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S1 GO Category Case Study

To demonstrate the mechanisms underlying the major differences between randomized-gene
nulls and randomized-phenotype nulls, especially in the case of spatially embedded (and spatially
autocorrelated) transcriptional atlas data, we investigated the null distributions of three specific
GO categories in detail. We selected two similarly-sized GO categories in mouse that have
different levels of within-category coexpression: ‘regulation of dendritic spine morphogenesis’
(RDSM, 40 genes), and ‘zymogen activation’ (ZA, 42 genes).

S1.1 Within-category coexpression drives false-positive bias

We first aimed to understand why, under the ensemble of random spatial brain phenotypes
(SBPs), the ‘SBP-random’ ensemble, RDSM (CFPR = 13%) has a higher category false-positive
rate (CFPR) than ZA (0.07%). Region× gene expression matrices and gene× gene coexpression
matrices are plotted for RDSM and ZA in Figs S3A and B, respectively. Compared to a
representative random set of 40 genes, shown in Fig. S3C, we find a much more consistent spatial
patterning of gene expression in the RDSM category, resulting in increased within-category
(gene–gene) coexpression. This spatial coherency of expression patterning is consistent with
genes associated with regulating dendritic-spine morphogenesis (RDSM) having a coordinated
brain function that varies characteristically across brain regions. By contrast, GO categories
that play a minimal or less-specific role in brain function, such as zymogen activation (ZA),
exhibit noisier expression patterns and lower within-category coexpression (that is visually
similar to that of a random set of genes).

To understand how these differences in within-category coexpression affect category false-
positive rates, we investigated the distribution of mean correlation coefficients between the
expression profiles of genes in each category and the ensembles of randomized SBPs analyzed
above. These category-score distributions are plotted for SBP-random and SBP-spatial ensem-
bles in Figs S3D and E, respectively. A category with wider distributions than a random set
of genes (the null comparison used in GSEA) will have a greater probability of obtaining a
significant correlation to that ensemble of phenotypes. First we note that, consistent with both
SBP-random and SBP-spatial ensembles containing no information about gene expression, all
category-score distributions are symmetric about zero.

Under random phenotypes (Fig. S3D), RDSM has a wider distribution of category scores
than ZA; it is more likely to exhibit a higher correlation to a random SBP. This widening is
driven by the increased coexpression of RDMS genes, such that a chance correlation between a
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random SBP and any single RDMS gene is amplified through a similar correlation with many
other genes in the category. By contrast, categories like ZA contain genes with lower gene–gene
coexpression, such that a chance correlation between an SBP and a given ZA gene is more likely
to be cancelled out by a chance correlation in the opposite direction for another gene, driving
category scores towards zero and resulting in a narrower category-score distribution.

In estimating category p-values, conventional GSEA compares the category score to that of
a random set of the same number of genes, shown gray in Fig. S3D (where we have performed
many randomizations of sets of 40 genes so as not to bias towards any particular random set).
Due to the high coexpression of RDSM genes, this occurs for approximately 13% of SBP-random
phenotypes, but for ZA, which has a similar coexpression structure as random genes, this occurs
for just 0.07% of random SBPs.

S1.2 The role of spatial autocorrelation

Relative to the SBP-random ensemble (of purely random phenotypes), the CFPR of RDSM
increased under the SBP-spatial ensemble: 13%→ 28%, whereas the CFPR for ZA decreased:
0.07% → 0.02%. Examining the category-score distributions in Fig. S3E, we first note that
they are all much wider than for the SBP-random ensemble (Fig. S3D), including for random
sets of genes. This is due to the predominance of spatial autocorrelation in the expression
patterns of individual genes: a gene that exhibits a strongly autocorrelated expression map is
more likely to be strongly correlated to a spatially autocorrelated SBP than a random spatial
map. Relative to random genes, we see a wider category-score distribution for RDSM, and a
narrower distribution for ZA, consistent with their CFPRs. Imposing the constraint of spatial
autocorrelation (i.e., SBP-rand→ SBP-spatial) can thus either increase a GO category’s CFPR
(if it exhibits a more similar spatial autocorrelation structure to the SBP-spatial ensemble) or
decrease it (if it exhibits a less similar spatial autocorrelation structure).

S2 Phenotype Enrichment

Full GO enrichment results for all phenotypes across all three null models are provided as data
files in the data repository accompanying this article [1].

For human cortex:

• Node structural connectivity betweenness, B, EnrichmentThreeWays_human_cortex_betweenness.csv

• Node structural connectivity degree, k, EnrichmentThreeWays_human_cortex_degree.csv

And for mouse (whole-brain and cortex), where all files share the EnrichmentThreeWays_mouse
prefix; suffixes are given below:

• Node structural connectivity betweenness: _all_betweenness.csv, _cortex_betweenness.csv

• Node structural connectivity degree: _all_degree.csv, _cortex_degree.csv

• VIP+ cell density: _all_VIP.csv, _cortex_VIP.csv

• SST+ cell density: _all_SST.csv, _cortex_SST.csv

• PV+ cell density: _all_PV.csv, _cortex_PV.csv

• oligodendrocyte density: _all_oligodendrocytes.csv, _cortex_oligodendrocytes.csv

• neural density: _all_neurons.csv, _cortex_neurons.csv

• glia density: _all_glia.csv, _cortex_glia.csv
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• microglia density: _all_microglia.csv, _cortex_microglia.csv

• excitatory density: _all_excitatory.csv, _cortex_excitatory.csv

• inhibitory density: _all_inhibitory.csv, _cortex_inhibitory.csv

S3 Literature Survey

Enrichment on the basis of spatial patterns of expression has not been performed consistently
in the existing literature. Studies have processed the data differently (including substantially
different methods for normalizing and filtering genes), and performed the enrichment differently
(using different software packages, annotation systems, and including different sets of categories
for enrichment). Our survey focuses on studies that have reported gene-set enrichment for
Biological Processes in the Gene Ontology (GO) [2].

S3.1 Allen Mouse Brain Atlas

The following studies report results of GSEA using transcriptional data from the Allen Mouse
Brain Atlas (AMBA) [3]:

1. French et al. [4] (mouse expression and rat connectivity) 3976 coronal genes using ORA
(ermineJ [5]) for the two anti-correlated expression patterns: NE (neuron-enriched pat-
tern) and OE (oligodendrocyte-enriched pattern). Data taken from Supplementary Data
Sheet 3.

2. French and Pavlidis [6] (mouse expression and rat connectivity) 17 530 genes using ORA
(ermineJ [5]). Data taken from proximity-corrected enrichment for (i) outgoing connec-
tivity, and (ii) incoming connectivity (Table S5).

3. Ji et al. [7]: Tabulated enrichment categories that appeared often across many analyses
using 4084 coronal section genes: all brain structures and different ways of measuring
connectivity. Data taken from Table 1.

4. Fakhry and Ji [8]: 4084 (coronal-section) genes that are predictive of voxel-level brain
connectivity using ORA. Data taken from Fig. 5, summarizing each GO category as the
number of injection structures for which it was significant.

5. Rubinov et al. [9]: 3380 genes (assayed multiple times) scored by partial least squares
for nodal participation metrics, doing enrichment on the genes in the top 25% of positive
weights. Data taken from Table S3.

6. Fulcher and Fornito [10]: 17 642 genes scored by differences in gene coexpression contri-
bution (GCC) scores using GSR using ermineJ [5]. Two GSEA were performed, for: (i)
connected versus unconnected pairs of brain areas (data taken from Table S1), (ii) rich
and feeder connections versus peripheral connections (data taken from Table S5).

7. Mills et al. [11]: 3079 (coronal-section) genes, enrichment for processes showing a strong
relationship between CGE and functional connectivity (FC) using ORA (ermineJ [5]).
Data taken from Table 3.

8. Ko et al. [12]: 170 neuron-, 44 oligodendrocyte-, and 50 astrocyte-specific genes for the
coronal plane (gene sets taken from [13] using a 10-fold threshold, and including only
genes that could be matched to AMBA data). Enrichment performed on each gene set,
with results summarized in the text (Page 2).
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S3.2 Allen Human Brain Atlas

The following studies report the results of GSEA using data from the Allen Human Brain Atlas
(AHBA) [14]:

1. Tan et al. [15]: 20 444 genes, ORA enrichment (using DAVID [16]) on top 100 genes for
the most positive and negatively correlated expression patterns (one marks neurons, the
other for oligodendrocytes). Data taken from Table S6 (p-values for ‘positive 100’) and
Page 8 text (list of significant categories for ‘negative 100’).

2. Richiardi et al. [17]: 16 906 genes: enrichment on strength of correlated gene expres-
sion within functional networks (relative to between functional networks) performed with
DAVID [16] and Panther [18]. Data taken from Table S6.

3. French and Paus [19]: 20 737 genes, ROC enrichment (ermineJ [5]) for measures of inter-
subject consistency and inconsistency. Data taken from supplementary files from https:

//figshare.com/articles/A_FreeSurfer_view_of_the_cortical_transcriptome_generated_

from_the_Allen_Human_Brain_Atlas/1439749: InconsistentGOGroups.tsv and ConsistentGOGroups.tsv.

4. Vértes et al. [20]: 20 737 genes, enrichment on topologically integrative hubs (of functional
connectivity), for positive and negative contributions to partial least squares components
1, 2, and 3. Data from supplementary file: Vertes-rstb20150362supp1.xlsx.

5. Parkes et al. [21]: 19 343 genes, enrichment performed using GSR (ermineJ [5]) on coeffi-
cients of principal components (PCs) of gene expression in the striatum, for PCs 1, 2, 5,
and 9. Data obtained directly from the author.

6. Forest et al. [22]: 20 783 genes, enrichment performed on gene clusters formed using
WGCNA [23] using Cytoscape [24]. Data taken from Tables S3 and S8 for full and reduced
models, respectively.

7. Whitaker et al. [25]: 20 737 genes, enrichment performed on partial least squares compo-
nent 2 using GORILLA [26]. Data taken from supplementary data table: WhitakerVertes_PLSEnrichmentGeneList.xls.

8. Romme et al. [27]: 20 737 genes, enrichment on top 100 genes with strongest correla-
tion to SCZ connectome disconnectivity using ORA (Panther [18]). Data taken from
supplementary tables.

9. Liu et al. [28]: 20 738 genes, biological process enrichment performed for: (i) left hip-
pocampus (HCP atlas, data taken from Table S4), (ii) middle insular area (HCP atlas)
(Table S5), (iii) brain-wide functional connectivity association study of autism (Table S7),
and (iv) chronic schizophrenia (Table S8).

10. Kuncheva et al. [29]: 16 906 pre-selected genes, enrichment on clusters of spatial expres-
sion networks (SENs) for GO biological process (uncorrected threshold, p < 0.001) with
categories reduced using REVIGO. Full results not provided; summaries taken from text.

11. Ritchie et al. [30]: 13 384 genes, enrichment on spatial correlation (Spearman’s ρ) between
expression patterns and the T1w:T2w ratio, using the AUROC method, ranked genes by
correlation, including GO categories with between 10 and 200 genes after intersection with
AHBA data (6885 GO categories). Data taken as pFWER for biological processes: negative
correlations (Table 2) and positive correlations (Table 3).

12. Diez and Sepulcre [31]: 3719 neural genes (determined from browsing AmiGO), enrich-
ment on correlation between stepwise functional connectivity maps and cortical expression
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profiles, focusing a priori on brain-related categories. Enrichment performed as over-
representation analysis on biological processes using PANTHER 13.1 at a threshold FDR
< 0.005. Data taken from Supplementary Tables 3–6 as FDR-corrected p-values.

13. Wen et al. [32] analyzed for gene modules that are correlated to R2t∗ using ToppGene,
with additional testing using DAVID. We noted GO Biological Process categories with
p < 0.05 from the top 30 Annotation Clusters (up to an enrichment score of 1.27) from
Dataset S3.

14. Liu et al. [33] analyzed how dynamic brain networks (analyzed from the viewpoint of the
chronnectome) are spatially configured, and how these spatial maps are associated with
gene transcription. We took data from Table S5 (Biological Process: PLS1), and Table S9
(Biological Process, PLS3).

15. Anderson et al. [34] analyzed enrichment for limbic network-biased genes using ToppGene.
We took Biological Process results from the Supplementary Data 1 (sheet: ToppGene_limbic_n505).

16. Anderson et al. [35] analyzed enrichment for genes highly correlated to interneuron markers
PVALB and SST using ToppGene. We took GO:BP data from Table 1.

17. Betzel et al. [36] used GOrilla to understand gene subsets that exhibit correlated expres-
sion patterns that are most strongly related to ECoG FC, providing results in frequency
bands 1 − 4 Hz (biological process results taken from Table S5) and 4 − 8 Hz (biological
process results taken from Table S7).

18. Meijer et al. [37] used GOrilla to find genes that are differentially expressed genes in
the stress network (brain areas activated by stress in individuals with low or high stress
sensitivity). Data was taken from Table S4.

19. Romero-Garcia et al. [38] performed PLS to find genes associated with changes in cortical
thickness in autism, using Enrichr for enrichment in GO biological processes. Data was
taken from the main text.

20. Liu et al. [39] investigated how emotion regulation and memory control related fMRI
task activation maps correlate with gene expression. 1061 ‘inhibition-related genes’ are
correlated with all four tasks (memory control, emotion regulation, stop-signal, and go/no-
go). Enrichment done using GOATOOLS. Data taken from Table S3.

21. Grothe et al. [40] analyzed differentially-expressed gene sets in Alzheimer’s disease vulner-
able brain regions using GSEA (gene set enrichment analysis) using all 20 737 genes (1036
GO-based gene sets were included). Enrichment results for GO biological processes were
taken from Table 3 (differentially expressed gene sets in neurodegeneration-vulnerable
brain regions).

22. Vidal-Pineiro et al. [41] investigated transcriptional patterns related to cortical thinning
across the lifespan. GO-term enrichment was performed with VisuaL Annotation Display
(VLAD). Data was taken from Table S1.

23. Yao et al. [42] proposed a method to perform enrichment by jointly considering gene
sets (GS) and brain circuits (BC) to examine if a GS–BC pair is enriched in a list of
gene–neuroimaging quantitative traits (QT, such as the average amyloid deposition). En-
richment results for GO biological processes were taken from Table 3.

S4 Supplementary Figures
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Figure S1: Category-level false-positive rate (CFPR) across three null ensembles of
10 000 human cortical maps. See Fig. 2A for information.
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Figure S2: Across five equally-spaced bins of CFPR, bars show the percentage of GO categories
that have been reported as significant in the literature survey of A human, and B mouse. The
larger number of human studies allowed us to distinguish between GO categories reported in
two, or three or more studies; in mouse we distinguish between one, or two or more studies.
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Figure S3: GO categories with high within-category gene–gene coexpression are
most prone to false-positive enrichment. We plot expression (brain area × gene) and
coexpression (gene × gene) heat maps for two example GO categories in the mouse brain:
A ‘regulation of dendritic spine morphogenesis’ (40 genes); and B ‘zymogen activation’ (42
genes); as well as C a random set of 40 genes, for comparison. Each gene’s expression is
normalized (low to high) for visualization purposes. Genes annotated to ‘regulation of dendritic
spine morphogenesis’ display a more characteristic spatial patterning and hence have higher
coexpression. Distributions of each category’s score (mean correlation between the genes in
that category and a phenotype) across an ensemble of null phenotypes, are plotted as violin
plots for: D the SBP-random ensemble of random-number phenotypes [cf. Fig. 2A(ii)], and E
the SBP-spatial ensemble of random spatially autocorrelated phenotypes [cf. Fig. 2A(iii)]. The
mean of each distribution is annotated with a horizontal line.
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Figure S4: CFPR (SBP-spatial) > CFPR (SBP-rand) is greatest for GO categories
with strong spatial autocorrelation (R2

exp) and a similar distance scale of autocorre-
lation. For A human, and B mouse, we show a distribution of fitted distance scales, λ, across
all GO categories. For each category, this was estimated from an exponential fit to correlated
gene expression (of a given category of genes) as a function of distance. The global value, d0
(obtained from including all genes in the correlated gene expression calculation, and used to
construct the SBP-spatial ensemble) is annotated in the upper right of the distribution plot.
Across equiprobable bins of R2

exp and for a given distance range, upper plots show the percent-
age of GO categories in each bin that display an increase in CFPR under the SBP-spatial null
ensemble relative to the SBP-random null ensemble (as Fig. 3B).
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S5 Supplementary Tables

GO Category
Mouse CFPR Human CFPR

References
[SBP-spatial] (%) [SBP-spatial] (%)

Regulation of synaptic plasticity 23 [37] 10 [7] [10, 19, 28, 33, 37]
Regulation of postsynaptic membrane potential 19 [35] 10 [17] [10, 19, 31]
Glutamate receptor signaling pathway 16 [34] 6 [14] [11, 19, 28, 42]
Respiratory electron transport chain 12 [4] 20 [30] [10, 19–21, 25]
Learning 20 [34] 5 [2] [15, 19, 28, 37]

Table S1: GO categories with high category false-positive rates (CFPRs) are pre-
dominantly related to neuronal and metabolic biological function in mouse and
human. We list selected GO categories with amongst the highest CFPRs across mouse and
human, across ensembles of spatially independent random phenotypes (SBP-random) and spa-
tially autocorrelated random phenotypes (SBP-spatial). CFPR is listed for SBP-random [and
for SBP-spatial in brackets]. A full ordered list is in Supplementary File CFPRTable.csv.
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