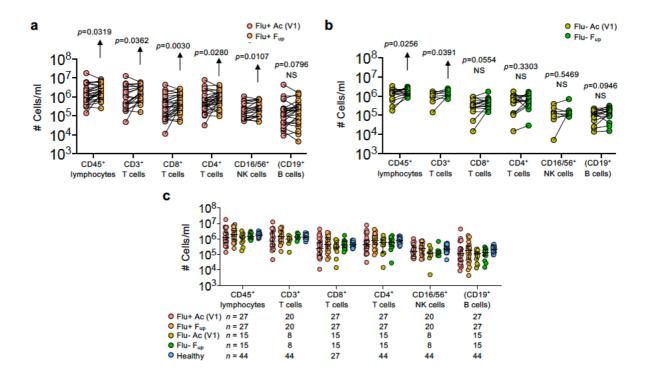
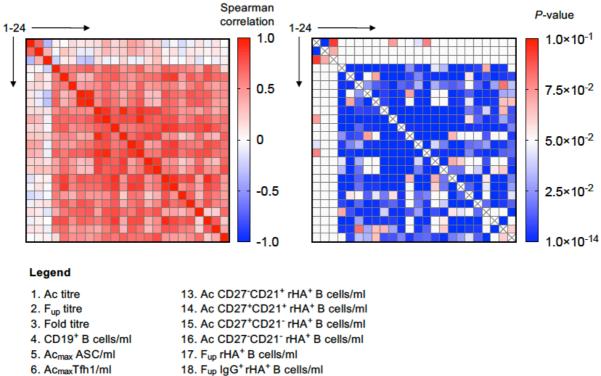

SUPPLEMENTARY INFORMATION

Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients

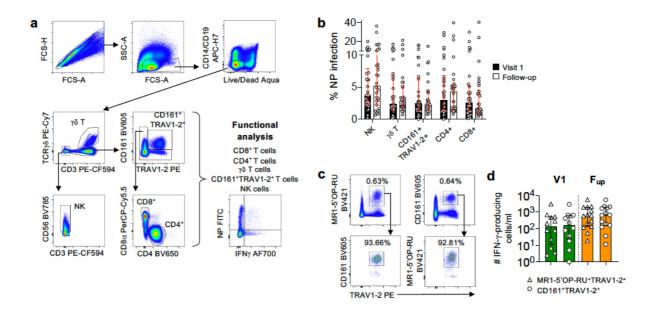

Thi H. O. Nguyen¹, Marios Koutsakos¹, Carolien E. van de Sandt^{1,2}, Jeremy Chase Crawford³, Liyen Loh¹, Sneha Sant¹, Ludivine Grzelak⁴, Emma K. Allen³, Tim Brahm³, E. Bridie Clemens¹, Maria Auladell¹, Luca Hensen¹, Zhongfang Wang¹, Simone Nüssing¹, Xiaoxiao Jia¹, Patrick Günther¹, Adam K. Wheatley¹, Stephen J. Kent^{1,5,6}, Malet Aban⁷, Yi-Mo Deng⁷, Karen L. Laurie^{7,8}, Aeron C. Hurt⁷, Stephanie Gras⁹⁻¹¹, Jamie Rossjohn^{9,10,12}, Jane Crowe¹³, Jianqing Xu¹⁴, David Jackson¹, Lorena E. Brown¹, Nicole La Gruta⁹, Weisan Chen¹¹, Peter C. Doherty¹, Stephen J. Turner¹⁵, Tom C. Kotsimbos^{16,17}, Paul G. Thomas³, Allen C. Cheng^{18,19*#} and Katherine Kedzierska^{1*#}


Supplementary Figure 1. HA phylogenetic trees for H1 and B strains. WHO reference strains are shown in black, influenza vaccine strains are in red, and sequences isolated from the nasal swab of patients are in blue. Patient number is followed by the year of recruitment, yes (Y) or no (N) for prior vaccination in the year of infection, and "m" for vaccine match. Scale bars represent the number of substitutions per site.

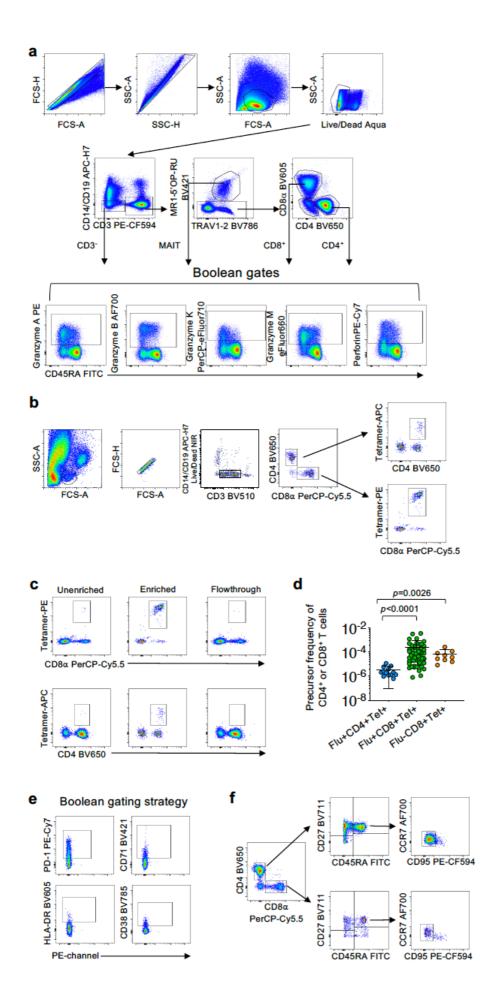
Supplementary Figure 2. Flow cytometry gating strategies for (a) cTfh, ASC (Fig. 3) and (b) HA-specific B cells (Fig. 4).

Supplementary Figure 3. Lymphopenia observed in patients during acute infection. a,b, Absolute numbers of cell subsets at acute (V1) and matching follow-up time-points in influenza+ (Flu+) and influenza- (Flu-) patients, where available. Statistical significance (0.0001>p<0.05) was determined using Wilcoxon test (two-sided) between acute and follow-up. c, Absolute numbers of cell subsets at acute (V1) and follow-up time-points in influenza+ patients in comparison to influenza- and healthy donors from the 2015-2016 pre-vaccinated cohort. Median, IQR and exact *n* numbers are shown for each group.

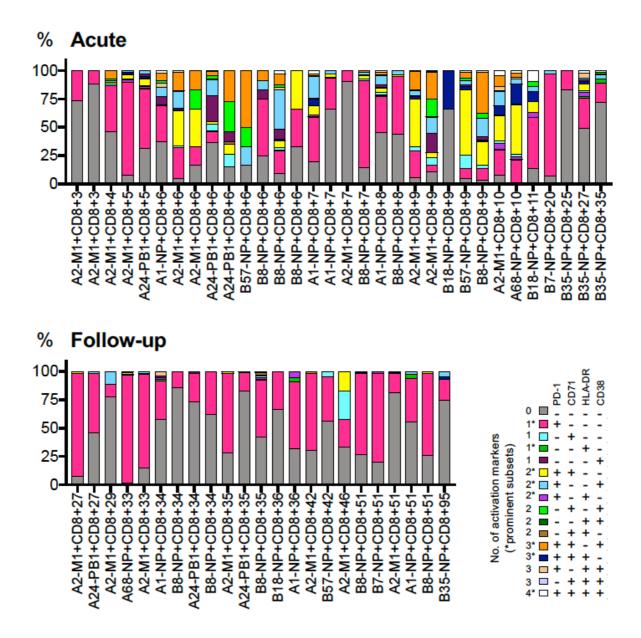
5

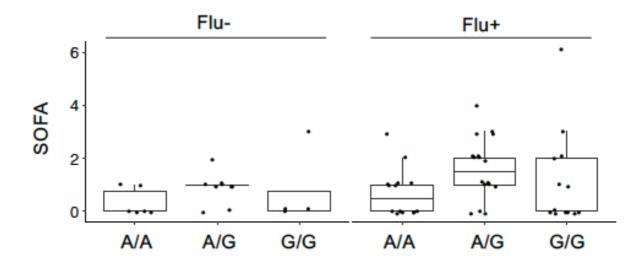

7. Acmax Th17/ml 10. Fup IgG THA B cells/ml 7. Acmax Tfh17/ml 19. Fup IgM⁺ rHA⁺ B cells/ml 8. Acmax Tfh2/ml 20. Fup IgA⁺ rHA⁺ B cells/ml 9. Ac rHA⁺ B cells/ml 21. Fup CD27⁻CD21⁺ rHA⁺ B cells/ml

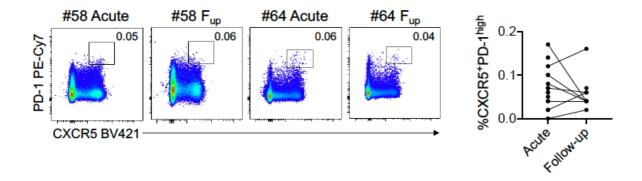
10. Ac lgG⁺ rHA⁺ B cells/ml 22. F_{up} CD27⁺CD21⁺ rHA⁺ B cells/ml


11. Ac IgM⁺ rHA⁺ B cells/ml 23. F_{up} CD27⁺CD21⁻ rHA⁺ B cells/ml

12. Ac IgA⁺ rHA⁺ B cells/ml 24. F_{up} CD27⁻CD21⁻ rHA⁺ B cells/ml


Supplementary Figure 4. Correlation matrix of antibodies, ASCs, cTfhs and HA-specific **B cells.** Spearman's correlation (two-sided) was calculated for each parameter and *p*-values $(1x10^{-14}>p<0.1)$ for each correlation are plotted on the right. Only patients with acute HA-probe data sets were included in the analysis (*n*=29).


Supplementary Figure 5. Functional assessment of innate and adaptive immune cells. ad, Data following influenza virus infection assay. a, FACS gating strategy measuring IFN- γ production from all cell subsets related to Fig. 5a-d. b, Frequency of intracellular NP staining per cell subset (*n*=30). c, Comparative FACS staining of MAIT cells, gated on live/CD19⁻/CD14⁻/CD3⁺/TCR $\gamma\delta$ ⁻ cells, using MR1-5'OP-RU-tetramer versus CD161 as surrogate markers for TRAV1-2⁺ MAIT cells. d, Numbers of IFN- γ -producing MAIT cells using both surrogate markers (*n*=17). b,d, Median bars and IQR are shown.


Supplementary Figure 6. TAME and phenotypic analysis of influenza-specific T cells. a, Boolean gating strategy for measuring each cell subset expressing a combination of granzymes A, B, K and M and perforin related to Fig. 5e-g. Data from PBMCs left over from flow through fraction following TAME. b, Representative FACS plots of enriched class I and class II tetramer populations following TAME related to Fig. 6a-f. c, Representative FACS plots showing the unenriched, enriched and flowthrough fractions of class I (top panels) and class II (bottom panels) tetramer⁺ populations related to Fig. 6a-f. d, Pooled tetramer⁺ precursor frequencies. Mean and SD are shown. Statistical significance (0.0001 > p < 0.05) was determined using Kruskal-Wallis test (two-sided). e, Boolean gating strategy of activation markers PD-1, CD71, HLA-DR and CD38 for CD4⁺, CD8⁺ and tetramer⁺ T cell populations related to Fig. 6g-i. (F) Phenotypic gating strategy based on T cell differentiation markers related to Fig. 6j.

Supplementary Figure 7. Activation phenotype of class I-tetramer⁺ CD8⁺ T cells. Frequencies of activation markers on TAME-enriched tetramer⁺ cells at acute and follow-up timepoints. Patients are plotted individually and ordered along the x-axis by epitope+days of disease onset.

Supplementary Figure 8. No differences in IFITM SNPs and SOFA scores. Box plots of rs34481144 alleles against SOFA scores in influenza+ (n=44) and influenza- (n=20) patients showing median, IQR and whiskers extending to the largest or smallest values no further than 1.5 times the IQR.

Supplementary Figure 9. CXCR5⁺PD-1^{high} cTfh cells in the blood. Representative CXCR5 and PD-1^{high} expression and frequencies of CXCR5⁺PD-1^{high} cTfh cells of total CD4⁺ T cells in influenza+ patients (n=14) at acute and follow-up (F_{up}) where available. Cells were gated on live/CD3⁺/CD4⁺ T cells.

	Influenza-positive,	Influenza-negative
0 1 '	value	value
Sample size	44	20
nfluenza A (%)	34 (77%)	
pH1N1, H3N2, unsubtyped	7, 24, 3	
Influenza B (%)	10 (23%)	
Phuket, Brisbane, unsubtyped	4, 3, 3	
RSV		3
Parainfluenza 1		3
Picornavirus		3
Other		11
Age, median (range)	54 (21-90)	47 (20-90)
Male (%)	25 (57%)	10 (50%)
Ethnicity		
White Australian	36 (82%)	19 (95%)
White Australian/Non Aboriginal/Torres Strait Islander	3 (7%)	
Non Aboriginal/Torres Strait Islander	3 (7%)	1 (5%)
Asian	1 (2%)	
Other (Sri Lankan)	1 (2%)	
Significant high-risk conditions*	38 (86%)	14 (70%)
Type of high-risk condition^	50 (0070)	11((()))
Immunosuppressed	20	9
Chronic respiratory disease	20	8
Cardiac disease	6	1
Chronic renal disease	7	5
Liver disease	4	1
Neurologic disorders	6	1
Haematologic/malignancy disorders	2	1
Diabetes	8	5
Healthcare worker	2	1
Organ transplant recipient	2	
HIV-positive	3	2
Obesity	6	3
Vaccination status prior to infection		
Vaccinated in the year of infection	21 (48%)	13 (65%)
Vaccinated 1-2 seasons prior to infection	6 (14%)	3 (15%)
Vaccinated at least twice (year of infection and previous 1-2 seasons)	17 (39%)	11 (55%)
Total days in hospital, median (range)	4 (1-38)	4 (1-61)
Days from disease onset to admission, median (range)	4 (-4-23)	3 (1-14)
Days from disease onset to discharge/death, median (range)	8 (3-35)	10 (3-68)
Days from disease onset to follow-up, median (range)	41 (25-95)	39 (27-84)
Complications during acute illness	()	
Intensive care required	1	
Non-invasive support required	3	1
Pneumonia on clinical presentation	6	1
Bronchitis	0	1
Bronchiectasis	1	1
Secondary bacterial infection	1	1
	l (2
Bacterial growth in sputum or faecal	6	2
Exacerbation of COPD	1	1
Febrile neutropenia	1	1
Atrial fibrillation	1	
Tachypnoea		1
Death	1	1
Received antiviral therapy (%)	37 (84%)	9 (45%)
Received oseltamivir	36	9

Supplementary Table 1. Patient summary.

*Persons with high-risk conditions defined by the Communicable Diseases Network Australia (CDNA) National Guidelines for Public Health Units: Seasonal Influenza Infection ^Any participant with one or more conditions

Supplei	lentary rable 2. Faller of influenza	i viruses used in the antie	Vaccine component	
Group	Virus strain	Abbreviation	year	
010 <i>0</i> P			(Australia)	
	A/H1N1/Puerto Rico/8/34	PR/8/34		
	A/H1N1/Brazil/11/78	BRAZIL/11/78		
TTINII	A/H1N1/Fukishima/141/06	FUK/141/06		
H1N1	A/H1N1/Brisbane/59/07	BRIS/59/07		
	A/H1N1/California/07/2009	CAL/07/09	2014-16 vaccine	
	A/H1N1/Michigan/45/2015	MICH/45/15	2017-18 vaccine	
	A/H3N2/Port Chalmers/1/1973	PC/1/73		
	A/H3N2/Texas/1/1977	TEXAS/1/77		
	A/H3N2/Panama/2007/1999	PANAMA/2007/99		
	A/H3N2/Brisbane/10/2007	BRIS/10/07		
	A/H3N2/Perth/16/2009	PERTH/16/09		
	A/H3N2/Victoria/361/2011	VICTORIA/361/11		
	A/H3N2/Texas/50/2012	TEXAS/50/12	2014 vaccine	
	A/H3N2/Victoria/2078/2014	VICTORIA/2078/14		
	A/H3N2/South			
	Australia/91/2014	SOUTHAUS/91/14		
H3N2	A/H3N2/Victoria/3044/2014	VICTORIA/3044/14		
	A/H3N2/Newcastle/22/2014	NEWCASTLE/22/14		
	A/H3N2/Switzerland/9715293/	SWI/9715293/13	2015 vaccine	
	2013	5 W1/9/15295/15	2015 vaccine	
	A/H3N2/New	NEWCALED/71/14		
	Caledonia/71/2014	NEWCALED//1/14		
	A/H3N2/Brisbane/47/2015	BRISB/47/15		
	A/H3N2/Hong	HONGKONG/4801/1	2016-17 vaccine	
	Kong/4801/2014	4	2010-17 Vaccine	
	A/H3N2/Singapore/INFIMH-	SING/INFIMH-16-	2018 vaccine	
	16-0019/2016	0019/16		
	B/YAM/Brisbane/1/2007	BRIS/1/07		
	B/YAM/Massachusetts/02/201	MASS/02/12	2014 TIV vaccine	
	2			
	B/YAM/Phuket/3073/2013	PHUKET/3073/13	2015 TIV, 2016-2018	
B*	D/XA M/S = 1 = - 77/2014		QIV vaccine	
	B/YAM/Sydney/7/2014	SYDNEY/7/14		
	B/YAM/Brisbane/9/2014	BRIS/9/14	201(2010 011	
	B/VIC/Brisbane/60/2008	BRIS/60/08	2016-2018 QIV	
	P/VIC/Prishane/46/2015	015 PPIS/46/15		
	B/VIC/Brisbane/46/2015	BRIS/46/15		

Supplementary Table 2. Panel of influenza viruses used in the antibody landscapes.

*TIV was substituted with the QIV in 2016 to incorporate both influenza B Yamagata and Victoria strains.

Donor code	Age	Sex	Blood product Source		MAIT cells measured
B124	49	М	Buffy pack Australian Red Cross Lifeblood		Yes
B125	75	F	Buffy pack	Australian Red Cross Lifeblood	Yes
B126	27	М	Buffy pack	Australian Red Cross Lifeblood	Yes
B127	68	F	Buffy pack	Australian Red Cross Lifeblood	Yes
B142	20	F	Buffy pack	Australian Red Cross Lifeblood	N/A
B143	70	F	Buffy pack	Australian Red Cross Lifeblood	N/A
B144	36	М	Buffy pack	Australian Red Cross Lifeblood	N/A
B150	34	М	Buffy pack	Australian Red Cross Lifeblood	N/A
B153	29	М	Buffy pack	Australian Red Cross Lifeblood	N/A
B154	36	М	Buffy pack	Australian Red Cross Lifeblood	N/A
B155	35	F	Buffy pack	Australian Red Cross Lifeblood	N/A
B156	39	М	Buffy pack	Australian Red Cross Lifeblood	N/A
K26	29	М	Heparinized blood	Healthy volunteers	Yes
K28	35	F	Heparinized blood	Healthy volunteers	Yes
K99	21	F	Heparinized blood	Healthy volunteers	Yes
K100	22	F	Heparinized blood	Healthy volunteers	Yes
D8	78	М	Heparinized blood	Deepdene Surgery	Yes
D11	79	F	Heparinized blood	Deepdene Surgery	Yes
D13	87	F	Heparinized blood	Deepdene Surgery	Yes
D16	72	М	Heparinized blood	Deepdene Surgery	Yes

Supplementary	Table 3. Healthy	v donors used in	this study (Fig.	4. G to I).
~~~~~				

Abbreviations: F, female; M, male; N/A, not available.

Average frequency					Alaskan	Australian
(%)	Caucasoid*	Oriental*	African*	Amerindian*	Yupik [#]	Aboriginals*
HLA-A1	14.07	3.66	4.85	5.50	0.40	1.00
HLA-A2	25.01	27.17	15.76	24.78	2.40	7.85
HLA-A24	10.36	23.97	3.14	30.90	58.10	48.75
HLA-A68	3.99	1.29	9.68	5.95	10.10	1.50
HLA-B7	8.67	3.37	7.71	2.38	1.60	0.75
HLA-B8	7.41	1.40	4.83	1.10	0.40	0.50
HLA-B18	6.31	0.92	4.62	0.50	0.60	0.00
HLA-B35	10.33	5.03	5.53	17.53	10.70	1.75
HLA-B57	2.91	1.33	3.96	0.68	0.00	1.75
HLA-DR1	9.42	2.98	5.46	1.5	0.40	1.00^
HLA-DR4	12.82	12.99	10.51	40.00	23.20	0.50^
HLA-DR11	13.36	7.74	15.74	11.65	10.70	N/A
Total	>100	91.85	91.79	>100	>100	63.85

Supplementary Table 4. HLA population coverage across ethnicities.

Percentages based on HLA coverage for the relevant HLA supertype. N/A, not available. *Marsh SGE, et al. (2000) The HLA Factsbook (Academic Press, San Diego).

[#]www.allelefrequencies.net.

^Australia Cape York Peninsula Aborigine (www.allelefrequencies.net).

Supprementary	able 5. List of princis.	
Primer	Forward (F) 5'-3'	Reverse (R) 5'-3'
IFITM3	GGAAACTGTTGAGAAACCGAA	CATACGCACCTTCACGGAGT
amplification*		
rs34481144	ACAGCCACCTCGTGCTCCTC	GTTGAGAAACCGAAACTACTGGG
sequencing		
A-HA-Uni	GGGGGGAGCAAAAGCAGGGGA	CCGGGTTATTAGTAGAAACAAGGG
		TG
B-HANA-	GGGGGAGCAGAAGCAGAGC	CCGGGATATTAGTAGTAACAAGAG
Uni3		С

### Supplementary Table 5. List of primers.

*Primers were used to amplify both *exon 1* rs12552 and rs34481144 promoter regions. The same primers were used to sequence rs12252.