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Supplementary Note 1: Reconstruction Algorithm Comparison 

Our spectrometer belongs to the type of devices that aim at recovering spectra with incomplete or even 

imperfect measurements. This area has been a hot research topic in the past decades.  The fundamental 

problem is to solve the following equation:  

                                                       𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝐷 − 𝑆𝑃‖2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑃 ≤ 1                                       (1) 

 

where D is a Nx1 matrix containing N independent measurement results from projecting the unknown 

input signal spectrum, I on the M-SWF filters. S is a NxM matrix constructed of the sampling basis, i. e., 

SWFs as N-rows and P is an Mx1 matrix containing M unknown values that needs to be estimated to 

correspond to the input signal spectrum. This problem is typically called underdetermined problem due to 

the condition N<<M. It has been proven that this problem can be solved with high confidence using 

advanced algorithms when the sampling matrix S is well designed(1, 2). Numerous algorithms have been 

developed to solve this problem. In this work, we chose CVX algorithm implemented in a MATLAB 

environment, which is a mature package developed for disciplined convex programming (3) and have 

been commonly used for similar problems(4). In the supplementary material we show the importance of 

using advanced algorithm dedicated for underdetermined problem as well as show the importance of 

including regularization when reconstructing the spectrum, especially when it contains broad spectral 

components. 

 

 
Supplementary Figure 1 Comparison of different reconstruction algorithms for input signal spectrum 

reconstruction 

 

First of all, we show the results using a couple of different algorithms, including (i) CVX in MATLAB; 

(ii) machine learning (Sklearn)(5) and Linear algebra (Numpy.Linalg)(6) in Python; (iii) simple linear 

least square fitting approach; and (iv) a covariance matrix adaptation evolution strategy (CMA-ES) - a 

more complex algorithm aiming at finding global optimization for nonlinear problems(7). As it is clearly 

shown in Supplementary Figure 1, only CVX, Sklearn and Linalg can successfully reconstruct the 

spectrum, while the other optimization based approaches fail.  



 
 

Supplementary Figure 2 The importance of choosing correct regularization weight. (a) shows the 

reconstruction without any regularization, random spikes appear. (b) shows the result when 

regularization weight is too large. And (c) presents the results with correct regularization 

coefficient. 

 

Next we show the importance of regularization: As explained in the manuscript, it is necessary to include 

regularization in order to smoothen the reconstructed spectrum, otherwise the reconstructed spectrum 

exhibits random spikes as evident in Supplementary Figure 2(a). The regularization coefficient needs to 

be carefully chosen otherwise the performance will be poor when it is “over-regularized” (the 

regularization weight is too large) as also evident in Supplementary Figure 2(b). Also we plot the results 

using correct regularization weight in Supplementary Figure 2c). The correct regularization coefficient 

depends on the filters used for spectrum reconstruction, and it can be pre-determined by sending some 

known spectrum to the filters and adjusting the weight to get a good reconstruction result. 

 

Supplementary Note 2: Analysis of the tolerance of the spectrometer regarding imbalance among 

different filter channels 

Ideally, each port of the splitter should extract similar amount of power so that the individual filter can sample 

the incident signal with similar weight. To understand the impacts of the imbalance between different ports, we 

perform additional measurements by intentionally introducing extra coupling loss in evaluating some channels 

of the spectrometer. First measurement is to sweep the number of ports that suffer from a fixed amount of loss, 

which is 10dB, to see how the performance varies with increasing number of channels that has this additional 

loss. We see little impacts as evident in Supplementary Figure 3, mainly in the spectral components with low 

amplitudes. 

 
Supplementary Figure 3 Spectrometer performance with varying number of channels that exhibit 

extra 10dB loss. 

 



Next, we fix the number of channels that exhibit extra loss to be 16 (half of the total channels) and sweep 

the magnitude of the loss to see the impacts. As plotted in Supplementary Figure 4, we could clearly 

observe performance degradation due to larger additional loss, namely, imbalance between channels. 

When the imbalance is about 14dB, we notice significant mismatch between the reconstructed spectrum 

and the reference measured by a commercial OSA. Therefore, we could conclude that the spectrometer is 

robust to imbalance between the channels. The reason is attributed to the rich features in the transmission 

spectra of the SWFs, that the extinction among different wavelengths can be over 10dB. So any 

imbalance that is smaller than the extinction in the filters’ spectrum will not significantly affect the 

sampling of the signal. 

 
Supplementary Figure 4 How the magnitude of imbalance between channels will impact the spectrum 

reconstruction. 

 

Supplementary Note 3: Analysis of the impacts of filters transmission spectra on spectrometer 

performance 

There have been some demonstrations of single-shot spectrometers that use a set of broadband filters for 

sampling the incident signal(4, 8, 9). The numbers of filters used vary from 36 to over 360 and it is 

always claimed that simply using more filters can deliver better performance in terms of spectral 

resolution. So this raises two questions that have been neglected so far: how to determine the proper 

number of filters for spectrum reconstruction and is it true that using more filters can always lead to better 

performance. Ideally, we’d like to keep the number of filters low to keep high SNR and small footprint of 

the overall spectrometer. And we’d like to show here that, the minimum number of filters used for 

accurate spectrum reconstruction strongly depends on the filters’ transmission spectra. Also, using more 

filters with similar transmission features cannot improve the resolution indefinitely, as the filters 

transmission spectra impose a fundamental limit on the resolution of the spectrometer. 

Good filters for this type of single-shot spectrometer need to meet two requirements: 

1. Each filter’s transmission spectrum needs to be very different with others (low cross-correlation). 

Ideally, they should be orthogonal and the cross-correlation is 0 at each point. Therefore, the 

sampling of the incident signal using these filters generate linearly independent results. Then a 

small number of filters is needed to reconstruct unknown spectrum. While on the other hand, if 

filters’ transmission spectra exhibit a significant degree of similarity, a large number of filters are 

required for good reconstruction of the spectrum. To verify this, we manually generate two sets of 

filters’ spectra, the first set shows similarity in their transmission spectra as evident in 

Supplementary Figure 5(a), while the second set are more random and less correlated as plotted in 

Supplementary Figure 5(b). We use both sets to reconstruct an exemplar spectrum consisting of 

two broad peaks at 1540nm and 1560nm, respectively. For first set, the reconstruction using 30 

filters shows poor quality, and 90 filters have to be used for good reconstruction as evident in 



Supplementary Figure 5(c).  While for second set, by using only 30 filters, a good reconstruction 

is generated as evident in Supplementary Figure 5(d). This explains why the number of filters 

used in previous demonstrations vary significantly(4, 8, 9). 

 

Supplementary Figure 5 Simulations showing how the similarity in the filters’ transmission spectra will 

influence the spectrometer performance. (a) and (b) show two sets of filters for sampling the unknown 

spectrum. The set in (a) has similarity in individual filter’s spectrum, while the set in (b) has very 

different filter spectra. (c) and (d) presents their reconstruction of a spectrum containing two broad peaks 

at 1540nm and 1560nm. For first set, using 30 filters shows poor reconstruction quality (c). While for 

second set, only using 30 filters can give a good reconstruction. 

 

2. Individual filter’s transmission spectrum needs to be sharp and random, in order to deliver high 

reconstruction resolution. In other words, it should have more distinguishable transmissions at 

two closely separated wavelengths, |𝐹(𝜆1) − 𝐹(𝜆1 + Δ𝜆)| ≫ 0 , where 𝐹(𝜆1)  refers to the 

transmission at 𝜆1.  For filters with smooth transmission spectra, increasing the number of filters 

used will not help to increase the resolution indefinitely as there is a fundamental limit imposed 

by the filters’ transmission spectra. To clarify this point, we manually generate two sets of filters’ 

spectra, the first set shows smooth features as shown in Supplementary Figure 6(a), while the 

second set are more random and sharper as plotted in Supplementary Figure 6(b). Next, we use 

both sets of filters for sampling a spectrum containing two narrow peaks at 1540nm 

(FWHM=0.8nm) and 1560nm (FWHM=1.2nm). The results are plotted in Supplementary Figure 

6(c) and (d). Clearly, for the first set, increasing the number of filters from 5 to 20 indeed shows 

improvement in performance. But increasing from 20 to 50 doesn’t help further increase the 

performance, the resolution is limited to about 7nm, due to smooth filters spectra. While for the 

set of filters with sharp features, both narrow peaks can be accurately reconstructed. 



 

Supplementary Figure 6 Simulations showing how the sharpness in the filters’ transmission spectra will 

influence the spectrometer performance. (a) and (b) show two sets of filters for sampling the unknown 

spectrum. The set in (a) has smooth spectra, while the set in (b) has very sharp features in their spectra. (c) 

and (d) presents their reconstruction of a spectrum containing two narrow peaks at 1540nm 

(FWHM=0.8nm) and 1560nm (FWHM=1.2nm). For first set, increasing the number of filters from 5 to 

20 indeed shows improvement in performance. But increasing from 20 to 50 doesn’t help further increase 

the performance, The resolution is limited to about 7nm, due to smooth filters spectra. While for the set of 

filters with sharp features, both narrow peaks can be accurately reconstructed. 

In summary, the filters transmission spectra are more vital in determining the spectrometer performance. 

Increasing the number of filters used cannot improve the performance indefinitely. 

 

Supplementary Note 4: Procedure to determine the correct regularization coefficient  

The regularization coefficient is critical to the performance of the spectrometer. As explained in the main 

context, the coefficients for broad and narrow spectral components can be adjusted by sending known 

spectra to the spectrometer for reconstruction until good matchings are observed. 

 



Supplementary Figure 7 Calibration and reconstruction using different spectra. Left panel shows the calibration 

using a broadband SLD source with quasi-Gaussian spectrum covering about 80nm span around 1560nm. With the 

adjusted regularization coefficient from the calibration procedure, the C+L band ASE spectrum can be reconstructed 

with high quality (right panel). 

We use a broadband superluminescent laser diode (SLD) from Thorlabs with a quasi-Gaussian spectral 

profile that has 50nm 3dB bandwidth around 1560nm and use it as the calibration spectrum for broadband 

regularization coefficient. Then we use the calibrated regularization coefficient to reconstruct the 

broadband C+L ASE spectrum. The reconstructed spectra of both SLD used for calibration and ASE 

spectra used for testing are plotted in Supplementary Figure 7. It clearly shows that using the calibrated 

regularization coefficient obtained from SDL spectra allows accurate reconstruction of the broadband 

ASE spectrum 

While for the narrowband regularization coefficient, we use the same tunable light source for both 

calibration and reconstruction due to limited choice of equipment. We used 10 spectra with narrow peaks 

at different locations for calibration and get 10 different values for regularization coefficients. Then the 

average of these 10 values of the regularization coefficients is set as the common regularization 

coefficient for narrowband spectrum, and perform spectra reconstruction containing unknown 

narrowband spectrum components. 
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