.133	±0.076				
	+	isoleuci	2.32	3.05	3.2	5.4	2.701	Shared	Shared
		ne	±0.137	±0.158	±0.140				
	+	thiamine	2.95	3.18	5.28	6	3.017	Shared	Shared
			±0.040	±0.053	±0.155				
	+	purine	2.62	3.89	4.36	5.7	2.849	Shared	Shared
			±0.059	±0.118	±0.056				
	+	aspartate	2.21	3.63	3.18	5.3	2.646	Shared	Shared
			±0.173	±0.139	±0.079				
	+	galactos	1.58	2.97	3.34	4.7	2.329	Shared	Shared
		e	±0.03	±0.045	±0.045				
	+	mannose	1.69	3.02	3.4	4.8	2.385	Shared	Shared
			±0.03	±0.14	±0.095				
	+	rhamnos	2.28	3.52	3.58	5.4	2.680	Shared	Shared
		e	±0.04	±0.1	±0.047				
	+	fucose	2.52	3.118	3.722	5.6	2.802	Shared	Shared
			±0.14	±0.15	±0.1				
	+	Sialic	0.98	2.18	2.12	4.1	2.031	Shared	Shared
		acia	±0.09	±0.04	±0.24				

Table S10. Illustration of A-B-A competition SPR analysis of Tlp10^{LBD}H193A. The table shows where a cumulative response is observed when a second analyte (B) is flown across the bound protein while the first analyte (A) is present. The experimental value (value determinant) is actual response units (RU) values calculated from competition SPR data. The theoretical value (mathematical prediction) is response units (RU) values based on math theory. For each pair of ligands, binding was categorized as independent, shared, or preferential shared. All response data was normalised 100Da molecular weight for each analyte allowing direct comparison of responses. The data represents as mean values (\pm s.d) of three replicates of three independent experiments (n = 3).

Liga nd (A)	Respo nse units (RU± s.d)	Ligand (B)	Respo nse units (RU± s.d)	Experim ental RU (RU ^{B+A} ±s.d)	Experim ental RU (RU ^{A+B} ±s.d)	Theoretic al RU (Indepen dent)	Theoret ical RU (Shared)	Binding Status (B +A)	Binding Status (A+B)
argin ine	1.52 ±0.3								
	+	fumarate	3.56 ±0.3	2.55 ±0.2	3.41 ±0.2	5.08	2.54	Shared	Preferen tial Shared
	+	α- ketoglut arate	2.02 ±0.1	1.4 ±0.16	1.47 ±0.1	3.54	1.77	Shared	Shared
	+	malate	3.26 ±0.1	4.99 ±0.2	4.80 ±0.2	4.78	2.39	Indepen dent	Indepen dent
	+	isoleucin e	3.18 ±0.2	2.96 ±0.5	3.88 ±0.04	4.7	2.35	Preferen tial Shared	Preferen tial Shared
	+	thiamine	2.89 ±0.1	4.69 ±0.1	2.30 ±0.1	4.41	2.2	Indepen dent	Preferen tial Shared
	+	purine	2.54 ±0.2	3.01 ±0.2	3.07 ±0.1	4.06	2.03	Preferen tial Shared	Preferen tial Shared
	+	aspartate	2.29 ±0.2	2.44 ±0.2	1.59 ±0.2	3.81	1.91	Preferen tial Shared	Shared
	+	galactos e	1.80 ±0.2	3.81 ±0.2	3.51 ±0.3	3.33	1.66	Indepen dent	Indepen dent
	+	mannose	1.86 ±0.2	2.23 ±0.4	1.78 ±0.4	3.38	1.69	Preferen tial Shared	Preferen tial Shared

	+	rhamnos	2.83	1.98	4.74	4.35	2.18	Shared	Indepen
		e	±0.20	±0.2	±0.4				dent
	+	fucose	2.35	1.98	3.99	3.87	1.93	Shared	Indepen
			±0.22	±0.2	±0.1				dent
	+	Sialic	0.69	2.03	1.19	2.21	1.11	Preferen	Preferen
		acıd	±0.1	±0.1	±0.1			tial Shared	tial Shared
malat	3.64								
e	±0.8								
	+	fumarate	3.56	5.5	5.03	6.82	3.41	Shared	Shared
_			±0.3	±0.85	±0.14				
	+	α-	2.02	4.1	4.6	5.28	2.64	Shared	Shared
		arate	±0.1	±0.13	±0.3				
	+	isoleucin	3.18	5	5.9	6.44	3.22	Shared	Shared
		e	±0.4	±0.18	±0.14				
	+	thiamine	2.89	3.17	6.28	6.14	3.07	Shared	Shared
			±0.5	±0.53	±0.15				
	+	purine	2.54	3.8	4.3	5.79	2.89	Shared	Shared
			±0.21	±0.11	±0.5				
	+	aspartate	2.29	4.6	5.2	5.55	2.77	Shared	Shared
			±0.3	±0.13	±0.79				
	+	galactos	1.80	2.972	3.341	5.06	2.53	Shared	Shared
		e	±0.2	±0.4	±0.5				
	+	mannose	1.86	3	4.4	5.12	2.56	Shared	Shared
			±0.2	±0.14	±0.9				
	+	rhamnos	2.83	4.5	4.8	6.09	3.04	Shared	Shared
		e	±0.20	±0.101	±0.047				
	+	fucose	2.35	3.118	5.22	5.6	2.8	Shared	Shared
			±0.22	±0.154	±0.1				
	+	Sialic	0.69	2.18	2.2	3.95	1.97	Shared	Shared
		acid	±0.1	±0.41	±0.24				

Table S11. Analysis of protein-protein interactions with Tlp10^{sig} using the yeast twohybrid system. The following *C. jejuni* chemotaxis proteins/domains were analysed for interactions with the Tlp10 signalling domain (Tlp10^{sig}): CheA, CheW, CheV, the CheW-like domain of CheV (CheV^{dW}), CheY, the signalling domain of Tlp1 (Tlp1^{sig}), the signalling domain common to Tlps 2, 3, and 4 (Tlp234^{sig}) and the signalling domain of Tlp7 (Tlp7^{sig}) (described in detail in Table S12).

AD-Tlp1	0 ^{sig} with:	BD-Tlp10 ^{sig} with:			
BD-CheA	-	AD-CheA	-		
BD-CheW	-	AD-CheW	+		
BD-CheV	+++	AD-CheV	+++		
BD-CheV ^{dW}	+++	AD-CheV ^{dW}	+++		
BD-CheY	-	AD-CheY	-		
BD-Tlp10 ^{sig}	++	AD-Tlp10 ^{sig}	++		
BD-Tlp1 ^{sig}	+	AD-Tlp1 ^{sig}	+		
BD-Tlp234 ^{sig}	+	AD-Tlp234 ^{sig}	+		
BD-Tlp7 ^{sig}	+	AD-Tlp7 ^{sig}	-		

*Protein-protein interactions of Tlp10^{sig} fused to the GAL-4 activation domain (AD- Tlp10^{sig}) and GAL-4 binding domain (BD- Tlp10^{sig}) were analysed with selected chemotaxis proteins and individual domains fused to the GAL-4 DNA binding domain (BD) and GAL-4 activation domain (AD), respectively. Co-transformation of AD-CheW and BD-CheA was used as a positive control when testing for interactions, with a result of +++.

+++: cream, dense growth of > 75% of co-transformants observed on high stringency media and intermediate stringency media (strong interaction).

++: creamy pink, moderate growth for 50% - 75% of co-transformants observed on high stringency media and intermediate stringency media (medium interaction).

+: creamy pink, light growth for up to 50% of co-transformants observed on high stringency media and/or intermediate stringency media (weak interaction).

-: no growth of co-transformants observed.

Table S12. Fusion proteins for yeast two-hybrid experiments. The indicted chemotaxis proteins from *C. jejuni* NCTC11168-O were expressed as fusions to the GAL-4 activation domain (AD) and to the DNA-binding domain (BD) using pGADT7 and pGBKT7, respectively.

<i>C. jejuni</i> NCTC11168 chemotaxis protein/domain	Description of protein/domain
Tlp1 ^{sig}	Residues 501 - 684 of Tlp1 (Cj1506c) encompassing the cytoplasmic signalling domain
Tlp2(3, 4) ^{sig}	Residues $513 - 659$ of Tlp 2 (Cj0144), residues $517 - 662$ of Tlp 3 (Cj1564) and residues $520 - 665$ of Tlp 4 (Cj0262c) encompassing the cytoplasmic signalling domain, these residues are identical in Tlps2, 3 and 4
Tlp7 ^{sig}	Residues 31 – 224 of Tlp7 (Cj0951c) encompassing the cytoplasmic signalling domain
Tlp10 ^{sig}	Residues 377 – 592 of Tlp10 (Cj0019c) encompassing the cytoplasmic signalling domain
CheA	Cj0284c, the full length CheA homologue
CheW	Cj0283c, the full length CheW homologue
CheV	Cj0285c, the full length CheV homologue
CheV ^{dW}	Residues 1-166 of CheV (Cj0285c) encompassing the CheW-like domain
CheY	Cj1118c, the full length CheY homologue

Strain/Plasmid	Description	Reference/source
Bacterial strains/ pla	smids	1
<i>C. jejuni</i> NCTC11168	Genome sequenced strain of <i>C</i> . <i>jejuni</i> 11168	63
<i>C. jejuni</i> 11168-0	Original clinical isolate of <i>C. jejuni</i> 11168	(Skirrow, 1977)
C. jejuni11168-O ∆tlp10 ^{LBD} ∷aphA3	Isogenic mutant of <i>tlp10</i>	This study
C. jejuni11168-0 Δtlp10 ^{LBD} ::aphA3 Ωcj0046:: Km	Complemented <i>tlp10</i> mutant in <i>C</i> . <i>jejuni</i> 11168-O∆ <i>tlp10:: Km</i>	This study
C. jejuni 81116∆flaA⁻/flaB⁻	Isogenic mutant of <i>flaA/flaB</i>	J.M. Ketley
<i>E. coli</i> DH5α	F ⁻ , \emptyset 80d <i>lacZ</i> ΔM15, Δ (<i>lacZYA-argF</i>)U169, <i>deo</i> R, <i>recA</i> 1, <i>endA</i> 1, <i>hsdR</i> 17(rK ⁻ , mK ⁺), <i>phoA</i> , <i>supE</i> 44, λ -, <i>thi</i> -1, <i>gyrA</i> 96, <i>relA</i> 1	15
E. coli BL21(DE3)	F ⁻ <i>ompT hsdS_B</i> (r ^{B⁻} m ^{B⁻}) gal dcm (DE3)	Novagen
<i>E. coli</i> BL21(DE3)pLysS	$\begin{array}{l} F^{-} ompT hsdS_{B} (r_{B}^{-} m_{B}^{-}) gal dcm \\ (DE3) pLysS (Cm^{R}) \end{array}$	Novagen
pGEM-T Easy	Cloning vector	Promega
Yeast strains		
S.cerevisiae AH109	MATa, trp1-901, leu2-3, 112, ura3- 52, his3-200, gal4 Δ , gal80 Δ , LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3, GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::MEL1 _{UAS} -MEL1 _{TATA} -lacZ	Clontech
Cloning intermediates		
pGEMXScheA	<i>cheA</i> (Cj0284) cloned into pGEM-T Easy with flanking <i>XmaI/SalI</i> restriction endonuclease recognition	12

Table S13. Microbial strains and plasmids used in this study.

	sites, Amp ^R	
pGEMNBcheW	<i>cheW</i> (Cj0283c) cloned into pGEM- T Easy with flanking <i>Not</i> I/ <i>BgI</i> II restriction endonuclease recognition sites, Amp ^R	12
pGEMNBcheA	<i>cheA</i> (Cj0284) cloned into pGEM-T Easy with flanking <i>Not</i> I/ <i>Bgl</i> II restriction endonuclease recognition sites, Amp ^R	12
pGEMNBcheV	<i>cheV</i> (Cj0285c) cloned into pGEM- T Easy with flanking <i>NotI/Bam</i> HI restriction endonuclease recognition sites, Amp ^R	12
pGEMEBtlp1	DNA sequence encoding residues 501-684 of <i>Tlp1</i> (Cj1506c) cloned into pGEM-T Easy with flanking <i>Eco</i> RI/ <i>Bam</i> HI restriction endonuclease recognition sites, Amp ^R	12
pGEMEBtlp2(3, 4)	DNA sequence encoding residues 513 - 659 of <i>Tlp 2</i> (Cj0144), residues $517 - 662$ of <i>Tlp 3</i> (Cj1564) and residues $520 - 665$ of <i>Tlp 4</i> (Cj0262c) cloned into pGEM-T Easy with flanking <i>Eco</i> RI/ <i>Bam</i> HI restriction endonuclease recognition sites, Amp ^R	13
pGEMEBtlp7	DNA sequence encoding residues 31 – 224 of <i>Tlp7</i> (Cj0951c) cloned into pGEM-T Easy with flanking <i>Eco</i> RI/ <i>Bam</i> HI restriction endonuclease recognition sites, Amp ^R	This study
pGEMXBtlp10	DNA sequence encoding residues 377 – 592 of <i>Tlp10</i> (Cj0019c) cloned into pGEM-T Easy with flanking <i>XmaI/Bam</i> HI restriction endonuclease recognition sites, Amp ^R	This study

pGEMNdeBcheV	<i>cheV</i> (Cj0285c) cloned into pGEM- T Easy with flanking <i>NdeI/Bam</i> HI restriction endonuclease recognition sites, Amp ^R	12
pGEMNdeBcheW	<i>cheW</i> (Cj0283c) cloned into pGEM- T Easy with flanking <i>NdeI/Bgl</i> II restriction endonuclease recognition sites, Amp ^R	12
pGEMNBtlp1	DNA sequence encoding residues 501-684 of <i>Tlp1</i> (Cj1506c) cloned into pGEM-T Easy with flanking <i>NdeI/Bam</i> HI restriction endonuclease recognition sites, Amp ^R	12
pGEMBScheV	<i>cheV</i> (Cj0285c) cloned into pGEM- T Easy with flanking <i>Bam</i> HI/ <i>Sal</i> I restriction endonuclease recognition sites, Amp ^R	12
pGEMBXcheW	<i>cheW</i> (Cj0283c) cloned into pGEM- T Easy with flanking <i>BamHI/XhoI</i> restriction endonuclease recognition sites, Amp ^R	12
pGEMBEtlp1	DNA sequence encoding residues 501-684 of <i>Tlp1</i> (Cj1506c) cloned into pGEM-T Easy with flanking <i>Bam</i> HI/ <i>Eco</i> RI restriction endonuclease recognition sites, Amp ^R	12
Yeast two-hybrid plas	mids	
pGADT7	GAL-4 activation domain expression vector	Clontech
pGBKT7	GAL-4 DNA binding domain expression vector	Clontech
pGADT7-T	Allows expression of the SV40 large T-antigen as a fusion to the GAL-4 AD	Clontech

pGBKT7-53	Allows expression of the murine p53 protein as a fusion to the GAL-4 DNA-BD, used as positive control when co- transformed with pGADT7-T	Clontech
pGBKT7-Lam	Allows expression of the human lamin C protein as a fusion to the GAL-4 DNA-BD, used as a negative control when co-transformed with pGADT7-T	Clontech
pADcheW	<i>cheW</i> cloned into pGADT7, Amp ^R	12
pADcheA	<i>cheA</i> cloned into pGADT7, Amp ^R	12
pADcheY	<i>cheY</i> cloned into pGADT7, Amp ^R	12
pADcheV	<i>cheV</i> cloned into pGADT7, Amp ^R	12
pADcheV ^{dW}	DNA sequence encoding the <i>CheW</i> - like domain of <i>CheV</i> cloned into pGADT7, Amp ^R	12
pADtlp1 ^{sig}	DNA sequence encoding residues 501-684 of <i>Tlp1</i> cloned into pGADT7, Amp ^R	12
pADtlp234 ^{sig}	DNA sequence encoding residues $513 - 659$ of <i>Tlp 2</i> (Cj0144), residues $517 - 662$ of <i>Tlp 3</i> (Cj1564) and residues $520 - 665$ of <i>Tlp 4</i> (Cj0262c) cloned into pGADT7, Amp ^R	13
pADtlp7 ^{sig}	DNA sequence encoding residues 31 – 224 of <i>Tlp7</i> cloned into pGADT7, Amp ^R	This study
pADtlp10 ^{sig}	DNA sequence encoding residues 377 – 592 of <i>Tlp10</i> cloned into pGADT7, Amp ^R	This study
pBKcheW	<i>cheW</i> cloned into pGBKT7, Km ^R	12
pBKcheA	<i>cheA</i> cloned into pGBKT7, Km ^R	12

pBKcheY	<i>cheY</i> cloned into pGBKT7, Km ^R	12
pBKcheV	<i>cheV</i> cloned into pGBKT7, Km ^R	12
pBKcheV ^{dW}	DNA sequence encoding the <i>CheW</i> - like domain of <i>CheV</i> cloned into pGBKT7, Km ^R	12
pBKtlp1 ^{sig}	DNA sequence encoding residues 501-684 of <i>Tlp1</i> cloned into pGBKT7, Km ^R	12
pBKtlp234 ^{sig}	DNA sequence encoding residues 513 - 659 of <i>Tlp 2</i> (Cj0144), residues $517 - 662$ of <i>Tlp 3</i> (Cj1564) and residues $520 - 665$ of <i>Tlp 4</i> (Cj0262c) cloned into pGBKT7, Km ^R	13
pBKtlp7 ^{sig}	DNA sequence encoding residues 31 – 224 of <i>Tlp7</i> cloned into pGBKT7, Km ^R	This study
pBKtlp10 ^{sig}	DNA sequence encoding residues 377 – 592 of <i>Tlp10</i> cloned into pGBKT7, Km ^R	This study
Mutagenesis		

pET-19b	His-tag expression vector	Novagen
pGU0708	<i>Tlp10^{LBD}</i> wildtype cloned into pET- 19b	This study
pGU0709	Tlp10 ^{LBD} Y70A	This study
pGU07010	<i>Tlp10</i> ^{<i>LBD</i>} Y115A	This study
pGU07011	<i>Tlp10^{LBD}</i> Y120A	This study
pGU07012	<i>Tlp10^{LBD}</i> H193A	This study
pGU0816	<i>Tlp10</i> cloned into pGEM-T easy	This study
pGU0817	$\Delta t l p 10^{LBD}$:: Cm^R cloned into pGEM- T easy	This study
pGU0818	<i>Tlp10</i> cloned into pKp <i>fdx</i> A vector (<i>p</i> Kp <i>fdx</i> A cj0046:: <i>tlp10</i>)	This study
pAV35	Chloramphenicol resistant	65
pK46	<i>C. jejuni cj0046</i> pseudogene integration vector; Km ^R	13

Table S14. DNA primers used in this study.

Primer name	Sequence 5'-3'	Restrictio n Site	Reference
	Mutagenesis of <i>tlp10</i>		
TLP10 ^{LBD} .F	CATATGAACTATTCTTCATCT	NdeI	This study
	AAAGATAATAA		
TLP10 ^{LBD} -R	CTCGAGTTATTTAAATAAATT	XhoI	This study
	AGATTGTTCTATAGT		
TLP10 LBD	TTATCAACGCTGATCCAAGTG	-	This study
Y70A-F	TTCA		
TLP10 LBD	AACACTTGGATCAGCGTTGAT	-	This study
<u>Y70A-R</u>	AAAA		
TLPI0 LBD	TTTAAATCCGCAGCTTCCATA	-	This study
YII5A-F	GCAGIA		TT1 · / 1
ILPIULBD V115A D		-	This study
			This study
1LP10LBD V120A-F	ACTITAT	-	This study
TI P10 I RD			This study
Y120A-R	TATGGA	-	This study
	CTTTTTTTAAAAGCTTATAAC	_	This study
LBDH193A-	ATGAT		This study
F			
TLP10	ATCATGTTATAAGCTTTTAAA	-	This study
LBDH193A-	AAAAG		2
R			
TLP10 Mut-F	<u>CCCGGG</u> ATGACAAATAAAAA	SmaI	This study
	AAGTTCATTTTTG		
TLP10 Mut-	<u>GAGCTC</u> TTACTGAAAGCTAC	SacI	This study
R	TTAATTTTTCGG		
TLP10 inv-F	GA <u>AGATCT</u> GCGCTAATTTAGC	BglII	This study
			TT1 · / 1
TLPI0 inv-R	GA <u>AGAICI</u> ICAGIIGAAAGA	BglII	This study
TI D10Comm		DamDI	This study
E	AGG <u>CGTCTC</u> ACATGACAAAI	DSMBI	This study
TI P10Comp	GACCATGGTTACTGAAAGCT	Ncol	This study
R	ACTTA ATT	INCOI	This study
CATENW	GAAGATCTGATTGAAAAGTG	<i>R</i> σ/II	This study
	GATAGATTTATG	Dgill	This study
CAT R NW	GAAGATCTATTTTTCGATTGG	BglII	This study
	CGCGCCTGAGGG	6	
Topo Kan F	ATGATTGAACAAGATGGATTG		This study
÷	С		2
Topo Kan R	TCAGAAGAACTCGTCAAGAA		This study
	GG		-
pK46 Kan F	AATGGCTAAAATGAGAATATC		This study

pK46 Kan R	AAACAATTCATCCAGTAAAAT		This study
	Sequencing		
Τ7	TAATACGACTCACTATAG		pET-19b
			(Novagen)
Cj0046F	CACTACCCAATTGAAAATCTA		This study
	AG		
Cj0046R	GTGAGTTAATGCCATCATAAC		This study
	Cloning		
tlp7 ^{sig} EcoRIF	GAATTCTCAACAGTATCTCA	EcoRI	This study
	AAATGAAA		
· · ·			
tlp7 ^{s1g} BamHI	<u>GGATCC</u> AAATTTGAAATTGG	BamHI	This study
R	TTAAGTCC		
1 4 0 9 7 7 7	222222222		
tlp10 ^{sr} Xmall	<u>CCCGGGG</u> GAAAATATGCAAG	Xmall	This study
F	ATATGCACA		
		D III	7D1 1
tlp10 ^{mg} BamH	GGATCCACIGAAAGCTACIT	BamHI	This study
IR	AATTTTTC		

Table S15. MIRAGE glycan and small-molecule arrays for Tlp10. Supplementary glycanmicroarray document based on MIRAGE guidelines DOI: 10.1093/glycob/cww118.

Classification	Guidelines	
1. Sample: Glyc	1. Sample: Glycan Binding Sample	
Description of Sample	Sample names: Tlp10 protein Origin: Campylobacter jejuni 11168; produced as a recombinant His -tagged protein in E. coli. Method of preparation: The preparation of Tlp10 is explained in the Materials and Methods section: Expression and purification of the periplasmic domain of tlp10.	
Sample modifications	Sample is a His Tagged protein containing only the periplasmic receptor domain of the full length Tlp10 transmembrane protein.	
Assay protocol	Please see <i>Materials and Methods: Identification of ligand binding potential of Tlp10 by glycan and small molecule arrays.</i> Proteins were complexed with mouse anti-his antibody, with secondary and tertiary AlexaFluor555 antibodies (rabbit anti-mouse, goat anti-rabbit) at a molar ratio of 4:2:1. The protein/antibody complex was incubated on ice for 10 mins prior to placing on the array. Arrays were performed with 1 μ g of complexed protein incubated on the array for 20 min. Arrays were then washed 3 times in Array PBS (PBS + 2mM MgCl ₂ + 2mM CaCl ₂) then dried by centrifugation for 3 min at 300 x g. Scanning was performed using ProScanArray and analyzed using ScanArray Express. Yes/no binding was determined by six positive replicate spots in three replicate experiments. Positive binding was determined by spots being significantly greater than negative control spots by two-tailed t test.	
2.1 Glycan Libra	ry	
Glycan description for defined glycans	Glycans in this study are listed in Table S2 and is a published library in doi: 10.1371/journal.pntd.0004120.	
Glycan description for undefined glycans	N/A.	
Glycan modifications	 Glycans were prepared in one of two ways for printing: 1. Glycans (with IDs in number/letter format; e.g. 1A, 4C, 7K) were sourced commercially from Dextra Laboratories, Elicityl and Carbosythn and were made into glycoamines using the protocol published in Day et al 2009 (doi: 10.1371/journal.pone.0004927). 2. Glycans (with IDs in number only format) were obtained from Prof Nicolai Bovin and were modified with spacers as per DOI: 10.1073/pnas.0407902101. The library of these glycans was first published in DOI: 10.1016/j.molimm.2009.06.010 	

2.2 Small molecule Library	
Sample description for defined compounds	Compounds printed in the amino acid/small molecule array for this study are listed in Table S3.
3. Printing Surfa	ce; e.g., Microarray Slide
Description of surface	Epoxy activated glass microarray slides.
Manufacturer	ArrayIt SuperEpoxy 3 (SME3).
Custom preparation of surface	N/A.
Non-covalent Immobilisation	N/A.
4. Arrayer (Print	er)
Description of Arrayer	Glycan array: SpotBot® Extreme Protein Microarray Spotter (ArrayIt, California, USA). Small molecule array: ArrayJet Argus Marathon non-contact printer.
Dispensing mechanism	Glycan array: Contact printing using 946NS6 pins with a 6 pin in a 3 columns x 2 rows configuration. Small molecule array: Non-contact jet printing
Glycan and small molecule deposition	 Glycan array: Approximately 1.8 nl per spot is printed according to manufactures guidelines. Glycan were at 500 μM in 50:50 DMF:DMSO. Small molecule array: Approximately 320 nl per spot is printed according to manufactures guidelines. Samples were at 1000 μM in PBS with 2% glycerol
Printing conditions	 Glycan array: Array were printed with dehumidification at a maximum humidity of 60% relative humidity (Standard laboratory starting humidity of 75-90%) at 22°C. Glycans were left to react with the slide for at least 8 hours after the print was completed. Small molecule array: Array were printed with dehumidification at a maximum humidity of 60% relative humidity (Standard laboratory starting humidity of 75-90%) at 22°C. Samples were left to react with the slide for at least 15 hours after the print was completed.
5.1 Glycan array with "Map"	
Array layout	The array consists of a single array of glycans split between 6 pins (3 columns x 2 rows) with 4500μ m row and column spacing. Each pin printed a 20 columns x 16 rows with 200µm spot spacing (centre to centre) with a minimum spot size of 100µm. Each sample is printed in quadruplicate with each of the 6 print areas including at least three negative control samples (print solution only) and two positive control samples consisting of one sample of fluoroscienamine and one sample of a mixture of rabbit anti-mouse antibody labeled with Alexa 555 and Alexa 647. Positive controls provide proof of successful immobilization of the amine reagents and provides for orientation for analysis. The antibodies also can provide

controls for secondary antibodies used in experiments (if applicable).	
Arrays are quality controlled by a range of measures. 1. Each printed array is post print scanned to confirm deposition of the glycans on the array surface prior to neutralization of the remaining slide surface. 2. Post neutralized slides are scanned again to monitor for remaining autofluorescence. 3. Slides are assayed with fluorescently labeled lectins: WGA-Texas Red (EY Laboratories) and ConA-FITC (EY Laboratories).	
le array with "Map"	
The array consists of triplicate sub-arrays of amino acids and small moleucles (24 rows x 10 columns) with 400µm spot spacing (centre to centre) with a minimum spot size of 100µm. Each sample is printed six times, with each of the 3 sub-arrays including at least six negative control samples (print solution only) and a positive control samples consisting of one a mixture of rabbit anti-mouse antibody labeled with Alexa 555 and Alexa 647. Positive controls provide proof of successful immobilization of the amine reagents and provides for orientation for analysis.	
Arrays are quality controlled by a range of measures. 1. Each printed array is post print scanned to confirm deposition of the samples on the array surface prior to neutralization of the remaining slide surface. 2. Post neutralized slides are scanned again to monitor for remaining autofluorescence.	
Data Processing	
ProScanArray (Lasers: 488 nM, 532 nM with two filter sets for analysis at 532 and 595 nM), 635 nM) scanner.	
Scanning resolution: 10µM Laser channel: 532nM operating 595nM excitation / 625nM emission filter set. PMT: 20% gain Scan powers: Low laser power.	
ScanArray Express.	
Data was exported as a CSV file and exported to Microsoft Excel.	
7. Glycan Microarray Data Presentation	
Glycan array: Data is presented as yes/no binding in Table S4. The full list of glycans is shown in Table S2.	
8. Interpretation and Conclusion from Microarray Data	
Glycan arrays: We only use glycan arrays as a yes/no binding tool. Due to this we look only at binding that is unambiguously above background vs lack of binding above background. Average background + 3x standard deviation of the background of 20 sets of 4 spots of DMF:DMSO only spots is applied to determine if binding observed is significantly above background. Only spots with values equal to or greater than this value were considered as binding from data of any tested slide. These values are slide dependent. Small molecule arrays: We only use amino acid arrays as a yes/no binding tool. Due to this we look only at binding that is unambiguously above background vs lack of binding above background. Average background + 3x standard deviation of the background of 6 spots of PBS	

	background. Only spots with values equal to or greater than this value were considered as binding from data of any tested slide. These values are slide dependent.
Conclusions	Tlp10 was found to bind to a wide range of molecules on both array types indicating a broad ligand specificity for chemotaxis.

Movie S1. C. *jejuni* migrate toward the attractant isoleucine. Live imaging of fluorescently labelled C. *jejuni* 11168-O WT and $\Delta tlp10$ migrating from the left chamber towards 10mM isoleucine in the right chamber in a μ -Slide Chemotaxis apparatus.

Movie S2. Migration of *C. jejuni* toward the attractant isoleucine is reduced by addition of the repellent arginine. Live imaging of fluorescently labelled *C. jejuni* 11168-O WT and $\Delta tlp10$ migrating from the left chamber of a μ -Slide apparatus towards 10mM isoleucine in the right chamber followed by the introduction of 10 mM arginine into right chamber at the 20s time point.

Movie S3. PBS control for the effect of arginine on the migration of WT *C. jejuni* **toward isoleucine**. Live imaging of fluorescently labelled *C. jejuni* 11168-O WT from the left chamber of μ-Slide followed by introduction of PBS into the right chamber.

Data File S1. Proteins included in DAHL domain MSA. List of DAHL domain-containing proteins, their domain architectures and taxonomic distribution. This is provided as an Excel file.