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Supplementary methods 1 

Attention weights updating. In each mini-batch of the training process, the exponential moving average 2 

is used to update the attention weights in the training set. In the testing process, the average weights 3 

obtained in the training process are used to update the clinical data. The attention weights are updated as: 4 

𝐴! = #
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where Ai is the average attention weights; Ac is the current attention weights; the coefficient α represents 6 

the degree of weighting decrease, a constant smoothing factor between 0 and 1; i is the number of 7 

iterations in the training process. In our experiment α is 0.1. 8 

 
Statistic metric. The following 4 metrics are used to evaluate the performance. 9 

 
1. AUC: 10 
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2. accuracy: 14 
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3. sensitivity: 16 
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4. specificity: 18 
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where TP is true positive, TN is true negative, FP is false positive and FN is false negative. 20 

  



Supplementary Table 1. The detailed parameters of the 3D ResNet. 
Layer name Operation Input size Output size 
Conv1 3 × 3 × 3, 32, stride 2 64 × 64 × 64 × 1 32 × 32 × 32 × 32 

Block1 
3 × 3 × 3, 32, stride 2 
3 × 3 × 3, 32, stride 1 

32 × 32 × 32 × 32 16 × 16 × 16 × 32 

Block2 
3 × 3 × 3, 64, stride 2 
3 × 3 × 3, 64, stride 1 

16 × 16 × 16 × 32 8 × 8 × 8 × 64 

Block3 
3 × 3 × 3, 128, stride 2 
3 × 3 × 3, 128, stride 1 

8 × 8 × 8 × 64 4 × 4 × 4 × 128 

Pooling global average pooling 4 × 4 × 4 × 128 1 × 1 × 1 × 128 

 
  



Supplementary Table 2. The performance comparison of different data fusion strategies and different 
ratio of clinical and CT feature dimensions. 95% confidence intervals are included in brackets. The 
best average results are shown in bold. The p<0.05 indicates our method significantly improves the 
compared method (McNemar's test). Abbreviations: area under the receiver operating characteristic 
curve (AUC); accuracy (ACC); sensitivity (SENS); specificity (SPEC). 

Fusion strategy Feature dimension AUC ACC (%) SEN (%) SPEC (%) p-value 

Early fusion 61 / 64   (Clinical / CT) 0.871[0.839,0.904] 84.7[81.5,87.5] 72.7[64.4,79.6] 88.5[85.0,91.2] 0.001 

Early fusion 61 / 128  (Clinical / CT) 0.920[0.861,0.979] 87.7[84.7,90.2] 89.1[82.5,93.4]  87.3[83.7,90.1]  *(base) 

Early fusion 61 / 256  (Clinical / CT) 0.752[0.710,0.794] 78.9[75.2,82.1] 28.1[21.1,36.5] 94.5[91.8,96.3] <0.001 

Late fusion 61 / 64   (Clinical / CT) 0.883[0.851,0.914] 84.2[80.9,87.0] 78.1[70.2,84.4] 86.1[82.4,89.1] 0.001 

Late fusion 61 / 128  (Clinical / CT) 0.860[0.827,0.894] 84.6[81.3,87.4] 74.2[66.0-81.0] 87.7[84.2,90.6] <0.001 

Late fusion 61 / 256  (Clinical / CT) 0.844[0.809,0.879] 81.6[78.1,84.6] 65.6[57.0,73.3] 86.5[82.9,89.5] <0.001 

Temporal fusion 128 / 128 (Clinical / CT) 0.787[0.747,0.827] 77.9[74.3,81.2] 58.6[49.9,66.8] 83.9[80.1,87.1] <0.001 

  



 

 
Supplementary Figure 1. Clinical data encoder. This encoder has three stages, each of which consists 21 

of a fully connected layer and an identity connection. BN: batch normalization, add: pixel-wise addition, 22 

identity: identity connection. FC, 61, 61 represents a fully connected layer, the size of input features, and 23 

the size of output features. 𝐵 × 61 represents the batch size and the length of the vector.  24 
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Supplementary Figure 2. Fusion strategies of clinical features and CT features. Early fusion: CT 25 

features at each time point are concatenated with clinical features before fed into LSTM. Late fusion: 26 

The output of LSTM is concatenated with clinical features before fed into the classifier. Temporal fusion: 27 

The clinical features are considered as preliminary information before the CT scan sequence and fed into 28 

LSTM as the features at the first time point. 29 

  



 

Supplementary Figure 3. The distribution of CT scan numbers per patient in three cohorts. The 30 

ordinate is the number of patients and the abscissa is the number of CT scans per patient. 31 


