

**Figure S1. Dengue incidence (per 100,000 population) per municipality in Paraíba and São Paulo states, 2014-2019.** The incidence of dengue in Paraíba (A) and São Paulo (B) between 2014 and 2019 shows a pattern that resembles that of cases throughout Brazil, with year of low incidence in most municipalities, such as in 2014 and 2017, and years of much high incidence, like 2015, 2016 and 2019. While the 2018 incidence in São Paulo was similar to that of 2017, in Paraíba the dengue incidence in 2018 reveals an early surge of dengue in that state, similar to that observed in 2019. As in Figure 2, the three main cities included in our study are highlighted in each state. In Paraíba (A) we show: 1. João Pessoa; 2. Campina Grande; and 3. Coremas. In São Paulo (B) we highlight: 1. Ribeirão Preto; 2. Araraquara; and 3. São José do Rio Preto.



Figure S2. Zika cases in Brazil per state, 2016-2018. Most states experienced a peak in Zika cases between February and July 2016.



**Figure S3. Ranking of annual force of infection estimates across years between 2002 and 2019.** Ranking 100 maximum-likelihood estimates of Force of Infection (FOI) for each region in Brazil, for the two recent years of low dengue incidence (2017-2018) in the left and right columns, respectively.



**Figure S4. Proportion susceptible to DENV.** Annual proportions of susceptible population per geographic region in Brazil, from 2002 to 2019. Regions are ordered (top to bottom) by North (green), Northeast (orange), Center-west (red), Southeast (purple), and South (tan) with colors corresponding to Figures 1 and 3. Values displayed here come from the set of 100 final estimates, which reflect the top 10% of 1,000 parameter sets. These originally involved sampling  $\vec{\gamma}_F$  and  $\vec{\gamma}_S$  from assumed uniform priors (specified in **Table S1**) and then finding maximum-likelihood estimates of other model parameters. Boxes indicate the interquartile ranges and whiskers indicate the 95% quantiles of those 100 points, with dark lines representing median estimates.



Figure S5. Proportion of infections resulting in reported dengue fever (top) or severe dengue (bottom). These represent combined probabilities of  $\varrho_{F,r}$ ,  $\varrho_{S,r}$ ,  $\vec{\gamma}_F$ , and  $\vec{\gamma}_S$  dependent on whether an individual is experiencing their first, second, or third infection. Regions are ordered (left to right) by North (green), Northeast (orange), Center-west (red), Southeast (purple), and South (tan) with colors corresponding to Figures 1 and 3. Values displayed here come from the set of 100 final estimates, which reflect the top 10% of 1,000 parameter sets. These originally involved sampling  $\vec{\gamma}_F$  and  $\vec{\gamma}_S$  from assumed uniform priors (specified in **Table S1**) and then finding maximum-likelihood estimates of other model parameters. Boxes indicate the interquartile ranges and whiskers indicate the 95% quantiles of those 100 points, with dark lines representing median estimates.



Figure S6. Correspondence between model-estimated seropositivity (colored circles) and empirical estimates (black squares) of seropositivity from seroprevalence studies. Lines indicate 95% credible intervals, with uncertainty for empirical estimates quantified using a beta-binomial conjugate prior relationship that assumed uniform priors. In general, there was good agreement between model fits and empirical estimates, although in some cases model predictions were lower or higher. This could be a result of discrepancies between the forces of infection implied by serological data and those implied by reported case data. One reason that might occur in some instances is because serological studies tended to be relatively localized and were not necessarily representative of an entire region of the country. Studies are referenced on top of each panel, with additional information about these studies provided in **Table S3**. Regions included are North (green), Northeast (orange), Center-west (red), and Southeast (purple) with colors corresponding to Figures 1 and 3.



Genome Coverage of Dengue virus from FTA Cards

**Figure S7. Genome coverage of DENV-1 and DENV-2 samples sequenced from FTA filter paper cards.** Dotplot showing the percentage of the genome covered by >10X depth by the overall proportion of reads aligning to the DENV genome generated. Dashed line represents a 70% genome coverage threshold. NTC = No template control ("Water control").



**Figure S8. Root-to-tip analyses of DENV-1 and DENV-2 genomes used in phylogenetic analyses.** These plots were obtained using TempEst, using ML phylogenies obtained from complete genomes of (**A**) DENV-1 (n=458) and (**B**) DENV-2 (n=700). They show the correlation between the collection time (years) and the genetic divergence (substitutions per site) from the root of the tree (Most Recent Common Ancestors, MRCA) to the tips (sampled genomes). The slope represents the evolutionary rate: 8.47 x 10<sup>-4</sup> substitutions/site/year for DENV-1; and 1 x 10<sup>-3</sup> substitutions/site/year for DENV-2. All the newly sequenced genomes generated in this study fit the expected molecular clock of viruses from their serotypes.



**Figure S9. Maximum-likelihood phylogeographic reconstruction of DENV-1 evolution in the Americas using envelope sequences.** A total of 1250 envelope sequences were included in this analysis (new genomes highlighted with asterisks), performed using the augur pipeline from Nextstrain. BR2-BR5 represent lineages of DENV-1, numbered in sequential order based on their dates of introduction in Brazil, as previously described<sup>50</sup>. DENV-1 genomes sequenced in this study (n=46) are highlighted with asterisks (\*). Data visualization was obtained using baltic.py. An interactive version of this phylogeographic reconstruction and metadata can be found at <a href="https://nextstrain.org/community/grubaughlab/DENV-genomics/DENV1-Brazil">https://nextstrain.org/community/grubaughlab/DENV-genomics/DENV1-1</a>.



**Figure S10. Maximum-likelihood phylogeographic reconstruction of DENV-2 evolution in the Americas using envelope sequences.** A total of 1202 envelope sequences were included in this analysis (new genomes highlighted with asterisks), performed using the augur pipeline from Nextstrain. BR1-BR4 represent lineages of DENV-1, numbered in sequential order based on their dates of introduction in Brazil, as previously described <sup>49,52</sup>. DENV-2 genomes sequenced in this study (n=23) are highlighted with asterisks (\*). Data visualization was obtained using baltic.py. An interactive version of this phylogeographic reconstruction and metadata can be found at <a href="https://nextstrain.org/community/grubaughlab/DENV-genomics/DENV2-Brazil">https://nextstrain.org/community/grubaughlab/DENV-9</a>.

**Table S1. Parameter ranges for**  $\vec{\gamma}_F$  and  $\vec{\gamma}_S$  used in estimating force of infection. The midpoints of  $\vec{\gamma}_F$  were taken from Perkins et al. (Perkins et al., 2019), and the midpoints of  $\vec{\gamma}_S$  were taken from Flasche et al. (Flasche et al., 2016). Minimum and maximum values of the range explored are 50% lower and higher, respectively, than the midpoint.

| Parameter       | Minimum | Midpoint | Maximum |
|-----------------|---------|----------|---------|
| $\gamma_F^0$    | 0.09    | 0.18     | 0.36    |
| $\gamma_F^1$    | 0.12    | 0.24     | 0.48    |
| $\gamma_F^{2+}$ | 0.07    | 0.14     | 0.28    |
| $\gamma_S^0$    | 0.055   | 0.111    | 0.222   |
| $\gamma_S^1$    | 0.105   | 0.209    | 0.418   |
| $\gamma_S^{2+}$ | 0.026   | 0.052    | 0.104   |

| strain       | sample name | accession<br>number | virus          | genotype | date       |
|--------------|-------------|---------------------|----------------|----------|------------|
| USP-CB-111   | USP-CB-111  | MW208056            | Dengue virus 1 | V        | 2019-06-05 |
| USP-CB-51    | USP-CB-51   | MW208042            | Dengue virus 1 | V        | 2018-10-01 |
| USP-CB-53    | USP-CB-53   | MW208043            | Dengue virus 1 | V        | 2018-11-11 |
| USP-CB-54    | USP-CB-54   | MW208044            | Dengue virus 1 | V        | 2018-11-18 |
| USP-CB-103   | USP-CB-103  | MW208053            | Dengue virus 2 | AA       | 2019-09-05 |
| USP-CB-104   | USP-CB-104  | MW208054            | Dengue virus 2 | AA       | 2019-09-05 |
| USP-CB-110   | USP-CB-110  | MW208055            | Dengue virus 2 | AA       | 2019-05-21 |
| USP-CB-113   | USP-CB-113  | MW208057            | Dengue virus 2 | AA       | 2019-06-12 |
| USP-CB-116   | USP-CB-116  | MW208058            | Dengue virus 2 | AA       | 2019-06-19 |
| USP-CB-121   | USP-CB-121  | MW208059            | Dengue virus 2 | AA       | 2019-07-11 |
| USP-CB-123   | USP-CB-123  | MW208060            | Dengue virus 2 | AA       | 2019-07-18 |
| USP-CB-45    | USP-CB-45   | MW208041            | Dengue virus 2 | AA       | 2018-04-17 |
| USP-CB-64    | USP-CB-64   | MW208045            | Dengue virus 2 | AA       | 2019-01-19 |
| USP-CB-67    | USP-CB-67   | MW208046            | Dengue virus 2 | AA       | 2019-01-28 |
| USP-CB-7     | USP-CB-7    | MW208040            | Dengue virus 2 | AA       | 2018-02-19 |
| USP-CB-70    | USP-CB-70   | MW208047            | Dengue virus 2 | AA       | 2019-01-29 |
| USP-CB-74    | USP-CB-74   | MW208048            | Dengue virus 2 | AA       | 2019-01-25 |
| USP-CB-87    | USP-CB-87   | MW208049            | Dengue virus 2 | AA       | 2019-03-12 |
| USP-CB-95    | USP-CB-95   | MW208050            | Dengue virus 2 | AA       | 2019-04-09 |
| USP-CB-96    | USP-CB-96   | MW208051            | Dengue virus 2 | AA       | 2019-04-18 |
| USP-CB-98    | USP-CB-98   | MW208052            | Dengue virus 2 | AA       | 2019-04-16 |
| USP-HC-31    | USP-HC-31   | MW208062            | Dengue virus 2 | AA       | 2019-04-05 |
| USP-HC-37    | USP-HC-37   | MW208063            | Dengue virus 2 | AA       | 2019-04-11 |
| USP-CB-173   | USP-CB-173  | MW208061            | Dengue virus 2 | AA       | 2010-03-26 |
| USP-LC-158   | USP-LC-158  | MW208064            | Dengue virus 2 | AA       | 2010-03-27 |
| USP-LC-269   | USP-LC-269  | MW208065            | Dengue virus 2 | AA       | 2010-04-22 |
| USP-LC-312   | USP-LC-312  | MW208066            | Dengue virus 2 | AA       | 2010-04-23 |
| FIOCRUZ-0017 | PB-644      | MT862895            | Dengue virus 1 | V        | 2018-04-20 |
| FIOCRUZ-0011 | PB-635      | MT862893            | Dengue virus 1 | V        | 2018-04-21 |
| FIOCRUZ-0014 | PB-639      | MT862891            | Dengue virus 1 | V        | 2018-04-21 |
| FIOCRUZ-0016 | PB-641      | MT862862            | Dengue virus 1 | V        | 2018-04-21 |
| FIOCRUZ-0012 | PB-636      | MT862890            | Dengue virus 1 | V        | 2018-04-22 |
| FIOCRUZ-0015 | PB-640      | MT862894            | Dengue virus 1 | V        | 2018-04-22 |
| FIOCRUZ-0013 | PB-638      | MT862883            | Dengue virus 1 | V        | 2018-04-23 |
| FIOCRUZ-0019 | PB-706      | MT862886            | Dengue virus 1 | V        | 2018-05-04 |
| FIOCRUZ-0022 | PB-711      | MT862884            | Dengue virus 1 | V        | 2018-05-04 |
| FIOCRUZ-0018 | PB-705      | MT862892            | Dengue virus 1 | V        | 2018-05-07 |
| FIOCRUZ-0020 | PB-707      | MT862854            | Dengue virus 1 | V        | 2018-05-07 |
| FIOCRUZ-0021 | PB-709      | MT862885            | Dengue virus 1 | V        | 2018-05-09 |
| FIOCRUZ-0037 | PB-731      | MT862876            | Dengue virus 1 | V        | 2018-05-12 |
| FIOCRUZ-0033 | PB-736      | MT862864            | Dengue virus 1 | V        | 2018-05-13 |

| FIOCRUZ-0038 | PB-735  | MT862875 | Dengue virus 1 | V | 2018-05-13 |
|--------------|---------|----------|----------------|---|------------|
| FIOCRUZ-0007 | PB-782  | MT862879 | Dengue virus 1 | V | 2018-05-18 |
| FIOCRUZ-0010 | PB-634  | MT862889 | Dengue virus 1 | V | 2018-05-21 |
| FIOCRUZ-0002 | PB-761  | MT862871 | Dengue virus 1 | V | 2018-05-26 |
| FIOCRUZ-0003 | PB-762  | MT862881 | Dengue virus 1 | V | 2018-05-26 |
| FIOCRUZ-0001 | PB-760  | MT862880 | Dengue virus 1 | V | 2018-05-27 |
| FIOCRUZ-0008 | PB-832  | MT862878 | Dengue virus 1 | V | 2018-06-01 |
| FIOCRUZ-0006 | PB-894  | MT862888 | Dengue virus 1 | V | 2018-06-03 |
| FIOCRUZ-0028 | PB-742  | MT862882 | Dengue virus 1 | V | 2018-06-04 |
| FIOCRUZ-0035 | PB-810  | MT862874 | Dengue virus 1 | V | 2018-06-07 |
| FIOCRUZ-0034 | PB-786  | MT862856 | Dengue virus 1 | V | 2018-06-10 |
| FIOCRUZ-0042 | PB-854  | MT862877 | Dengue virus 1 | V | 2018-06-16 |
| FIOCRUZ-0009 | PB-891  | MT862863 | Dengue virus 1 | V | 2018-06-17 |
| FIOCRUZ-0005 | PB-840  | MT862872 | Dengue virus 1 | V | 2018-06-20 |
| FIOCRUZ-0032 | PB-954  | MT862873 | Dengue virus 1 | V | 2018-10-01 |
| FIOCRUZ-0023 | PB-1005 | MT862887 | Dengue virus 1 | V | 2018-11-28 |
| FIOCRUZ-0041 | PB-1170 | MT862858 | Dengue virus 1 | V | 2019-03-19 |
| FIOCRUZ-0024 | PB-1127 | MT862855 | Dengue virus 1 | V | 2019-03-25 |
| FIOCRUZ-0004 | PB-1258 | MT862859 | Dengue virus 1 | V | 2019-05-06 |
| FIOCRUZ-0025 | PB-1287 | MT862870 | Dengue virus 1 | V | 2019-05-06 |
| FIOCRUZ-0029 | PB-215  | MT862861 | Dengue virus 1 | V | 2019-05-13 |
| FIOCRUZ-0040 | PB-221  | MT862857 | Dengue virus 1 | V | 2019-05-13 |
| FIOCRUZ-0031 | PB-1428 | MT862865 | Dengue virus 1 | V | 2019-05-29 |
| FIOCRUZ-0027 | PB-1453 | MT862868 | Dengue virus 1 | V | 2019-06-14 |
| FIOCRUZ-0026 | PB-1383 | MT862869 | Dengue virus 1 | V | 2019-06-18 |
| FIOCRUZ-0030 | PB-1423 | MT862866 | Dengue virus 1 | V | 2019-06-18 |
| FIOCRUZ-0036 | PB-1387 | MT862867 | Dengue virus 1 | V | 2019-06-18 |
| FIOCRUZ-0039 | PB-222  | MT862860 | Dengue virus 1 | V | 2019-05-13 |

| country: state, city               | host         | sequencing method              |
|------------------------------------|--------------|--------------------------------|
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Monte Aprazivel | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Sao Paulo, Ribeirao Preto  | Homo sapiens | metagenomics; NovaSeq; 2x100bp |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Coremas           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Sao Domingos      | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |
| Brazil: Paraiba, Pombal            | Homo sapiens | PCR amplicon; MiSeq; 2x150bp   |

| Brazil: Paraiba, Sao Domingos         | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
|---------------------------------------|--------------|------------------------------|
| Brazil: Paraiba, Caturite             | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Coremas              | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Barauna              | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Barauna              | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Barauna              | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Caturite             | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Campina Grande       | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Joao Pessoa          | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Queimadas            | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Queimadas            | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Uirauna              | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Caturite             | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Campina Grande       | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Olivedos             | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Joao Pessoa          | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Sao Sebastiao Do Um  | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Joao Pessoa          | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Bayeux               | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Joao Pessoa          | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Alagoas, Maceio               | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Alagoas, Sao Miguel Dos Milag | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Monteiro             | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Joao Pessoa          | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Joao Pessoa          | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Monteiro             | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Paraiba, Santa Rita           | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |
| Brazil: Alagoas, Sao Jose Da Laje     | Homo sapiens | PCR amplicon; MiSeq; 2x150bp |

| number of<br>sequencing<br>reads | average depth of<br>coverage | % genome<br>covered | URL                                           |
|----------------------------------|------------------------------|---------------------|-----------------------------------------------|
| 456,512                          | 5446.3                       | 99.1                | https://www.ncbi.nlm.nih.gov/nuccore/MW208056 |
| 19,466                           | 213.8                        | 77.8                | https://www.ncbi.nlm.nih.gov/nuccore/MW208042 |
| 25,182                           | 274                          | 99.7                | https://www.ncbi.nlm.nih.gov/nuccore/MW208043 |
| 19,862                           | 213.3                        | 97.4                | https://www.ncbi.nlm.nih.gov/nuccore/MW208044 |
| 2,420                            | 26                           | 72                  | https://www.ncbi.nlm.nih.gov/nuccore/MW208053 |
| 5,088                            | 56.1                         | 79.8                | https://www.ncbi.nlm.nih.gov/nuccore/MW208054 |
| 99,723                           | 1104.9                       | 98.9                | https://www.ncbi.nlm.nih.gov/nuccore/MW208055 |
| 9,406                            | 99.4                         | 92.9                | https://www.ncbi.nlm.nih.gov/nuccore/MW208057 |
| 35,581                           | 386                          | 98.3                | https://www.ncbi.nlm.nih.gov/nuccore/MW208058 |
| 39,106                           | 429                          | 98.6                | https://www.ncbi.nlm.nih.gov/nuccore/MW208059 |
| 16,069                           | 140.4                        | 96.4                | https://www.ncbi.nlm.nih.gov/nuccore/MW208060 |
| 2,965                            | 31.5                         | 70.8                | https://www.ncbi.nlm.nih.gov/nuccore/MW208041 |
| 7,659                            | 87.6                         | 83.5                | https://www.ncbi.nlm.nih.gov/nuccore/MW208045 |
| 5,186                            | 57.1                         | 89.4                | https://www.ncbi.nlm.nih.gov/nuccore/MW208046 |
| 4,951                            | 53.3                         | 81                  | https://www.ncbi.nlm.nih.gov/nuccore/MW208040 |
| 14,032                           | 138,3                        | 92.2                | https://www.ncbi.nlm.nih.gov/nuccore/MW208047 |
| 6,092                            | 64.3                         | 85.9                | https://www.ncbi.nlm.nih.gov/nuccore/MW208048 |
| 6,147                            | 65.9                         | 88.2                | https://www.ncbi.nlm.nih.gov/nuccore/MW208049 |
| 31,202                           | 355                          | 98.6                | https://www.ncbi.nlm.nih.gov/nuccore/MW208050 |
| 57,736                           | 678.8                        | 96.6                | https://www.ncbi.nlm.nih.gov/nuccore/MW208051 |
| 4,548                            | 51.5                         | 78.3                | https://www.ncbi.nlm.nih.gov/nuccore/MW208052 |
| 5,101                            | 53.9                         | 85.6                | https://www.ncbi.nlm.nih.gov/nuccore/MW208062 |
| 40,586                           | 439.6                        | 98.2                | https://www.ncbi.nlm.nih.gov/nuccore/MW208063 |
| 4,883                            | 54.6                         | 75.9                | https://www.ncbi.nlm.nih.gov/nuccore/MW208061 |
| 4,703                            | 51.6                         | 86                  | https://www.ncbi.nlm.nih.gov/nuccore/MW208064 |
| 1,704                            | 15                           | 72.4                | https://www.ncbi.nlm.nih.gov/nuccore/MW208065 |
| 3,372                            | 20                           | 92.7                | https://www.ncbi.nlm.nih.gov/nuccore/MW208066 |
| 2035531                          | 14182.62                     | 99.86               | https://www.ncbi.nlm.nih.gov/nuccore/MT862895 |
| 637672                           | 4476.98                      | 99.85               | https://www.ncbi.nlm.nih.gov/nuccore/MT862893 |
| 990924                           | 6988.85                      | 99.97               | https://www.ncbi.nlm.nih.gov/nuccore/MT862891 |
| 378233                           | 2886.31                      | 25.1                | https://www.ncbi.nlm.nih.gov/nuccore/MT862862 |
| 1355348                          | 9470.34                      | 99.92               | https://www.ncbi.nlm.nih.gov/nuccore/MT862890 |
| 946407                           | 6663.52                      | 99.85               | https://www.ncbi.nlm.nih.gov/nuccore/MT862894 |
| 409018                           | 2909.51                      | 95.53               | https://www.ncbi.nlm.nih.gov/nuccore/MT862883 |
| 1091826                          | 7600.57                      | 98.31               | https://www.ncbi.nlm.nih.gov/nuccore/MT862886 |
| 1484703                          | 10364.47                     | 99.98               | https://www.ncbi.nlm.nih.gov/nuccore/MT862884 |
| 1495585                          | 10398.35                     | 99.87               | https://www.ncbi.nlm.nih.gov/nuccore/MT862892 |
| 1502978                          | 10540.83                     | 96.86               | https://www.ncbi.nlm.nih.gov/nuccore/MT862854 |
| 1666274                          | 11590.85                     | 99.98               | https://www.ncbi.nlm.nih.gov/nuccore/MT862885 |
| 2433007                          | 16662.28                     | 93.85               | https://www.ncbi.nlm.nih.gov/nuccore/MT862876 |
| 2512589                          | 17212.21                     | 83.51               | https://www.ncbi.nlm.nih.gov/nuccore/MT862864 |

| 1304395 | 9006.05  | 97.95 | https://www.ncbi.nlm.nih.gov/nuccore/MT862875 |
|---------|----------|-------|-----------------------------------------------|
| 879880  | 6163.87  | 99.88 | https://www.ncbi.nlm.nih.gov/nuccore/MT862879 |
| 945645  | 6617.01  | 99.97 | https://www.ncbi.nlm.nih.gov/nuccore/MT862889 |
| 2539383 | 17529.02 | 93.42 | https://www.ncbi.nlm.nih.gov/nuccore/MT862871 |
| 2938246 | 20443.13 | 99.86 | https://www.ncbi.nlm.nih.gov/nuccore/MT862881 |
| 1518806 | 10495.22 | 99.95 | https://www.ncbi.nlm.nih.gov/nuccore/MT862880 |
| 1322953 | 9223.37  | 99.8  | https://www.ncbi.nlm.nih.gov/nuccore/MT862878 |
| 5450932 | 38029.2  | 96.8  | https://www.ncbi.nlm.nih.gov/nuccore/MT862888 |
| 1356750 | 9540.02  | 99.98 | https://www.ncbi.nlm.nih.gov/nuccore/MT862882 |
| 1369827 | 9515.62  | 98.84 | https://www.ncbi.nlm.nih.gov/nuccore/MT862874 |
| 2200445 | 15205.36 | 87.59 | https://www.ncbi.nlm.nih.gov/nuccore/MT862856 |
| 2180170 | 14841.92 | 100   | https://www.ncbi.nlm.nih.gov/nuccore/MT862877 |
| 3244005 | 22028.94 | 76.22 | https://www.ncbi.nlm.nih.gov/nuccore/MT862863 |
| 2348727 | 16203.47 | 97.64 | https://www.ncbi.nlm.nih.gov/nuccore/MT862872 |
| 1145093 | 7714.2   | 99.93 | https://www.ncbi.nlm.nih.gov/nuccore/MT862873 |
| 800419  | 5478.18  | 99.97 | https://www.ncbi.nlm.nih.gov/nuccore/MT862887 |
| 996730  | 6740.24  | 94.95 | https://www.ncbi.nlm.nih.gov/nuccore/MT862858 |
| 860025  | 5832.29  | 93.52 | https://www.ncbi.nlm.nih.gov/nuccore/MT862855 |
| 1091954 | 7507.61  | 95.09 | https://www.ncbi.nlm.nih.gov/nuccore/MT862859 |
| 879085  | 5938.05  | 99.84 | https://www.ncbi.nlm.nih.gov/nuccore/MT862870 |
| 962465  | 6771.71  | 92.35 | https://www.ncbi.nlm.nih.gov/nuccore/MT862861 |
| 972032  | 6708.91  | 96.17 | https://www.ncbi.nlm.nih.gov/nuccore/MT862857 |
| 1209833 | 8251.58  | 99.86 | https://www.ncbi.nlm.nih.gov/nuccore/MT862865 |
| 2545868 | 17292.07 | 99.86 | https://www.ncbi.nlm.nih.gov/nuccore/MT862868 |
| 1324626 | 9015.46  | 99.86 | https://www.ncbi.nlm.nih.gov/nuccore/MT862869 |
| 1312119 | 8590.2   | 97.31 | https://www.ncbi.nlm.nih.gov/nuccore/MT862866 |
| 1035378 | 7052.76  | 99.84 | https://www.ncbi.nlm.nih.gov/nuccore/MT862867 |
| 1730526 | 11828.45 | 96.98 | https://www.ncbi.nlm.nih.gov/nuccore/MT862860 |

| Study year | Authors                   | Age range | Region      | Reference |
|------------|---------------------------|-----------|-------------|-----------|
| 2015       | Chiaravalloti-Neto et al. | 10-91     | Southeast   | 1         |
| 1998       | Teixeira et al.           | All ages  | Northeast   | 2         |
| 1998       | Teixeira et al.           | 0-3       | Northeast   | 3         |
| 1991       | Vasconcelos et al.        | All ages  | North       | 4         |
| 1994       | Vasconcelos et al.        | All ages  | Northeast   | 5         |
| 1994       | Vasconcelos et al.        | All ages  | Northeast   | 6         |
| 1992       | Moraes Figueiredo et al.  | 5-15      | Southeast   | 7         |
| 1998       | Lima et al.               | All ages  | Southeast   | 8         |
| 2001       | Siqueira et al.           | 5-99      | CentralWest | 9         |
| 2002       | Siqueira-Junior et al.    | 5-99      | CentralWest | 10        |
| 2007       | Honório et al.            | 1-19      | Southeast   | 11        |
| 2005       | Braga et al.              | 5-64      | Northeast   | 12        |
| 2006       | Pessanha et al.           | All ages  | Southeast   | 13        |
| 2010       | Martins et al.            | 0-12      | North       | 14        |
| 1991       | Cunha et al.              | 0-19      | Southeast   | 15        |
| 1991       | Cunha et al.              | 0-16      | Southeast   | 16        |
| 2004       | Muniz et al.              | 5-90      | North       | 17        |

**Table S3.** Metadata about age-stratified dengue virus seroprevalence surveys used to informestimates of force of infection over time.

## References

| 1 | Chiaravalloti-Neto, F. et al. Seroprevalence for dengue virus in a hyperendemic<br>area and associated socioeconomic and demographic factors using a cross-<br>sectional design and a geostatistical approach, state of São Paulo, Brazil. BMC<br>Infect. Dis. 19, 441 (2019). |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Teixeira, M. da G. et al. Dynamics of dengue virus circulation: a silent epidemic<br>in a complex urban area. Trop. Med. Int. Health 7, 757–762 (2002).                                                                                                                        |
| 3 | Teixeira, M. G. et al. Risk factors for the incidence of dengue virus infection in preschool children. Trop. Med. Int. Health 17, 1391–1395 (2012).                                                                                                                            |
| 4 | Vasconcelos, P. F. da C. et al. Epidemia de febre clássica de dengue causada<br>pelo sorotipo 2 em Araguaiana, Tocantins, Brasil. Rev. Inst. Med. Trop. Sao<br>Paulo 35, 141–148 (1993).                                                                                       |
| 5 | Vasconcelos, P. F. C. et al. Epidemia de dengue em Fortaleza, Ceará: inquérito soro-epidemiológico aleatório. Revista de Saúde Pública 32, 447–454 (1998).                                                                                                                     |
| 6 | Vasconcelos, P. F. et al. A seroepidemiological survey on the island of São Luis<br>during a dengue epidemic in Maranhão. Rev. Soc. Bras. Med. Trop. 32,<br>171–179 (1999).                                                                                                    |

| 7  | Moraes Figueiredo, L. T. et al. Encuesta serológica sobre el dengue en Ribeirao<br>Preto, Sao Paulo, Brasil. Boletín de la Oficina Sanitaria Panamericana<br>(OSP);118(6),jun. 1995 (1995).                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | Lima, V. L. C. de et al. Dengue: inquérito populacional para pesquisa de<br>anticorpos e vigilância virológica no Município de Campinas, São Paulo, Brasil.<br>Cadernos de Saúde Pública 23, 669–680 (2007).                                                           |
| 9  | Siqueira, J. B. et al. Household survey of dengue infection in central Brazil:<br>spatial point pattern analysis and risk factors assessment. Am. J. Trop. Med.<br>Hyg. 71, 646–651 (2004).                                                                            |
| 10 | Siqueira-Junior, J. B. et al. Spatial point analysis based on dengue surveys at household level in central Brazil. BMC Public Health 8, 361 (2008).                                                                                                                    |
| 11 | Honório, N. A. et al. Spatial evaluation and modeling of Dengue seroprevalence<br>and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 3, e545<br>(2009).                                                                                               |
| 12 | Braga, C. et al. Seroprevalence and risk factors for dengue infection in socio-<br>economically distinct areas of Recife, Brazil. Acta Trop. 113, 234–240 (2010).                                                                                                      |
| 13 | Pessanha, J. E. M., Caiaffa, W. T., Kroon, E. G. & Proietti, F. A. Dengue fever in<br>three sanitary districts in the city of Belo Horizonte, Brazil: a population-based<br>seroepidemiological survey, 2006 to 2007. Rev. Panam. Salud Publica 27,<br>252–258 (2010). |
| 14 | Martins, A. C. et al. Seroprevalence and seroconversion of dengue and implications for clinical diagnosis in amazonian children. Interdiscip. Perspect. Infect. Dis. 2014, 703875 (2014).                                                                              |
| 15 | Cunha, R. V. da et al. Secondary dengue infection in schoolchildren in a dengue endemic area in the State of Rio de Janeiro, Brazil. Rev. Inst. Med.<br>Trop. Sao Paulo 37, 517–521 (1995).                                                                            |
| 16 | da Cunha, R. V. et al. Dengue infection in Paracambi, State of Rio de Janeiro,<br>1990-1995. Rev. Soc. Bras. Med. Trop. 30, 379–383 (1997).                                                                                                                            |
| 17 | da Silva-Nunes, M. et al. Risk factors for dengue virus infection in rural<br>Amazonia: population-based cross-sectional surveys. Am. J. Trop. Med. Hyg.<br>79, 485–494 (2008).                                                                                        |

## Table S4. Priors for Index P Estimates

| Parameter                                    | Prior distribution                | Sources |
|----------------------------------------------|-----------------------------------|---------|
| Human Incubation Period                      | Gaussian (mean = 5, SD = 1)       | 1–3     |
| Human Infectious Period                      | Gaussian (mean = 5, SD = 1)       | 1–3     |
| Human Life Expectancy                        | Gaussian (mean = 73, SD = 2)      | 4       |
| Transmission probability (human to mosquito) | Gaussian (mean = 0.5, SD = 0.01)  | 5       |
| Mosquito Biting Rate                         | Gaussian (mean = 0.25, SD = 0.05) | 6,7     |
| Extrinsic Incubation Period                  | Gaussian (mean = 7, SD = 2)       | 2,8,9   |
| Mosquito Life Expectancy                     | Gaussian (mean = 14, SD = 3)      | 10,11   |

Lourenço J, de Lima MM, Faria NR, Walker A, Kraemer MUG, Villabona-Arenas CJ, et al.
Epidemiological and ecological determinants of Zika virus transmission in an urban setting. eLife. 2017. doi:10.7554/elife.29820

Ferguson NM, Cucunubá ZM, Dorigatti I, Nedjati-Gilani GL, Donnelly CA, Basáñez M-G, et
al. EPIDEMIOLOGY. Countering the Zika epidemic in Latin America. Science. 2016;353: 353–354.

Lessler J, Ott CT, Carcelen AC, Konikoff JM, Williamson J, Bi Q, et al. Times to key events in Zika virus infection and implications for blood donation: a systematic review. Bull World Health Organ. 2016;94: 841–849.

4 Life expectancy at birth, total (years) - Brazil | Data. [cited 13 Jul 2020]. Available: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=BR

Obolski U, Perez PN, Villabona-Arenas CJ, Thézé J, Faria NR, Lourenço J. MVSE : An
R-package that estimates a climate-driven mosquito-borne viral suitability index. Poisot T, editor. Methods Ecol Evol. 2019;10: 1357–1370.

<sup>6</sup> Yasuno M, Tonn RJ. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ. 1970;43: 319–325.

Trpis M, Hausermann W. Dispersal and other population parameters of Aedes aegypti in an
 African village and their possible significance in epidemiology of vector-borne diseases. Am
 J Trop Med Hyg. 1986;35: 1263–1279.

- <sup>8</sup> Li MI, Wong PSJ, Ng LC, Tan CH. Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus. PLoS Negl Trop Dis. 2012;6: e1792.
- 9 Wong P-SJ, Li M-ZI, Chong C-S, Ng L-C, Tan C-H. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis. 2013;7: e2348.

Trpis M, Häusermann W, Craig GB. Estimates of Population Size, Dispersal, and Longevity of Domestic Aedes aegypti aegypti (Diptera: Culicidae) by Mark–Release–Recapture in the

- <sup>10</sup> Village of Shauri Moyo in Eastern Kenya. Journal of Medical Entomology. 1995. pp.
   27–33 doi:10.1093/imedent/32.1.27
   Hugo LE, Jeffery JAL, Trewin BJ, Wockner LF, Nguyen TY, Nguyen HL, et al. Adult
- survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.
   PLoS Negl Trop Dis. 2014;8: e2669.

| Table S5. Tiled PCR primers used for DENV-1 amplicon-based sequencing. |                               |             |  |  |  |
|------------------------------------------------------------------------|-------------------------------|-------------|--|--|--|
| Primer                                                                 | Sequence                      | Primer Pool |  |  |  |
| DENV1SA_1_LEFT                                                         | TACGTGGACCGACAAGAACAGT        | pool 1      |  |  |  |
| DENV1SA_1_RIGHT                                                        | ACTATCATRTGTGGCTCTCCCC        | pool 1      |  |  |  |
| DENV1SA_2_LEFT                                                         | TGTTGAACATAATRAACAGGAGGAAAAGA | pool 2      |  |  |  |
| DENV1SA_2_RIGHT                                                        | GAATCCTGGGTGTCKCAAAGCC        | pool 2      |  |  |  |
| DENV1SA_3_LEFT                                                         | CACACGTGGGACTTGGTCTAGA        | pool 1      |  |  |  |
| DENV1SA_3_RIGHT                                                        | ACACACAAAGTTCGCGTCTTGT        | pool 1      |  |  |  |
| DENV1SA_4_LEFT                                                         | ACTGTGCATTGAAGCTAAAATATCAAACA | pool 2      |  |  |  |
| DENV1SA_4_RIGHT                                                        | ACCATTGTTTGTGGACAAGCCA        | pool 2      |  |  |  |
| DENV1SA_5_LEFT                                                         | CCTCACATTGGACTGCTCACCT        | pool 1      |  |  |  |
| DENV1SA_5_RIGHT                                                        | TGCACTARRACAGTTCCATGCT        | pool 1      |  |  |  |
| DENV1SA_6_LEFT                                                         | AAACTGACYTTARAGGGGATGTCAT     | pool 2      |  |  |  |
| DENV1SA_6_RIGHT                                                        | ATATGCRGTCCCAAAAACCTGG        | pool 2      |  |  |  |
| DENV1SA_7_LEFT                                                         | CGAGGAGCACGAAGGATGGC          | pool 1      |  |  |  |
| DENV1SA_7_RIGHT                                                        | ATGATGTTCTCAAGACGCGTGG        | pool 1      |  |  |  |
| DENV1SA_8_LEFT                                                         | AGGCTGACTCCCCAAAAAGACT        | pool 2      |  |  |  |
| DENV1SA_8_RIGHT                                                        | TTGATGGCAGCTGACATTAGCC        | pool 2      |  |  |  |
| DENV1SA_9_LEFT                                                         | TGGGAAGTTGAGGACTAYGGGT        | pool 1      |  |  |  |
| DENV1SA_9_RIGHT                                                        | TGTRGTTCTGAGRGATGGACCTC       | pool 1      |  |  |  |
| DENV1SA_10_LEFT                                                        | GCAGGGCCATGGCACCTAGG          | pool 2      |  |  |  |
| DENV1SA_10_RIGHT                                                       | TCCCCATCCTGTCTGAAGCATT        | pool 2      |  |  |  |
| DENV1SA_11_LEFT                                                        | GATGACTGGAACACTGGCTGTT        | pool 1      |  |  |  |
| DENV1SA_11_RIGHT                                                       | CACCGGAAGCCATGTTGTTTT         | pool 1      |  |  |  |
| DENV1SA_12_LEFT                                                        | GGATTATGCATGGAARACAAYGGC      | pool 2      |  |  |  |
| DENV1SA_12_RIGHT                                                       | GTGAGTGTRTCATCCCTYTCTTCA      | pool 2      |  |  |  |
| DENV1SA_13_LEFT                                                        | AASAAGAAGCAGAACACTCCGG        | pool 1      |  |  |  |
| DENV1SA_13_RIGHT                                                       | ACTGGCCCAGCTTGGTTCCAG         | pool 1      |  |  |  |
| DENV1SA_14_LEFT                                                        | AGGTCCCAAGTAGGAGTGGGAGT       | pool 2      |  |  |  |
| DENV1SA_14_RIGHT                                                       | CACCTCRTCCTCAATCTCTGGT        | pool 2      |  |  |  |
| DENV1SA_15_LEFT                                                        | ATGGAGTGGTGACAACAAGTGG        | pool 3      |  |  |  |
| DENV1SA_15_RIGHT                                                       | GCTGGATCGGTAAARTGTGCTTC       | pool 3      |  |  |  |
| DENV1SA_16_LEFT                                                        | GGGAGATAGTTGACCTCATGTGCCA     | pool 4      |  |  |  |
| DENV1SA_16_RIGHT                                                       | CCTGTCGGCCCGGAAATTTGC         | pool 4      |  |  |  |
| DENV1SA_17_LEFT                                                        | ACGGGTRATYCAAYTGAGCAGRA       | pool 3      |  |  |  |
| DENV1SA_17_RIGHT                                                       | CCTCTTCTCATGAGCTCCACA         | pool 3      |  |  |  |
| DENV1SA_18_LEFT                                                        | CAGAAGGGATCATCCCAGCCCT        | pool 4      |  |  |  |
| DENV1SA_18_RIGHT                                                       | CCTCCTTGTTCGGAATTGTGCA        | pool 4      |  |  |  |
| DENV1SA_19_LEFT                                                        | AGTGTCTCAGGTGACCTAATATTGGA    | pool 3      |  |  |  |
| DENV1SA_19_RIGHT                                                       | RGCTGCCACTGTCAGTATCATG        | pool 3      |  |  |  |
| DENV1SA_20_LEFT                                                        | GCTGCTCATTCCAGARCCAGAC        | pool 4      |  |  |  |
| DENV1SA_20_RIGHT                                                       | ATGGGTTCACCTGGGAATAGCA        | pool 4      |  |  |  |
| DENV1SA_21_LEFT                                                        | YGCAAAYCAGGCWGCYATATTGAT      | pool 3      |  |  |  |
| DENV1SA_21_RIGHT                                                       | GATGTTTGCCATGGACACTGCT        | pool 3      |  |  |  |
| DENV1SA_22_LEFT                                                        | TCCATCACACTGGCTACTGGAC        | pool 4      |  |  |  |

| DENV1SA_22_RIGHT | CCCACAACCGAGGTCTATGACT     | pool 4 |
|------------------|----------------------------|--------|
| DENV1SA_23_LEFT  | ACAACCAAACATGCAGTGTCGA     | pool 3 |
| DENV1SA_23_RIGHT | TTTCGCACTAGCATCCCTCCAT     | pool 3 |
| DENV1SA_24_LEFT  | GCTYAGAGGAAACCAATTCTGCA    | pool 4 |
| DENV1SA_24_RIGHT | TGATCCTGATGYTTGACCTCA      | pool 4 |
| DENV1SA_25_LEFT  | ACCTAGATATYATTGGCCAGAGGA   | pool 3 |
| DENV1SA_25_RIGHT | ACCTTTCGTCTTCCACTGCTTC     | pool 3 |
| DENV1SA_26_LEFT  | CTGCACAAGAGAGGAGTTCACA     | pool 4 |
| DENV1SA_26_RIGHT | TATTCTTGTGTCCCATCCGGCT     | pool 4 |
| DENV1SA_27_LEFT  | TGGAAGGAGAAGGACTGCACAA     | pool 3 |
| DENV1SA_27_RIGHT | CACRCAATCATCTCCGCTRATT     | pool 3 |
| DENV1SA_28_LEFT  | GAAACCCCCAAYCTAGCTRAGA     | pool 4 |
| DENV1SA_28_RIGHT | TAGCCGCTAGTCTCAGGTCTCT     | pool 4 |
| DENV1SA_29_LEFT  | ATGGAGCCTGAGAGAAACTGCT     | pool 3 |
| DENV1SA_29_RIGHT | GCYCCTTCGGGATCACTCTCAT     | pool 3 |
| DENV1SA_30_LEFT  | GGGCCACYAATATACAAGTAGCCA   | pool 4 |
| DENV1SA_30_RIGHT | CCCGCTGCTGCGTTATGTCT       | pool 4 |
| DENV1SA_31_RIGHT | CCTGTTGATTCAACAGCACCATTCCA | pool 4 |

**Table S6.** Log marginal likelihood estimates of the different clock models, as estimated using pathsampling stepping-stone sampling in BEAST v1.10.4. For each dataset we found that uncorrelated lognormal relaxed clock models fit better our data.

| Alignment | Molecular clock model | PS        | SS        |
|-----------|-----------------------|-----------|-----------|
| DENV-1    | Strict clock          | -52476.12 | -52483.72 |
| DENV-2    | Strict clock          | -52752.40 | -55768.42 |
| DENV-1    | Relaxed clock         | -52438.27 | -52452.42 |
| DENV-2    | Relaxed clock         | -55551.05 | -55563.21 |