

#### Supplementary Figure S1. Six T-DNA insertion mutants of core ATG genes are sensitive to UVB.

(A) Visual phenotypes of Arabidopsis plants 7 d before (control), or after 1-h UVB, or 2-h UVB exposure. Wild-type (WT), *phr*, *atg2*, *atg5*, *atg7*, *atg10*, *atg12a atg12b*, and *atg18a* plants were subjected to UVB exposure (wavelength 280–315 nm) of 1.5 W m<sup>-2</sup> for 1 or 2 h. Scale bars = 10 mm.

(B) Mean  $F_v/F_m$  ratios in the leaves of WT, *atg2*, *atg5*, *atg7*, *atg10*, *atg12a atg12b*, *atg18a*, and *phr* plants 7 d after 0-h (control), 1-h or 2-h UVB treatment (±SE, n = 4). Plant photographs in the same treatment groups are shown in Supplemental Figure S1A. Asterisks denote significant differences compared to WT data based on Dunnett's test (\*P < 0.05, \*\*P < 0.01).

(C) Isolation of *PHR*-knockout Arabidopsis plants. The T-DNA insertion site in *phr-3* mutant, in the accession Columbia-0 (WiscDsLox368H08). Gray boxes, open boxes, and lines indicate untranslated regions, exons, and introns, respectively.

(D) Transcript levels of *PHR* and *18S* rRNA in leaves of WT and *phr-3* mutant plants ( $\pm$ SE, *n* = 4). Asterisks denote significant differences based on Student's *t*-test (\*\*\**P* < 0.001).



### Supplementary Figure S2. The mitochondrial marker expressed from the strong 35S promoter *Pro35S:MT-GFP* also shows elevated mitochondrial population in UVB-damaged *atg* leaves.

Confocal images of mesophyll cells from WT, *atg5*, and *atg7* plants expressing mitochondrion-targeted GFP (*MT-GFP*), either untreated (control) or 1 d after a 1-h UVB (1.5 W m<sup>-2</sup>) exposure. Green, GFP; magenta, chlorophyll autofluorescence (Chl). Orthogonal projections created from z-stack images are shown. Scale bars =  $10 \mu m$ .



#### Supplementary Figure S3. Damage from strong visible light does not affect the mitochondrial population in leaves.

(A) Confocal images of mesophyll cells from WT, *atg5*, and *atg7* plants expressing isocitrate dehydrogenase-GFP (*IDH-GFP*), either untreated (control) or 1 d after 2 h HL (2000  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) exposure. Green, GFP; magenta, chlorophyll autofluorescence (Chl). Orthogonal projections created from *z*-stack images are shown. Scale bars = 10  $\mu$ m.

(B) Number of mitochondria obtained from the three-dimensional images described in (A) ( $\pm$ SE, n = 4). Different letters denote significant differences based on Tukey's test (P < 0.05).

Α



#### Supplementary Figure S4. UVB damage activates autophagosome formation.

(A) ATG8 transcript levels measured in leaves from untreated plants (control) or plants 1, 2 or 3 d after 2 h UVB (1.5 W m<sup>-2</sup>) exposure ( $\pm$ SE, *n* = 3). Transcript levels of the respective genes are shown relative to the values from WT control leaves, which are set to 1. The level of *18S* rRNA was measured as an internal control. Different letters in each graph denote significant differences based on Tukey's test (P < 0.05).

(B) Confocal images of mesophyll cells expressing *GFP-ATG8a* from untreated control plants or plants 1 d after a 1-h UVB (1.5 W m<sup>-2</sup>) exposure. Green, GFP-ATG8a; magenta, chlorophyll autofluorescence (Chl). Scale bars =  $10 \ \mu m$ .

(C) Number of GFP-ATG8a-labeled autophagic structures obtained from the observations described in (B) ( $\pm$ SE, n = 4). Asterisks denote significant differences between control and UVB-treated plants based on Student's *t*-test (\*\*\*P < 0.001).



### Supplementary Figure S5. Swapped fluorescent markers also show activation of autophagosomal transport of mitochondria in UVB-damaged leaves.

(A) Confocal images of mesophyll cells expressing mitochondrial *IDH-RFP* and autophagosomal *GFP-ATG8a* from concanamycin A (ConA)-treated leaves. Leaves of untreated control plants or plants immediately after a 1-h UVB (1.5 W m<sup>-2</sup>) exposure were incubated for 2 d with ConA. Green, GFP-ATG8a; magenta, IDH-RFP; orange, chlorophyll autofluorescence (Chl). Scale bars = 10  $\mu$ m.

(B) Proportion of autophagic bodies associated with mitochondrial IDH-RFP signals obtained from the observations described in (A) ( $\pm$ SE, n = 4).



Supplementary Figure S6. The *ProIDH:IDH-GFP* mitochondrial marker indicates the cytoplasmic accumulation of depolarized mitochondria in UVB-damaged *atg* plants.

(A) Confocal images of TMRE-stained mesophyll cells from WT and *atg5* plants expressing *IDH-GFP*, either untreated (control) or 1 d after a 1-h UVB (1.5 W m<sup>-2</sup>) exposure. Green, mitochondrial IDH-GFP; magenta, TMRE. Orthogonal projections created from *z*-stack images are shown. Scale bars =  $10 \mu m$ .

(B) Proportion of TMRE particles among the IDH-GFP-labeled particles. Different letters in each graph denote significant differences based on Tukey's test (P < 0.05).

# **Table S1**

| Gene (Locus)                      | Primer sequence (5' to 3')                            |                                                       | Amplicon size | Deference |
|-----------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------|-----------|
|                                   | Forward                                               | Reverse                                               | (bp)          | Reference |
| Gene cloning<br>SWIB2 (At2g14880) | CACCATGGCGGTTTCTTCT                                   | GAGGAAGTGAGGACCGAT                                    | 427           | 1         |
| IDH1 (At4g35260)                  | CACCTGAAATTCGAGGGTGCAAG                               | GTCTAGTTTTGCAATGACCGCATC                              | 2136          | 1         |
| ATG8a<br>(At4g21980.1)            | GGGGACAAGTTTGTACAAAAAAGCAGGCTTC<br>ATGGCTAAGAGTTCCTTC | GGGGACCACTTTGTACAAGAAAGCTGGGTTC<br>AAGCAACGGTAAGAGATC | 429           | 1         |
| qRT-PCR                           |                                                       |                                                       |               |           |
| GFP                               | GTGACCACCTTCACCTACGG                                  | GTCCTTGAAGAAGATGGTGC                                  | 126           | 1         |
| IDH1 (At4g35260)                  | ATTACGTGTTCCCGCTCTGC                                  | AGGCGCCAACAAACGTAGC                                   | 198           | 2         |
| ATG5 (At5g17290)                  | ATGGCGAAGGAAGCGGTCA                                   | TCACCTTTGAGGAGCTTTCACAAGG                             | 1014          | 1         |
| 18S rRNA                          | AATTGTTGGTCTTCAACGAGGAA                               | AAAGGGCAGGGACGTAGTCAA                                 | 74            | 4         |
| AOX1a (At3g22370)                 | GACGGTCCGTACGGTTTCG                                   | CTTCTGATTCGCGTCCTCCT                                  | 175           | 5         |
| ATG8a (At4g21980)                 | CAATTTGTATACGTGGTTCGT                                 | AGCAACGGTAAGAGATCCAA                                  | 189           | 6         |
| ATG8b (At4g04620)                 | TTGGCCAATTTGTGTACGTT                                  | TCCACCAAATGTGTTCTCTCC                                 | 181           | 6         |
| ATG8c (At1g62040)                 | TGAGTGCCGAAAAGGCTATC                                  | ACCAAACCAAAGGTGTTCTCT                                 | 145           | 6         |
| ATG8d (At2g05630)                 | TTTGACTGTTGGCCAGTTTG                                  | AACCCGTCTTCGTCTTTGTG                                  | 150           | 6         |
| ATG8e (At2g45170)                 | TCTTTAAGATGGACGACGATTTC                               | CTCAGCCTTTTCCACAATCA                                  | 101           | 7         |
| ATG8f (At4g16520)                 | TGGGGCAGTTTGTGTATG                                    | GGAACCCATCATCATCCTTTT                                 | 144           | 6         |
| ATG8g (At3g60640)                 | TGTGATTCGTAAGAGAATCCAAC                               | CCAAAAGTGTTTTCCCCACT                                  | 162           | 6         |
| ATG8h (At3g06420)                 | CCAAAGCTCTCTTTGTTTTCG                                 | AAGAACCCGTCTTCTTCCTTG                                 | 97            | 6         |
| ATG8i (At3g15580)                 | TGTCAACAACACTCTCCCTCA                                 | AACCAAAGGTTTTCTCACTGC                                 | 201           | 6         |

<sup>1</sup>This study, <sup>2</sup>Lemaitre and Hodges, 2006, <sup>3</sup>Kwon et al., 2010, <sup>4</sup>Izumi et al., 2012, <sup>5</sup>Thirkettle-Watts et al., 2003, <sup>6</sup>Rose et al., 2006, <sup>7</sup>Izumi et al., 2013

**Supplemental Table S1. Primer sequences used in this study.** Primer sequences for gene cloning or RT-qPCR analysis.