

Fig S1. m⁶A methylome of SARS-CoV-2 genomic RNA.

- (a) IGV showing the RIP-seq reads of known m⁶A residues at 4,190 position of 28S rRNA, suggesting good enrichment of RIP-seq.
- (b) Correlation analysis of two biological replicates of SARS-CoV-2 RIP-seq data.
- (c) Validation of the m^6A -marked viral RNA (13 m^6A peaks identified by RIP-seq) by performing m^6A -IP-qPCR using a different m^6A antibody (as an orthogonal evidence to the originally used Millipore m^6A antibody in RIP-seq) in Vero cells at 56 h post infection. Data are represented as mean \pm SD; N = 3.

- (d) m⁶A peak intensity of SARS-CoV-2-infected Vero cells between 24h and 56h post infection. "peak intensity" is calculated as RPKM_{IP}/RPKM_{Input} in each peak.
- (e) Immunofluorescence of SARS-CoV-2-infected Huh7 cells (S protein, green) and nuclei (DAPI, blue) at 120h after infection.
- (f) Refined RIP-seq of SARS-CoV-2 RNA harvested from Huh7 cells at 120 hpi showing the distribution of m^6A reads mapped to SARS-CoV-2 genome (red line). The baseline signal of input samples is represented by grey line and m^6A peaks are represented by green rectangles along the x axis. A schematic diagram of the SARS-CoV-2 genome is shown below to indicate the location of the m^6A -enriched sequences. Data are representative of N = 2 determinations.