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SUMMARY
Immune checkpoint blockade (ICB) results in durable disease control in a subset of patients with advanced
renal cell carcinoma (RCC), but mechanisms driving resistance are poorly understood. We characterize the
single-cell transcriptomes of cancer and immune cells from metastatic RCC patients before or after ICB
exposure. In responders, subsets of cytotoxic T cells express higher levels of co-inhibitory receptors and
effector molecules. Macrophages from treated biopsies shift toward pro-inflammatory states in response
to an interferon-rich microenvironment but also upregulate immunosuppressive markers. In cancer cells,
we identify bifurcation into two subpopulations differing in angiogenic signaling and upregulation of immu-
nosuppressive programs after ICB. Expression signatures for cancer cell subpopulations and immune
evasion are associated with PBRM1 mutation and survival in primary and ICB-treated advanced RCC. Our
findings demonstrate that ICB remodels the RCCmicroenvironment andmodifies the interplay between can-
cer and immune cell populations critical for understanding response and resistance to ICB.
INTRODUCTION

The tumor microenvironment plays critical roles in renal cell car-

cinoma (RCC) carcinogenesis, pathophysiology, and therapy.

The most common RCC histologic subtype, clear cell RCC

(ccRCC), frequently harbors characteristic second-hit loss-of-

function mutations in VHL on a background of loss of chromo-

some 3p, where VHL resides (Creighton et al., 2013). These

events result in decreased degradation of hypoxia-inducible fac-

tors (HIFs), causing mutant cells to shift to using glycolysis and

secreting VEGF, which promotes angiogenesis (Hsieh et al.,

2017). Moreover, ccRCC tumors are highly infiltrated by immune
Cancer Cell 39, 649–661
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cells, particularly by T cells (Sxenbabao�glu et al., 2016).

Leveraging these features of the microenvironment, treatment

has evolved significantly over the past decade, with now wide-

spread use of VEGF tyrosine kinase inhibitors (TKIs), immune

checkpoint blockade (ICB), and combinations of these ap-

proaches (Choueiri and Motzer, 2017; Motzer et al., 2014,

2019; Rini et al., 2019).

ICB can provide durable benefit in responders, but resistance

occurs in most patients, and the causal cancer and immune

cellular processes are poorly understood. Genomic character-

ization of ICB response has focused on bulk-sequenced pre-

treatment samples, where lower baseline myeloid inflammation
, May 10, 2021 ª 2021 The Authors. Published by Elsevier Inc. 649
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Figure 1. Characterizing the tumor microenvironment of advanced RCC during therapy

(A) Study overview.

(B) Summary of treatment histories at time of biopsy, clinicopathological features, and genomic features across profiled RCC lesions. ICB Response: PR, partial

response; SD, stable disease; PD, progressive disease; NE, not evaluable. For some samples without successful whole-exome sequencing, genomic char-

acterization is incomplete or missing.

(C) Uniformmanifold approximation and projection (UMAP) of malignant and non-malignant cells captured across all lesions, colored by broad cell type. Granular

cell types and states were discerned through iterative reprojection and unsupervised clustering of lymphoid, myeloid, and tumor compartments, andmerged into

(legend continued on next page)
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and PBRM1 loss of function are associated with response in

certain patient populations (Braun et al., 2019, 2020; McDermott

et al., 2018; Miao et al., 2018). Observations of both intra- and in-

tertumoral heterogeneity complicate mechanistic understand-

ing, with multiple molecular subtypes of ccRCC defined by mu-

tations in a set of chromatin remodelers that exhibit distinct

patterns of evolution andmetastasis (Creighton et al., 2013; Ger-

linger et al., 2012; Turajlic et al., 2018).

Bulk sequencing is poorly suited to investigating cell-type-

specific patterns of response to therapy. A lack of representative

pre-clinical immune-competent RCCmodels poses further chal-

lenges to investigating interactions and signaling between cell

types (Hsieh et al., 2017). To address these challenges, recent

studies utilize single-cell analyses of patient samples to pinpoint

cancer cell of origin and describe immune cells in untreated RCC

(Chevrier et al., 2017; Young et al., 2018). We therefore hypoth-

esized that single-cell transcriptomic dissection of biopsies from

before or after ICB exposure would reveal immune and cancer

cell programs that determine treatment response and nominate

targets to combat resistance.

RESULTS

Characterizing the tumor microenvironment of
advanced RCC during therapy
We collected fresh biopsies or surgical resections from eight pa-

tients, sevenwithmetastatic RCC and onewith localized disease

(Table S1). Dissociated cells were processed for single-cell RNA

sequencing (scRNA-seq) using the 103 platform, and additional

tissue was used for bulk whole-exome sequencing where avail-

able (Figure 1A). At time of biopsy, five patients had been

exposed to ICB (including four to both TKIs and ICB), and three

patients had not been exposed to systemic therapy (Figure 1B).

Specimens were derived from the kidney in cases of nephrec-

tomy and from lymph node and visceral metastases otherwise.

Seven patients had ccRCC, while one tumor had a type 2 papil-

lary RCC histology with PBRM1 and SETD2 mutations. As ex-

pected, chromosome 3p loss was universally detected in ccRCC

patients for whom genomic characterization was available, with

additional second-hit mutations in VHL and/or genes encoding

chromatin remodelers. Broadly, our cohort recapitulated typical

characteristics of advanced ccRCC in both genomic and clinical

features (Creighton et al., 2013).

After quality control, our dataset included 34,326 total cells

covering various cancer and non-malignant cell types. To miti-

gate possible batch effects and allow for joint analysis of cancer

cells, which have patient-specific expression patterns, we used

Seurat’s CCA-based alignment to aggregate cells across sam-

ples and jointly cluster them in an unsupervised manner (Figures

1C and S1A; Table S1) (Butler et al., 2018). We labeled clusters

based on marker gene expression, identifying cancer and non-

cancer cell clusters shared across patients, biopsy site, and sys-

temic treatment received (Figures 1C, 1D, S1B, and S1C; Ta-

ble S1).
broader cell-type categories for this visualization. DC, dendritic cell; NK, natural k

regulatory T cell.

(D) UMAP of malignant and non-malignant cells captured across all lesions, colo

See also Figure S1, Table S1.
CD8+ T cell remodeling by ICB
All ICB-exposed patients in our cohort received a therapy target-

ing the PD-1 axis, so we hypothesized that treatment may enact

cell-(sub)type-specific remodeling of the lymphoid compart-

ment. To address this, we began by performing unsupervised

clustering within broad lymphoid cell types to identify cell states

conserved across patients, biopsy sites, and treatment histories.

We identified 12 lymphoid cell subsets, including B cells, plasma

cells, natural killer T cells, FGFBP2+ and FGFBP2� natural killer

cells, regulatory T cells, and memory and effector T helper cells

(Figures 2A, 2B, S2A, and S2B; Table S2).

CD8+ T cells formed four distinct clusters, including a popula-

tion progressing through the cell cycle, a small population

marked by expression of the interferon-stimulated gene MX1,

and two populations differentiated by their expression of a set

of genes including TNFRSF9 (encoding the activation marker

4-1BB) (Figures 2A–2C and S2C; Table S2) (Horisberger et al.,

1983; Wolfl et al., 2007). Co-inhibitory receptors PDCD1 (encod-

ing PD-1), HAVCR2 (encoding TIM-3), and LAG3 were ex-

pressed across all CD8+ T cell subsets but were detected in a

larger proportion of 4-1BB-Hi cells (Figure S2C) (Thommen and

Schumacher, 2018). TOX and ENTPD1 (encoding CD39), two

exhaustion markers upregulated in tumor-specific T cells, were

also elevated in 4-1BB-Hi and cycling cells (Figures 2C and

S2C) (Canale et al., 2018; Duhen et al., 2018; Scott et al.,

2019). In a pattern opposite that of ENTPD1, we observed

expression, in a subset of cells, of IL7R and STAT4, two genes

linked with T cell longevity and memory that are upregulated in

a population of cells associated with ICB response in melanoma

(Figure 2C) (Sade-Feldman et al., 2018).

Studies in melanoma models have shown that tumor-infil-

trating CD8+ T cells include a progenitor exhausted population,

which persists long term, responds to anti-PD-1 therapy, and ul-

timately differentiates into terminally exhausted cells. Frequency

of this CD8+ T cell population in pre-treatment biopsies predicts

positive clinical outcomes in melanoma treated with ICB (Miller

et al., 2019). To determinewhether any of theCD8+ T cell subsets

we recovered in RCC resemble this progenitor exhausted

phenotype, we scored individual cells for progenitor and termi-

nally exhausted gene signatures (Table S2) (DeTomaso et al.,

2019; Sade-Feldman et al., 2018). We found that the progenitor

exhausted signature was strongly enriched in a subset of the

cells within the 4-1BB-Lo cluster (Figures 2D, 2E, and S3A–

S3C). Conversely, the terminally exhausted signature was

elevated in the other CD8+ T cell populations.

Having identified a candidate subset of CD8+ T cells within

RCC that bears some similarities to the previously described

progenitor exhausted population, we next examined expression

differences based on exposure to ICB (Figure 2F). Among CD8+

T cell subsets, we found that PDCD1, TIGIT, and HAVCR2 were

significantly upregulated in ICB-exposed biopsies only within the

4-1BB-Lo cluster, an effect driven by responders (Figure S3D).

Of effector molecules, we observed elevated expression in

ICB-exposed biopsies of GZMB, PRF1, and IFNG in both
iller cell; NKT, natural killer T cell; TAM, tumor-associated macrophage; T-Reg,

red by patient, biopsy site, ICB treatment history, and ICB response.

Cancer Cell 39, 649–661, May 10, 2021 651
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Figure 2. CD8+ T cell exhaustion states are differentially remodeled by ICB

(A) UMAP of lymphoid cells captured across all lesions, colored and labeled by cell type. Bar plots show cell-type proportions grouped by ICB treatment history.

(B) Heatmap of scaled normalized expression for cell-type-defining genes as determined by two-sided Wilcoxon rank-sum test with Bonferroni FDR correction

(q < 0.01).

(C) UMAP of CD8+ T cell subtypes, followed by expression heatmaps in UMAP space of co-inhibitory receptors, exhaustion markers, and memory-associ-

ated genes.

(D) Heatmaps in UMAP space of VISION signature scores for terminally exhausted and progenitor exhausted CD8+ T cells.

(E) Signature score distributions for terminally exhausted and progenitor exhausted CD8+ T cell signatures within each CD8+ T cell subtype. Significance of

differential signature enrichment (p value) between subtypes was determined by two-sided Wilcoxon rank-sum test. Boxplots include centerline, median; box

limits, upper and lower quartiles; and whiskers extending at most 1.53 the interquartile range past upper and lower quartiles.

(F) Heatmap of differential gene expression q values (two-sided Wilcoxon rank-sum test with Bonferroni FDR correction) for comparisons of cells within each

CD8+ T cell cluster from ICB-exposed versus ICB-naive patients.

(G) Gene set enrichment analysis (GSEA) of terminally exhausted and progenitor exhausted signatures in 4-1BB-Lo CD8+ T cells from ICB PR patients compared

with ICB SD/PD patients.

(H) Signature scores for an ICB-exposed 4-1BB-Lo CD8+ T cell signature and expression values for individual genes in paired pre-/on-ICB bulk RNA-seq samples

in the Checkmate 009 RCC cohort. Expression values for individual genes were normalized against total CD8 fraction per sample as inferred by CIBERSORTx.

Significance of differential signature enrichment or expression (p value) was determined by paired two-sided Wilcoxon rank-sum test. Boxplots include

centerline, median; box limits, upper and lower quartiles; and whiskers extending at most 1.53 the interquartile range past upper and lower quartiles.

***p < 0.001, two-sided Wilcoxon rank-sum test. See also Figures S2 and S3, Table S2.
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4-1BB-Lo and 4-1BB-Hi populations, but only 4-1BB-Lo cells

upregulated GZMA and FASLG. Likewise, only 4-1BB-Lo cells

upregulated a host of co-stimulatory molecules and chemo-

kines. Conversely, 4-1BB-Lo cells from ICB-exposed biopsies

downregulated several genes associated with the progenitor ex-
652 Cancer Cell 39, 649–661, May 10, 2021
hausted phenotype, hinting at possible differentiation toward a

more terminally exhausted state. In melanoma models, poly-

functional progenitor exhausted CD8+ T cells differentiate to a

more terminally exhausted phenotype during response to anti-

PD1, and the latter population is primarily responsible for tumor
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killing despite being short lived (Miller et al., 2019). Within 4-1BB-

Lo cells from ICB-exposed patients in our cohort, we observed

significant enrichment of the terminally exhausted gene signa-

ture in cells from responders compared with cells from non-re-

sponders (Figures 2G and S3E–S3G; Table S2).

To validate these phenomena seen in unpaired biopsies, we

examined a larger cohort of patients (Checkmate 009) undergo-

ing monotherapy with the anti-PD-1 antibody nivolumab for

whom longitudinal pre- and on-therapy bulk transcriptomes

were available (Choueiri et al., 2016; Miao et al., 2018). In these

paired biopsies, we observed significantly increased levels in

the on-therapy samples of an expression signature derived

from comparing ICB-exposed with ICB-naive 4-1BB-Lo cells

from our single-cell cohort (Figure 2H; Table S2). Concordantly,

on-treatment samples exhibited higher levels of co-inhibitory

(e.g., PDCD1, LAG3) and effector molecules (e.g., IFNG,

PRF1). These findings are consistent with, but do not unequivo-

cally establish, the possible existence in RCC of a subpopulation

of 4-1BB-Lo CD8+ T cells that respond to anti-PD1 therapy in a

mechanistic fashion similar to that observed in models based on

melanoma and chronic viral infection. Longitudinal single-cell

studies would be necessary to definitively detect subpopula-

tion-specific treatment-associated differentiation within individ-

ual patients.

Shift toward inflammation in tumor-associated
macrophages
In addition to adaptive immunity, the innate immune system

plays critical roles in tumor survival and resistance to therapy.

In particular, tumor-associated macrophages (TAMs) are re-

ported to play diverse and opposing roles within the tumor

microenvironment, with different phenotypes promoting inflam-

mation, tumor growth, angiogenesis, and metastasis, as well

as cancer cell killing (Guerriero, 2018; Mantovani et al., 2017).

TAMs are diverse in ccRCC, with mass cytometry identifying

17 phenotypes and high myeloid inflammation at baseline asso-

ciated with worse outcomes on anti-PD-1 therapy (Chevrier

et al., 2017; McDermott et al., 2018). Consequently, we sought

to characterize myeloid cells within our cohort and their

response to therapy.

We extracted myeloid cells identified from the full dataset

based onmarker expression and sub-clustered them, identifying

two clusters of dendritic cells (CLEC9A+ and CD1c+ classical

dendritic cells), two clusters of monocytes (classical CD16�

and CD16+ monocytes), and five clusters of TAMs, which ex-

pressed a diverse host of immunomodulatory genes (Figures

3A–3C; Table S3) (Collin and Bigley, 2018). The proportions of

these cell populations were stable between patients and across

ICB exposure status (Figures 3A and S4A). A simple M1/M2

dichotomization of macrophages into phenotypes that promote

inflammation and wound healing/tissue repair, respectively, is

increasingly understood to imperfectly capture the diversity of

TAM phenotypes, and indeed, we did not observe a clean binar-

ization of expression of M1 andM2marker genes (Figure 3D; Ta-

ble S3) (Mantovani et al., 2017). A small population of CXCL10-Hi

TAMs specifically expressed a set of genes associated with a

classical M1-activated phenotype (Wang et al., 2014). However,

the other three noncycling TAM populations expressed different

M2-associated genes to varying degrees. Multiple M2-associ-
ated genes were robustly detected in a population of TAMs high-

ly expressingGPNMB, previously reported to promoteM2 polar-

ization in a mouse model of acute kidney injury (Zhou et al.,

2017). A separate population of TAMs with elevated expression

of FOLR2, canonically described as marking M2 macrophages,

expressed a distinct subset of M2-associated genes (Puig-Krö-

ger et al., 2009). A last population of TAMswithmixed expression

of both M1- and M2-associated genes was marked by high

expression of VSIR, which encodes VISTA, a PD-1 homolog

that serves as a negative checkpoint that inhibits T cell activation

(Lines et al., 2014).

To better understand the roles these diverse TAM populations

play in the course of ICB, we examined their expression of im-

mune checkpoint genes and immune-related transcriptional pro-

grams. PD-L2 and, to a lesser extent, PD-L1, both ligands for

PD-1 signalingmediating immune checkpoint in T cells, were de-

tected sparsely across the TAM populations (Figure 3C).

LGALS9, VSIG4, and VSIR, whose protein products promote

the T cell immune checkpoint via other pathways, and SI-

GLEC10, which can inhibit inflammatory responses by macro-

phages, were more broadly detected (Barkal et al., 2019; Das

et al., 2017; Lines et al., 2014; Vogt et al., 2006). Comparing

ICB-exposed patients with and without response, we noted

broad and significant changes in expression patterns indicating

a shift toward an M1-like phenotype in response to interferon

signaling in all TAM and monocyte populations, except in the

CXCL10-Hi TAMs, which already showed evidence of M1 polar-

ization (Figures 3E and S4B). In parallel, we observed systematic

increases in expression signatures associated with aspects of

macrophage activity, including antigen presentation and protea-

some function (Figures 3E and S4C). Collectively, these patterns

pointed to a widespread shift to a pro-inflammatory phenotype

across TAMs in ICB responders, potentially induced by inter-

feron-g produced by CD8+ T cells (Figures S4D and S4E). At

the same time, we also observed systematic and dramatic upre-

gulation of CD8+ T cell immune checkpoint and macrophage

anti-inflammatory signaling genes in ICB-exposed versus naive

TAMs (Figure 3F). Much of this effect was driven by TAMs from

patients with ICB response, which had further increases in

expression levels of VSIR, VSIG4, PD-L2, and SIGLEC10

compared with cells from non-responders (all assessed post-

ICB) (Figure 3G). Thus, even as TAMs in responders exhibited

amore pro-inflammatory phenotype, they also exhibited expres-

sion changes thatmay suppress an inflammatory immunemicro-

environment, thereby potentially promoting eventual resistance

to ICB.

Two distinct cancer cell subpopulations
To better understand cellular programs active in cancer cells that

may drive interactions with the immune system, we next sought

to identify shared patterns of expression across cancer cells. We

sub-clustered cells identified as malignant via gene expression

and copy number alterations (Figure S1B). We aligned sets of

cancer cells derived from different biopsies to focus on shared

variation in cellular programs across the cohort. Across biopsies,

cells formed two major clusters, denoted tumor program 1 (TP1)

and tumor program 2 (TP2), with a small number of cells distin-

guished by cell-cycle progression (Figures 4A and 4B; Table

S4). Both TP1 and TP2 cells were recovered from all samples
Cancer Cell 39, 649–661, May 10, 2021 653
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Figure 3. Tumor-associated macrophages shift toward inflammation during checkpoint blockade

(A) UMAP of myeloid cells captured across all lesions, colored and labeled by cell type. Bar plots show cell-type proportions grouped by ICB treatment history.

(B) Heatmap of scaled normalized expression for cell-type-defining genes as determined by two-sided Wilcoxon rank-sum test with Bonferroni FDR correction

(q < 0.01).

(C) Dotplot showing percentage of cells in each cell type expressing immune checkpoint and evasion genes.

(D) Heatmap of scaled normalized expression for curated M1- and M2-associated genes within TAM subtypes.

(E) Heatmap of normalized enrichment scores (NES) for gene sets significantly enriched (p < 0.05, q < 0.25) in TAM subtypes from ICB PR patients compared with

ICB SD/PD patients.

(F) Violin and boxplots comparing expression distributions of immune checkpoint and evasion genes between all TAM from ICB-exposed versus ICB-naive

patients. Significance of differential expression (q value) was determined by two-sidedWilcoxon rank-sum test with Bonferroni FDR correction. Boxplots include

centerline, median; box limits, upper and lower quartiles; and whiskers extending at most 1.53 the interquartile range past upper and lower quartiles.

(G) Violin and boxplots comparing expression distributions of immune checkpoint and evasion genes between all TAM from ICB PR versus ICB SD/PD patients.

Significance of differential expression (q value) was determined by two-sided Wilcoxon rank-sum test with Bonferroni FDR correction. Boxplots include

centerline, median; box limits, upper and lower quartiles; and whiskers extending at most 1.53 the interquartile range past upper and lower quartiles.

***q < 0.001, ns: not significant, two-sided Wilcoxon rank-sum test with Bonferroni FDR correction. See also Figure S4, Table S3.
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except one with few cancer cells (P912), independent of biopsy

site or ICB exposure (Figure S5A).

We scored cells from the two major clusters for activity of

various gene signatures to identify the cellular programs under-

lying their transcriptional differences. Across different metastatic

sites, TP1 cells scored higher for gene sets for kidney morpho-

genesis, adherens junction assembly, and angiogenesis (Fig-

ure 4C). TP2 cells were characterized by large differences in

metabolic programs, with increases in both glycolysis and oxida-
654 Cancer Cell 39, 649–661, May 10, 2021
tive phosphorylation, along with concomitant increases in fatty

acid metabolism. The simultaneous upregulation of both oxida-

tive phosphorylation and glycolysis genes in TP2 cells was unex-

pected and points to elevated metabolism in this tumor subpop-

ulation, which may indicate metabolic plasticity permitting

opportunistic use of different energetic pathways. The presence

of cells in this hybrid metabolic state is consistent with theoret-

ical models that predict such a cell state under high HIF-1 activ-

ity, which is well established in RCC, with observations in cell
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Figure 4. Two malignant cell programs with distinct metabolic and immune-reactive characteristics are conserved across biopsy sites
(A) UMAP of malignant cells captured across all lesions, colored and labeled by cluster. Bar plots show cluster proportions grouped by ICB treatment history.

(B) Heatmap of scaled normalized expression for cluster-defining genes as determined by two-sided Wilcoxon rank-sum test with Bonferroni FDR correction

(q < 0.01).

(C) Violin and boxplots comparing single-cell signature score distributions between the two dominant malignant cell clusters, partitioned by biopsy site. Sig-

nificance of differential signature enrichment (p value) was determined by two-sided Wilcoxon rank-sum test. Boxplots include centerline, median; box limits,

upper and lower quartiles; and whiskers extending at most 1.53 the interquartile range past upper and lower quartiles.

(D) GSEA of hallmark interferon-g response and gene ontology antigen presentation and processing via MHC class I signatures in TP1 cells from ICB PR patients

compared with ICB SD/PD patients (top) and TP2 cells from ICB PR patients compared with ICB SD/PD patients (bottom).

(E) Heatmap of differential expression q values (two-sided Wilcoxon rank-sum test with Bonferroni FDR correction) for immune checkpoint and evasion genes in

comparisons of cells within each cluster from ICB-exposed versus ICB-naive patients.

(F) Heatmap of differential expression q values (two-sided Wilcoxon rank-sum test with Bonferroni FDR correction) for immune checkpoint and evasion genes in

comparisons of cells within each cluster from ICB PR versus ICB SD/PD patients.

**p < 0.01, ***p < 0.001, two-sided Wilcoxon rank-sum test. See also Figure S5, Table S4.
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lines linking such plasticity to metastasis (Jia et al., 2019; Wet-

tersten et al., 2017; Yu et al., 2017).

We next examined the potential effects of these cancer cell

programs on immune cells in the context of ICB therapy.

Comparing ICB responders with non-responders, both cancer

cell populations upregulated gene sets associated with inter-

feron-g response and antigen processing onmajor histocompat-

ibility complex (MHC) class I, indicating a response to the pro-in-

flammatory microenvironment in responders (Figures 4D and

S5B–S5E; Table S4). However, ICB-treated cancer cells also up-

regulated several T cell checkpoint molecules, with different pat-
terns in the two populations (Figure 4E). TP1 cells robustly upre-

gulated nectin-2 after therapy, while TP2 cells had more

moderate increases in expression of several checkpoint mole-

cules. Comparing ICB responders with non-responders, TP2

cells exhibited a more dramatic difference, broadly upregulating

both a host of T cell checkpoint molecules and molecules

involved in decreasing macrophage inflammation and evading

phagocytosis (Figure 4F). We recapitulated our findings in a

more homogeneous subset of our cohort (Figures S5F–S5L). In

sum, our results suggest complex interactions between the

many cell populations in the microenvironment, with the two
Cancer Cell 39, 649–661, May 10, 2021 655



A

B

C D

Figure 5. Tumor program signatures are

prognostic in the Checkmate 025 RCC

cohort and associated with distinct genomic

features

(A) Kaplan-Meier analysis of overall survival (OS) in

the Checkmate 025 RCC cohort, with patients

separated by high and low TP1 score in bulk RNA-

seq. plog-rank, log-rank test p value; pCox, p value

determined via a multivariate Cox proportional

hazard model using TP1 score dichotomizedwithin

treatment arm and incorporating age, sex, MSKCC

risk group, prior lines of therapy (%1 or R2), and

days between biopsy collection and start of trial

therapy as covariates.

(B) Kaplan-Meier analysis of OS in the Checkmate

025 RCC cohort, with patients separated by high

and low immune checkpoint/evasion score in bulk

RNA-seq. plog-rank, log-rank test p value; pCox, p

value determined via a multivariate Cox propor-

tional hazard model using immune checkpoint/

evasion score dichotomized within treatment arm

and incorporating age, sex, MSKCC risk group,

prior lines of therapy (%1 or R2), and days be-

tween biopsy collection and start of trial therapy as

covariates.

(C) Bar plots comparing TP1 and TP2 score be-

tween mutant and wild-type samples for

commonly mutated genes in the Checkmate 025

RCC cohort. Significance of differential score

enrichment (q value) determined by two-sided

Wilcoxon rank-sum test with Benjamini-Hochberg

FDR correction. Gray dotted line corresponds to

q = 0.05.

(D) Bar plots comparing TP1 and TP2 score be-

tween mutant and wild-type samples for common

copy number alterations in the Checkmate 025

RCC cohort. Significance of differential score

enrichment (q value) determined by two-sided

Wilcoxon rank-sum test with Benjamini-Hochberg

FDR correction. Gray dotted line corresponds to

q = 0.05.

See also Figure S6, Table S5.
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cancer cell populations presenting different immunosuppressive

signals to both CD8+ T cells and TAMs during ICB therapy.

TP1 cancer expression program associated with
improved survival
The differences between TP1 and TP2 cancer cells with respect

to kidney differentiation, metabolism, and immunosuppressive

signaling prompted us to investigate in a large prospective

cohort whether they play different roles in disease progression

and resistance to therapy. We generated gene signatures

describing TP1 and TP2 and restricted these signatures to can-

cer-cell-specific genes (Table S5). Having leveraged our scRNA-

seq data to generate cancer-cell-specific signatures, we then

scored bulk RNA-seq of pre-treatment samples from advanced

ccRCC in a randomized clinical trial (Checkmate 025) comparing

the mTOR inhibitor everolimus with nivolumab (Table S5) (Braun

et al., 2020).We observed an association between pre-treatment

TP1 score and significantly improved overall survival only within
656 Cancer Cell 39, 649–661, May 10, 2021
patients receiving nivolumab in multivariate analysis, although

score levels between radiographic response categories were

not significantly different (Figures 5A and S6A–S6C). In a joint

analysis including patients from both arms modeling treatment

arm, TP1 score, and a treatment-TP1 interaction term, we

observed a significant interaction between TP1 score and treat-

ment with nivolumab (p = 0.04, Cox proportional hazards). These

results indicate that the relationship between TP1 score and sur-

vival is driven by cancer-immune interactions. There was no sig-

nificant association between TP2 scores and survival (Fig-

ure S6D). However, in nivolumab-treated patients, decreased

survival was associated with higher expression of a set of im-

mune checkpoint and evasion genes, almost all of which were

significantly upregulated in TP2 cells from ICB responders

versus non-responders, albeit these genes are not cancer cell

specific (Figures 4F and 5B) (pCox = 0.017).

To better understand the etiology of these two cancer cell pro-

grams, we evaluated whether they were associated with
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underlying genomic features. In the Checkmate 025 cohort, we

noted an increase in TP1 score in PBRM1 and KDM5C mutant

tumors and an increase in TP2 score in tumors harboring

9p21.3 deletions, which were previously associated with ICB

resistance (Figures 5C and 5D) (Braun et al., 2020). The associ-

ation of TP1 score with PBRM1 mutations and TP2 score with

9p21.3 deletions was corroborated in the TCGA KIRC cohort

(Figures S6E and S6F). In ICB-treated Checkmate 025 patients,

TP1 score remained significantly associated with increased sur-

vival when incorporating PBRM1 mutation status as a covariate

(Figure S6G). In conjunction with the observation of associations

with KDM5C and copy number alterations, this suggested that

TP1 captures transcriptional patterns associated with genomic

alterations beyond single gene mutations.

The survival benefit in the Checkmate 025 ICB arm prompted

further investigation of interactions between cancer cell subpop-

ulations and immune cells. We examined CIBERSORTx immune

cell population abundances inferred in Checkmate 025 (nivolu-

mab arm) using cell-type expression signatures derived from

our dataset (Figures S6H and S6I; Table S5) (Newman et al.,

2019). In tumors with higher TP1 score, we observed increases

in inferred abundance of 4-1BB-Lo CD8+ T cells, noted earlier

for dramatic upregulation of effector molecule expression during

ICB therapy and resemblance to progenitor exhausted cells pro-

moting ICB response inmelanoma (Figure 2F) (Miller et al., 2019).

Although computational inference of abundances of related im-

mune cell populations in bulk cohorts is challenging, these find-

ings support a relationship between TP1 expression programs in

cancer cells and survival mediated by cancer-immune cell inter-

actions. Collectively, our observations of distinct tumor subpop-

ulations with different immune cell interactions may help explain

the observation in bulk RNA-seq of distinct clusters of RCC,

including heterogeneously infiltrated highly angiogenic tumors

and non-infiltrated highly metabolic tumors (Sxenbabao�glu
et al., 2016).

Cell-cell interactions within the tumor
microenvironment
Given observations of IFNG upregulation in ICB-exposed 4-

1BB-Lo CD8+ T cells, immune checkpoint and evasion gene up-

regulation in TAMs from ICB responders, and differentially immu-

nomodulatory cancer cell programs, we hypothesized that the

different cell populations participate in a complex cross talk.

To identify possible non-cell-autonomous effects, we used Cell-

PhoneDB to identify putative signaling between different cell

populations via known receptor-ligand pairs (Figure 6A) (Efre-

mova et al., 2020). Both cancer cell populations were inferred

to signal to CD8+ T cells expressing CD44 via osteopontin (en-

coded by SPP1), an interaction that suppresses T cell activation

in mouse models (Klement et al., 2018). Likewise, both cancer

cell populations expressed MIF and CD47, signaling to CD74

and SIRPa expressed on TAMs, interactions that promote TAM

secretion of growth factors and that inhibit phagocytosis,

respectively. However, only TP2 cells were inferred to engage

TIM-3 (encoded by HAVCR2) expressed on both CD8+ T cells

and TAMs via galectin-9 (encoded by LGALS9). Signaling

through TIM-3 inhibits CD8+ cytotoxic cell activity and, in other

human cancers, induces TAM secretion of growth factors (Das

et al., 2017). In addition, TP2 cells expressed nectin-2, which
binds to the CD8+ T cell co-inhibitory receptor TIGIT (Yu et al.,

2009). Although such an in silico approach cannot definitively

establish an interaction, it suggested the possibility of complex

regulation of both T cells and TAMs by cancer cells.

We additionally observed evidence of interactions between

CD8+ T cells and TAMs. Consistent with upregulation of inter-

feron-response genes in TAMs from ICB responders versus

non-responders, CellPhoneDB inferred regulation of TAMs by

interferon-g produced by CD8+ T cells (Figures 3E and 6A).

Within on-ICB biopsies from Checkmate 009, normalized IFNG

levels were robustly correlated with CIBERSORTx-estimated

CXCL10-Hi TAM fractions and with an expression signature

derived from comparing ICB-exposed to ICB-naive TAMs from

our single-cell cohort (Figure 6B; Tables S2 and S3). Within the

same samples, we observed concomitant increases in expres-

sion of immune checkpoint and evasion genes in samples with

higher normalized IFNG expression, consistent with immuno-

suppressive negative feedback loops reported in other cancer

types (Figure 6C; Tables S2 and S5) (Abiko et al., 2015; Bellucci

et al., 2015; Garcia-Diaz et al., 2017). Indeed, comparing pre-

and on-ICB biopsies from the same patients, we observed in-

creases in expression levels of the immune checkpoint and

evasion signature and of member genes, including VSIG4, PD-

L2, and SIGLEC10 (Figure 6D; Tables S2 and S5). Several of

these genes are expressed by both cancer cells and TAMs,

and their origin cannot be deciphered in bulk transcriptomes,

but these comparisons suggest that the tumor microenviron-

ment may adapt to ICB treatment by increasing immunosup-

pressive gene expression.

DISCUSSION

To investigate immune system and cancer responses to therapy,

we examined single-cell transcriptomes from advanced RCC

before or after ICB. A subpopulation of CD8+ T cells is robustly

activated and differentiated toward a terminally exhausted

phenotype in responders. These cells have similarities to those

described as mediating ICB response in melanoma and may

correspond to a population described as the progeny of stem-

like CD8+ T cells in RCC (Jansen et al., 2019; Miller et al.,

2019). Among TAMs, we identified a small pro-inflammatory

population and multiple others that coherently shift toward a

pro-inflammatory phenotype in response to interferon-g

signaling in ICB responders. ICB exposure was associated

with increases in T cell checkpoint molecule expression and

anti-inflammatory signaling, suggesting immune system adapta-

tion that may underlie treatment resistance. Within cancer cells,

we uncovered two populations differentiated by expression of

pro-angiogenic, kidney differentiation, and metabolic programs.

In response to ICB, metabolically plastic and less differentiated

TP2 cancer cells upregulated a host of immunosuppressive

genes. Whereas cells from both populations were observed

across biopsies in our cohort, an increase in the TP1 cancer pro-

gram was associated with increased survival with ICB, suggest-

ing that differences in cancer-immune cross talk operate be-

tween the two populations.

Clinical heterogeneity poses a challenge to our study given the

modest biopsy numbers. Almost all ICB-exposed patients had

exposure to TKIs, so observed effects may be driven by the
Cancer Cell 39, 649–661, May 10, 2021 657
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Figure 6. IFNG is associated with pro-inflammatory TAM and immune checkpoint/evasion phenotypes in the Checkmate 009 RCC cohort

(A) Heatmap of cell-type-specific receptor-ligand interactions inferred by CellPhoneDB. Shown are inferred interactions between malignant cell clusters and all

CD8+ T cells, malignant cell clusters and all TAMs, and all CD8+ T cells and all TAMs. Circle size indicates significance of interaction and circle color indicates

mean expression of receptor and ligand genes for each pair.

(B) Scatterplots of CXCL10-Hi TAM fraction (left) and ICB-exposed TAM signature score (right) versus IFNG gene expression normalized by total CD8+ T cell

fraction in bulk RNA-seq of on-ICB samples in the Checkmate 009 RCC cohort. Cell-type fractions were inferred using CIBERSORTx. Pearson coefficient (R) and

associated p value are reported for each correlation.

(C) Scatterplots of immune checkpoint/evasion signature score versus IFNG expression normalized by total CD8+ T cell fraction (left) and immune checkpoint/

evasion score versus hallmark interferon-g response signature score (right) in bulk RNA-seq of on-ICB samples in the Checkmate 009 RCC cohort. Cell-type

fractions were inferred using CIBERSORTx. Pearson coefficient (R) and associated p value are reported for each correlation.

(D) Signature scores for the immune checkpoint/evasion signature and expression values for individual genes in paired pre-/on-ICB bulk RNA-seq samples in the

Checkmate 009 RCC cohort. Significance of differential signature enrichment or expression (p value) was determined by paired two-sided Wilcoxon rank-sum

test. Boxplots include centerline, median; box limits, upper and lower quartiles; and whiskers extending at most 1.53 the interquartile range past upper and lower

quartiles.
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combination. Nonetheless, as TKI and ICB combination or

sequential therapy is the standard of care, our findings remain

relevant for future work. RCC most commonly manifests as

ccRCC, and our dataset reflects this. Whereas we have explicitly

focused on expression programs found across patients, detailed

studies of other histologies are needed. We validated our find-

ings in uniformly treated bulk-sequenced clinical trial cohorts,

including one with longitudinal pre- and on-ICB biopsies. None-

theless, bulk RNA-seq is limited by unknown cell-type admix-

ture, so future work should focus on large cohorts of paired

ICB-naive and ICB-resistant biopsies using single-cell ap-

proaches. Multiplex imaging analyses may elucidate mecha-

nisms of cross talk, which appear pervasive in RCC (Braun

et al., 2021). This is particularly pressing given the upregulation

of immunosuppressive genes in both TAMs and cancer cells,

which may ultimately precipitate resistance.

Our findings highlight the importance of studying immuno-

modulatory pathways away from the PD-1 axis, including T cell

inhibition by VISTA expressed by both TAMs and cancer cells.

Targeting the CD47/SIRPa axis with anti-CD47 antibodies,

perhaps in conjunction with anti-PD-1 therapy, may promote

macrophage phagocytosis of TP2 cells, which upregulate a

broad range of immunosuppressive genes in ICB responders.

These investigations are urgent now that ICB is a standard

of care, and our findings provide a path toward identifying

therapeutic targets and combinations to combat treatment

resistance.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Renal cell carcinoma patient samples This paper N/A

Chemicals, peptides, and recombinant proteins

Medium 199 with Hank’s salts ThermoFisher Scientific #12350039

Medium 199 with Earle0s salts Sigma #M4530

Hank’s Balanced Salt Solution ThermoFisher Scientific #14170120

5 mM CaCl2 Sigma #10043524

100 mg/mL Collagenase Type 4 Worthington Biochemical

Corporation

#LS004186

0.75 u/mL Dispase StemCell Technologies #7913

10 mg/mL DNAse I StemCell Technologies #07900

Accumax Sigma-Aldrich #A7089

ACK Lysing Buffer ThermoFisher Scientific #10010-23

PBS with 0.4% BSA Ambion #AM2616

Trypan blue Sigma #T8154

Viahance BioPAL #CP-50VQ02

10x Genomics Chromium Single

Cell 3’ (v2 Chemistry) reagents

10x Genomics #PN-120237

#PN-120236

Critical commercial assays

10x Genomics Chromium Single

Cell 3’ (v2 Chemistry)

10x Genomics https://support.10xgenomics.com/single-cell-gene-

expression/library-prep/doc/technical-note-assay-

scheme-and-configuration-of-chromium-single-

cell-3-v2-libraries

Deposited data

Raw and processed single cell

RNA-seq data

This paper dbGaP: phs002065.v1.p1

Single Cell Portal:

https://singlecell.broadinstitute.org/single_cell/study/

SCP1288/tumor-and-immune-reprogramming-during-

immunotherapy-in-advanced-renal-cell-

carcinoma#study-summary

Progenitor (CD8_G) and terminally

exhausted (CD8_B) transcriptional

signatures

Sade-Feldman et al., 2018 GEO: GSE12057

Checkmate 009 raw and processed

bulk RNA-seq data

Miao et al., 2018.

This paper

dbGaP: phs001493

Checkmate 025 normalized bulk RNA-

seq, clinical, and mutational data

Braun et al., 2020 EGA: EGAS00001004290, EGAS00001004291,

EGAS00001004292

TCGA KIRC normalized bulk RNA-

seq, clinical, and mutational data

Firebrowse

cBioPortal

Ricketts et al., 2018

http://firebrowse.org/: illuminahiseq_rnaseqv2-RSEM_

genes_normalized, gdac.broadinstitute.org_KIRC-TP.

CopyNumber_Gistic2.Level_4.2016012800.0.0

cBioPortal: https://www.cbioportal.org/study/

clinicalData?id=kirc_tcga

https://gdc.cancer.gov/

Software and algorithms

BWA v0.5.9 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

MuTect Cibulskis et al., 2013 https://github.com/broadinstitute/mutect

FACETS Shen and Seshan, 2016 https://github.com/vanallenlab/facets

(Continued on next page)
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10x Cell Ranger analysis pipeline v3.1 10X Genomics https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/3.1/what-is-cell-ranger

Scrublet python package Wolock et al., 2019 https://github.com/AllonKleinLab/scrublet

SoupX R package v1.2.2 Young and Behjati, 2020 https://github.com/constantAmateur/SoupX

Seurat R package v3.1.5 Butler et al., 2018 https://satijalab.org/seurat/

InferCNV https://github.com/broadinstitute/

inferCNV

https://github.com/broadinstitute/inferCNV

fgsea v1.10.1 R package Sergushichev, 2016 https://bioconductor.org/packages/release/bioc/

html/fgsea.html

VISION v2.0.0 R package DeTomaso et al., 2019 https://github.com/YosefLab/VISION

CellPhoneDB python package Efremova et al., 2020 https://github.com/Teichlab/cellphonedb

STAR v2.7.0 Dobin et al., 2013 https://github.com/alexdobin/STAR

salmon v0.14.1 Patro et al., 2017 https://github.com/COMBINE-lab/salmon/releases

survminer v0.4.6 R package https://github.com/kassambara/

survminer/releases

https://github.com/kassambara/survminer/releases

survival v3.1.7 R package https://cran.r-project.org/web/

packages/survival/index.html

https://cran.r-project.org/web/packages/survival/

index.html

lifelines v0.23.9 python package https://pypi.org/project/lifelines/ https://pypi.org/project/lifelines/

CIBERSORTx Newman et al., 2019 https://cibersortx.stanford.edu/runcibersortx.php

R v3.6.0 https://www.r-project.org/ https://www.r-project.org/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Eliezer M.

Van Allen (eliezerm_vanallen@dfci.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Raw single cell RNA-seq and bulk whole exome sequencing data are deposited to dbGaP: phs002065.v1.p1. Processed single cell

RNA-Seq data can also be accessed via the Single Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP1288/

tumor-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary). Code used for

all processing and analysis is available upon request.

Transcriptional signatures for progenitor and terminally exhausted CD8+ T cells (CD8_G and CD8_B, respectively) were obtained

from published results (Sade-Feldman et al., 2018) (GEO: GSE120575). For the Checkmate 009 cohort, raw bulk RNA-seq data were

obtained from published results (Miao et al., 2018) (dbGaP: phs001493). For the Checkmate 025 cohort, normalized bulk RNA-seq,

clinical, and mutational data were obtained from published results (Braun et al., 2020) (European Genome-Phenome Archive:

EGAS00001004290, EGAS00001004291, EGAS00001004292). For the TCGA clear cell renal cell carcinoma (KIRC) cohort, normal-

ized bulk RNA-seq data were obtained from Firebrowse (http://firebrowse.org/, illuminahiseq_rnaseqv2-RSEM_genes_normalized).

Clinical data were downloaded from the cBioPortal (https://www.cbioportal.org/study/clinicalData?id=kirc_tcga). Somatic mutation

data were obtained from published results (Ricketts et al., 2018) (https://gdc.cancer.gov/). GISTIC2 results describing amplification

and deletion events in TCGA KIRC were downloaded from Firebrowse (http://firebrowse.org/, gdac.broadinstitute.org_KIRC-

TP.CopyNumber_Gistic2.Level_4.2016012800.0.0).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human patient samples were collected with written informed consent and ethics approval by the Dana-Farber Cancer Institute Insti-

tutional Review Board under protocol no. 15-349. Patient metadata, including age at diagnosis, sex, treatment regimen, clinical

response, sample biopsy site, histological grade, and disease stage, are provided as Table S1.
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Somatic mutation and copy number alteration calls
Where available, additional tissuewas used for whole exome sequencing (samples P55, P915, P913, P906, P76) or panel sequencing

via OncoPanel (sample P90), with downstream bioinformatic analyses as previously described (He et al., 2021). Briefly, exome cap-

ture was performed using Illumina’s Rapid Capture Exome Kit, reads were aligned using BWA v0.5.9 (Li and Durbin, 2009), somatic

mutation calling was performed using MuTect (Cibulskis et al., 2013), and copy number alterations were called using FACETS (Shen

and Seshan, 2016).

Sample collection and dissociation for scRNA-seq
Single-cell suspensions for single-cell RNA-seq were obtained by mechanical and enzymatic dissociation. Tumor tissue was were

collected and transported in Medium 199 with Hank’s salts (ThermoFisher Scientific #12350039) (samples P912, P913, P915,

P916) or Medium 199 with Earle0s salts (Sigma #M4530) (other samples) on ice. Enzymatic dissociation mix consisted of calcium-

and magnesium-free Hank’s Balanced Salt Solution (ThermoFisher Scientific #14170120) with 5 mM CaCl2 (Sigma #10043524),

100 mg/mL Collagenase Type 4 (Worthington Biochemical Corporation #LS004186), 0.75 u/mL Dispase (StemCell Technologies

#7913), and 10 mg/mL DNAse I (StemCell Technologies #07900) for most samples (P906, P912, P913, P915, P916). For samples

P90 and P55, dissociation mix composition was similar with the exception that Dispase was used at a concentration of 1.125

u/mL. For sample P76, Accumax was used instead (Sigma-Aldrich #A7089). In all cases, the sample was first minced into pieces

smaller than 0.5 mm in cold enzymatic dissociation mix using scalpels or spring scissors. The resulting tissue suspension was

then incubated for a total of 20 min at 37�C with rotation, interrupted briefly by additional mincing or pipetting after 10 min (samples

P906, P912, P913, P915, P916), or for 10 min at 37�C (P90, P55) or room temperature (P76), whereas subsequent steps were carried

out at 4�C or on ice. When necessary, additional pipetting was used to complete the dissociation and residual tissue fragments were

strained using a 100 mm cell strainer.

Cells were then centrifuged at 580g for 5 min, or using a brief centrifugation (8 sec with centrifugal force ramping up to but not

exceeding 11,000 g) tominimize cell loss, and the resulting cell pellet was resuspended in ACK Lysing Buffer (ThermoFisher Scientific

#A1049201) to lyse red blood cells. After 1 min incubation on ice, red blood cell lysis was stopped by addition of calcium- and mag-

nesium-free PBS (ThermoFisher Scientific #10010-23) followed by centrifugation. If the resulting pellet appeared bloody, red blood

cell lysis was repeated without exceeding 3 min incubation in total. Following red blood cell removal, cells were resuspended in cal-

cium- andmagnesium-free PBSwith 0.4%BSA (Ambion #AM2616). Cell viability and the presence of cell clumps or debris were then

assessed using a hemocytometer after mixing cells with Trypan blue (Sigma #T8154). Based on this assessment, samples P90 and

P55 were centrifuged at low speed (200g for 5min) to remove debris, and dead cells were removed from samples P76 and P55 using

Viahance (BioPAL #CP-50VQ02). All samples had viability greater than 58%, and 5,000-8,000 viable cells in PBSwith 0.4%BSAwere

loaded per channel of the 10xGenomics Chromiumplatform using Single Cell 3’ (v2 Chemistry) reagents (10x Genomics #PN-120237

and #PN-120236).

scRNA-seq data preprocessing
scRNA-seq samples were sequenced on an Illumina HiSeq X sequencer. Demultiplexing of sequencing results, barcode processing,

read alignment, andUMI counting were performed using the 10x Cell Ranger analysis pipeline v3.1. Readswere aligned to the human

genome reference b37with theGENCODE 30 annotation lifted over to GRCh37 (Frankish et al., 2019). Confidently mapped, non-PCR

duplicate reads were counted to generate a gene-barcodematrix for each sample with barcodes filtered to exclude low RNA content

droplets.

To exclude data from droplets containing more than one cell, doublet detection and removal were performed on gene-barcode

matrices using Scrublet (Wolock et al., 2019). An expected doublet rate parameter of 0.06 was used, and doublet score thresholds

were chosen manually to divide putative singlet and neotypic doublet modes in the score distribution. Predicted doublets were then

removed from gene-barcode matrices.

To abrogate sample-to-sample differences driven by the ambient RNA profile present in all droplets prepared from a given single-

cell suspension, we performed an ambient RNA decontamination step using R package SoupX v1.2.2 (Young and Behjati, 2020). For

each sample, an ambient RNA profile was determined from an unfiltered gene-barcode matrix provided by the Cell Ranger pipeline

which included low RNA containing droplets. Three classes of genes exhibiting high cell type specificity and bimodality within the

samples of our cohort (immunoglobulin, hemoglobin, and macrophage-associated genes such as APOE and C1QA) were used to

estimate per-cell contamination fractions. The ambient RNA profile was then subtracted proportionately from cells of the original

gene-barcode matrix. These cleaned gene-barcode matrices were used for all downstream analysis. Further QC, feature selection,

dimension reduction, unsupervised clustering, and differential expression analyses were performed using the Seurat R package

v3.1.5 (Butler et al., 2018).

Across-sample integration
Prior to across-sample integration, cells with fewer than 200 genes detected or more than 25% of counts attributed to mitochond-

rially-encoded transcripts were removed. Genes detected in fewer than three cells across all samples were also excluded. Each gene

expression measurement was normalized by total expression in the corresponding cell and multiplied by a scaling factor of 10,000,
e3 Cancer Cell 39, 649–661.e1–e5, May 10, 2021
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then log2-transformed (default Seurat approach). To adjust for technical and biological sources of variation between samples, the

standard anchor-based workflow for dataset integration in Seurat was used (Stuart et al., 2019). 10,000 variable features for CCA

(canonical correlation analysis) were chosen based on stabilized variance, and integration anchors were identified using the first

30 reduced dimensions. The resulting merged dataset included 34,326 cells and 32,718 detected genes across the eight samples

of the cohort. Integration-transformed expression values were used only for dimension reduction and clustering. The original log-

normalized expression values were used for all differential expression and gene set level analyses.

Visualization, clustering, and identification of cell types
Principal components analysis (PCA) was performed on the integration-transformed expression matrix, and the first 50 principal

components were used for Louvain clustering of cells with a resolution parameter of 0.5. Uniform manifold approximation and pro-

jection (UMAP) was performed on the same PCs with 100 nearest neighbors for visualization in two dimensions. To classify cells into

broad cell types, differential expression analysis was performed comparing cells of each Louvain cluster to all other clusters using a

two-sidedWilcoxon rank-sum test with Bonferroni FDR correction (q < 0.01 considered significant) (Figure S1A). These initial clusters

were then merged into lymphoid, myeloid, normal tissue, and putative tumor lineages based on expression of differential marker

genes. To identify immune cell types at a high resolution, lymphoid and myeloid cells were re-clustered and re-projected separately

using 30 PCs for Louvain clustering and UMAP, with the same differential expression analysis applied to annotate cell type. Further

iterations of re-clustering (30 PCs, resolution parameters ranging from 0.15-0.5) were performed within larger cell types, including

CD8+ T cells, T-Helper cells, NK cells, and tumor associated macrophages to identify cell subtypes and states with clearly distinct

differential expression profiles.

Identification of cancer cells
Malignant cells were identified using inferred CNV profiles and cluster-level marker gene expression.We first projected and clustered

all cells from each sample separately to identify PTPRC+ and PTPRC� clusters. We then performed InferCNV (https://github.com/

broadinstitute/inferCNV) within each sample, using PTPRC+ clusters as reference groups and PTPRC- clusters as observation

groups (Figure S1B). Malignant clusters were identified based on established copy number features of RCC histologies. For clear

cell RCC samples, clusters with chromosome 3p loss were called as malignant; for the single papillary RCC sample profiled in the

cohort, clusters with gains in chromosomes 7 and 17 were called as malignant. Differential expression analysis showed that obser-

vation clusters without distinct CNAs exhibited clear expression patterns associated with fibroblasts or endothelial cells.

These InferCNV results were then cross-referenced with our gene expression marker-based lineage calls. In the fully integrated

dataset, Louvain clusters 3, 4, 6, 17, and 21 were identified as putatively malignant based on significant differential expression of

CA9, CA12, NDUFA4L2, VCAM1, or VEGFA. Cells in these clusters constituted 99.38% of cells labelled via InferCNV as malignant.

Cancer cells were definitively called as the overlap between these clusters and the set of cells identified as malignant based on copy

number profile with InferCNV.

Differential expression and gene set level analysis
Differential expression analysis comparing cells from treatment exposure or response groups was performed using a two-sided Wil-

coxon rank-sum test with Bonferroni FDR correction. Preranked gene set enrichment analysis (GSEA) was performed using the fgsea

v1.10.1 R package (Sergushichev, 2016; Subramanian et al., 2005). For a given pairwise GSEA comparison, the log2(fold-change) of

the average expression between groups was used as a ranking metric. GSEA was performed using Hallmark, KEGG, and GO Bio-

logical Process gene sets from v6.2 of the MSigDB repository or select gene sets curated from literature (Bell et al., 2016; Liberzon

et al., 2015; McDermott et al., 2018). Gene sets with p < 0.05 and FDR < 0.25 were considered significant.

Single cell signature scoring was performed using the VISION v2.0.0 R package (DeTomaso et al., 2019). Differential signature

score enrichment between groupswas determined using a two-sidedWilcoxon rank-sum test with Benjamini-Hochberg FDR correc-

tion (Benjamini and Hochberg, 1995). VISION scoring was performed using the same MSigDB gene sets cited above. CD8+ T cells

with a progenitor exhausted signature score > 0.75 and a terminally exhausted signature score < 2.5 were called as Progenitor Ex-

hausted Cells, and CD8+ T cells with a progenitor exhausted signature score < 0.75 and a terminally exhausted signature score > 2.5

were called as Terminally Exhausted Cells.

Receptor-ligand interaction inference
Inference of receptor-ligand interactions was performed using the CellPhoneDB Python library (Efremova et al., 2020). The algorithm

was run on log-normalized expression values for tumor cells, tumor-associated macrophages, and CD8+ T cells with default param-

eters and no subsampling.

Bulk RNA-seq and survival analysis
To obtain an ICB-exposed 41BB-Lo CD8+ T cell signature for projection into bulk RNA-Seq, genes significantly upregulated in 41BB-

Lo CD8+ T cells from ICB-exposed patients relative to those from ICB-naive patients (with q < 0.01, log2(fold-change) > 0.25) were

restricted to lymphoid-specific genes. Lymphoid-specific genes were defined as the intersection between genes expressed in <5%

of tumor, myeloid, or normal tissue cells and genes with at least 10% greater expression in lymphoid cells.
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To obtain an ICB-exposed TAM signature, genes significantly upregulated in all ICB-exposed TAM (aggregated across the five

subsets described) relative to all ICB-naive TAM (with q < 0.01, log2(fold-change) > 0.25) were restricted to myeloid-specific genes.

Myeloid-specific genes were defined as the intersection between genes expressed in <5% of tumor, lymphoid, or normal tissue cells

and genes with at least 10% greater expression in myeloid cells.

To obtain TP1 and TP2 signatures, genes differentially expressed between TP1 and TP2 cells (with q < 0.01, log2(fold-change) > 0.5

or < -0.5) were restricted to tumor-specific genes. Tumor-specific genes were defined as the intersection between genes expressed

in <5% of myeloid, lymphoid, or normal tissue cells and genes with at least 10% greater expression in tumor cells.

We defined a curated Immune Checkpoint/Evasion signature as a set of putatively immunoregulatory genes observed as upregu-

lated in TAM and/or tumor cells from ICB-exposed and ICB-responder lesions. This signature comprised the following genes: VSIR,

VSIG4, LGALS9, CD274 (PD-L1), PDCD1LG2, SIGLEC10, NECTIN2, CD47, and MIF.

Bulk RNA-seq from the Checkmate 009 cohort were aligned to human reference genome b37 and the GENCODE 30 GRCh37 lift-

over transcriptome reference using STAR v2.7.0, and TPM quantification was performed with salmon v0.14.1 (Choueiri et al., 2016;

Dobin et al., 2013; Frankish et al., 2019; Miao et al., 2018; Patro et al., 2017).

Signature scoring of all bulk RNA-seq samples was performed using the VISION R package (DeTomaso et al., 2019). Significance

of differences in OS between samples stratified by signature score were determined via Kaplan-Meier analysis, log-rank tests, and

multivariate Cox regression analysis using the survminer v0.4.6 and survival v3.1.7 R packages and the lifelines v0.23.9 Python pack-

age. In the Checkmate 025 cohort, multivariate analyses of each arm separately incorporated TP1, TP2, or Immune Checkpoint/

Evasion score dichotomized within each arm in addition to patient age, sex, MSKCC risk group, prior lines of therapy (%1 or R2),

and days between biopsy collection and start of trial therapy as covariates. For the joint analysis of both arms, the model included

continuous TP1 score, treatment arm (1 in nivolumab, 0 if everolimus), treatment arm*TP1 score, patient age, sex,MSKCC risk group,

prior lines of therapy (%1 or R2), and days between biopsy collection and start of trial therapy. In TCGA KIRC and Checkmate 025

cohorts, comparisons of signature scores between mutant and wild-type tumors, or between ICB response groups, were performed

using a two-sided two-sidedWilcoxon rank-sum test with Benjamini-Hochberg FDR correction (Benjamini and Hochberg, 1995). For

comparisons of signature scores between mutant and wild-type samples, only mutations with predicted high impact Ensembl

Sequence Ontology were considered. In the Checkmate 009 cohort, comparisons of signature scores or TPM between matched

pre/on-ICB samples were performed using a paired two-sided two-sided Wilcoxon rank-sum test.

To generate a CIBERSORTx signature matrix using immune cell types from our single cell cohort, we ran the Create Signature Ma-

trix module (https://cibersortx.stanford.edu/runcibersortx.php) with the log-normalized expressionmatrix from our dataset restricted

to immune populations of interest supplied as a referencematrix (Newman et al., 2019). We used aMin. Expression parameter of 0.05

and aMin No. Barcode Genes parameter of 100, with all other parameters set to default. Using the resulting signature matrix, CIBER-

SORTx deconvolution was performed on the bulk RNA-seq cohorts in relative mode with S-mode batch correction and quantile

normalization disabled. Comparisons of inferred immune population frequencies between samples grouped by signature score

were performed using a two-sided Wilcoxon rank-sum test with Benjamini-Hochberg FDR correction (Benjamini and Hoch-

berg, 1995).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R (version 3.6.0). For differential expression analysis between groups of cells, a two-

sided Wilcoxon rank-sum test with Bonferroni FDR correction was used. For comparisons of signature scores or CIBERSORTx-in-

ferred immune fractions between groups of cells or bulk RNA-Seq samples, a two-sided Wilcoxon rank-sum test with Benjamini-

Hochberg FDR correction was used. For survival analysis of bulk RNA-Seq samples stratified by signature score, significance of

OS difference was determined using a log-rank test andmultivariate Cox proportional hazardsmodel. Descriptions of statistical tests

performed for each individual analysis are provided in Figure legends and Method Details.
e5 Cancer Cell 39, 649–661.e1–e5, May 10, 2021
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Figure S1. Identification of clusters, lineage, and cell subsets. Related to Figure 1. 

(A)  UMAP of all malignant and non-malignant cells captured across all lesions, colored by initial Louvain 

cluster (left), lineage (middle), and final cell type annotation following iterative reprojection and clustering within 

lineages (right). 

(B)  Heatmaps of inferred CNV for all cells from two representative samples (P90 and P915). Red indicates 

amplification, while blue indicates deletion. Malignant clusters were identified through broad copy number 

alteration profiles, including 3p loss characteristic of ccRCC. 
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Figure S2. Metadata and marker expression for all lymphoid cells and CD8+ T cells. Related to Figure 2. 

(A)  Visualization of metadata and associated cell type proportions across lymphoid cells. 

(B) Expression heatmaps in UMAP projection space of genes encoding cell type and phenotype markers 

across lymphoid clusters. MitoHigh cells are omitted. 

(C) Expression heatmaps in UMAP projection space of genes encoding co-inhibitory receptors, progenitor and 

terminal exhaustion markers, effector molecules, and cluster-specific genes across CD8+ T cell clusters. Bar 

plots quantify the percentage of cells in each cluster expressing a given gene. 
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Figure S3. Transcriptional characteristics of Progenitor and Terminally Exhausted CD8+ T cells. 

Related to Figure 2. 

(A) Progenitor exhausted signature score versus terminally exhausted signature score for all CD8+ T cells (n = 

7,557), points colored by expression of genes of interest. 

(B) Progenitor exhausted signature score versus terminally exhausted signature score for all CD8+ T cells (n = 

7,557), points colored by CD8+ T cell cluster identity. Progenitor Exhausted and Terminally Exhausted Cells 

called based on mutually exclusive high/low signature scores. Percentage of total CD8+ T cell is shown for 

each quadrant. 

(C) Progenitor exhausted signature score versus terminally exhausted signature score for all CD8+ T cells (n = 

7,557), points colored by ICB response group. 

(D)  Heatmap of scaled, normalized counts averaged within patients for genes differentially expressed between 

4-1BB-Lo CD8+ T cells from ICB PR and ICB SD/PD samples. Effector molecules and co-inhibitory receptors 

are uniformly upregulated in responding patients, while progenitor exhausted markers, including TCF7, are 

upregulated in non-responding patients. 

(E) GSEA of progenitor and terminally exhausted signatures in only Progenitor Exhausted Cells from ICB PR 

patients compared to ICB SD/PD patients. Key leading edge genes are labeled.   

(F)  Heatmap of scaled, normalized counts averaged within patients for leading edge genes in GSEA of the 

terminally exhausted signature in 4-1BB-Lo CD8+ T cells from ICB PR patients compared to ICB SD/PD 

patients. 

(G)  Heatmap of scaled, normalized counts averaged within patients for leading edge genes in GSEA of the 

progenitor exhausted signature in 4-1BB-Lo CD8+ T cells from ICB PR patients compared to ICB SD/PD 

patients. 
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Figure S4. Metadata for all myeloid cells and differential gene expression programs in tumor 

associated macrophages. Related to Figure 3. 

(A)  Visualization of metadata and associated cell type proportions across myeloid cells. 

(B)  Heatmap of scaled normalized counts averaged within patients for leading edge genes in GSEA of the M1 

Curated signature in GPNMB-Hi TAM from ICB PR patients compared to ICB SD/PD patients. 

(C)  Heatmap of scaled normalized counts averaged within patients for leading edge genes in GSEA of the GO 

Antigen Presentation and Processing signature in GPNMB-Hi TAM from ICB PR patients compared to ICB 

SD/PD patients. 

(D)  GSEA of M1 Curated, M2 Curated, Hallmark Interferon Gamma Response, and GO Antigen Presentation 

and Processing via MHC class I signatures in all TAM from ICB PR patients compared to ICB SD/PD patients. 

(E)  GSEA of M1 Curated, M2 Curated, Hallmark Interferon Gamma Response, and GO Antigen Presentation 

and Processing via MHC class I signatures in all TAM from ICB SD/PD patients compared to ICB-naive 

patients. 

*ns: not significant 
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Figure S5. Metadata and differential gene expression programs for tumor cells. Analysis showing 

reproducibility of main findings in CD8+ T cell, TAM, and tumor compartments when single cell cohort 

subsetted to include only stage IV lesions of clear cell histology (n = 6). Related to Figure 4. 

(A)  Visualization of metadata and associated cell type proportions across tumor cells. 

(B)  Heatmap of scaled normalized counts averaged within patients for leading edge genes in GSEA of the 

Hallmark Interferon Gamma Response signature in TP1 cells from ICB PR patients compared to ICB SD/PD 

patients. 

(C)  Heatmap of scaled normalized counts averaged within patients for leading edge genes in GSEA of the GO 

Antigen Presentation and Processing via MHC-I signature in TP1 cells from ICB PR patients compared to ICB 

SD/PD patients. 

(D)  Heatmap of scaled normalized counts averaged within patients for leading edge genes in GSEA of the 

Hallmark Interferon Gamma Response signature in TP2 cells from ICB PR patients compared to ICB SD/PD 

patients. 

(E)  Heatmap of scaled normalized counts averaged within patients for leading edge genes in GSEA of the GO 

Antigen Presentation and Processing via MHC-I signature in TP2 cells from ICB PR patients compared to ICB 

SD/PD patients. (J)  Heatmap of differential gene expression q-values (two-sided Wilcoxon rank-sum test with 

Bonferroni FDR correction) for comparisons of cells within each CD8+ T cell cluster from ICB-exposed vs. ICB-

naïve patients (advanced ccRCC cases only). 

(F) Heatmap of differential gene expression q-values (two-sided Wilcoxon rank-sum test with Bonferroni FDR 

correction) for comparisons of cells within each CD8+ T cell cluster from ICB-exposed vs. ICB-naïve patients 

(advanced ccRCC cases only). 

(G)  Gene set enrichment analysis (GSEA) of terminally exhausted and progenitor exhausted signatures in 4-

1BB-Lo CD8+ T cells from ICB PR compared to ICB SD patients (advanced ccRCC cases only). 

(H) GSEA of M1 Curated, M2 Curated, Hallmark Interferon Gamma Response, and GO Antigen Presentation 

and Processing via MHC class I signatures in all TAM from ICB PR compared to ICB SD patients (advanced 

ccRCC cases only). 

(I)  Violin and box plots comparing expression distributions of immune checkpoint and evasion genes between 

all TAM from ICB-exposed vs ICB-naïve patients (top) and ICB PR vs ICB SD patients (bottom) (advanced 



ccRCC cases only). Significance of differential expression (q-value) was determined by two-sided Wilcoxon 

rank-sum test with Bonferroni FDR correction. Box plots include center line, median; box limits, upper and 

lower quartiles; whiskers extend at most 1.5× interquartile range past upper and lower quartiles.  

(J)  Violin and box plots comparing single cell signature score distributions between the two dominant malignant 

cell clusters, partitioned by biopsy site (advanced ccRCC cases only). Significance of differential signature 

enrichment (p-value) was determined by two-sided Wilcoxon rank-sum test. Box plots include center line, 

median; box limits, upper and lower quartiles; whiskers extend at most 1.5× interquartile range past upper and 

lower quartiles. 

(K)  GSEA of Hallmark Interferon Gamma Response and GO Antigen Presentation and Processing via MHC 

class I signatures in TP1 cells from ICB PR patients compared to ICB SD patients (top) and TP2 cells from ICB 

PR patients compared to ICB SD patients (bottom) (advanced ccRCC cases only). 

(L) Heatmap of differential expression q-values (two-sided Wilcoxon rank-sum test with Bonferroni FDR 

correction) for immune checkpoint and evasion genes in comparisons of cells within each cluster from ICB-

exposed vs ICB-naïve patients (left) and ICB PR vs ICB SD patients (right) (advanced ccRCC cases only). 

*ns: not significant 
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Figure S6. Extended clinical and mutational analysis of bulk RNA-Seq samples in the Checkmate 025 

RCC cohort. Related to Figure 5. 

(A)  On left, violin and box plots showing distributions of TP1 score within CR/PR, SD, and PD response groups 

in the ICB arm of the Checkmate 025 RCC cohort. Significance of differential signature enrichment (p-value) 

was determined by two-sided Wilcoxon rank-sum test. On right, Kaplan-Meier analysis of overall survival (OS) 

in only the SD and PD response groups of Checkmate 025, with patients separated by high and low TP1 score 

in bulk RNA-seq. Box plots include center line, median; box limits, upper and lower quartiles; whiskers extend 

at most 1.5× interquartile range past upper and lower quartiles. 

(B)  On left, violin and box plots showing distributions of Immune Checkpoint/Evasion score within CR/PR, SD, 

and PD response groups in the ICB arm of the Checkmate 025 RCC cohort. Significance of differential 

signature enrichment (p-value) was determined by two-sided Wilcoxon rank-sum test. On right, Kaplan-Meier 

analysis of overall survival (OS) in only the SD and PD response groups of Checkmate 025, with patients 

separated by high and low Immune Checkpoint/Evasion score in bulk RNA-seq. Box plots include center line, 

median; box limits, upper and lower quartiles; whiskers extend at most 1.5× interquartile range past upper and 

lower quartiles. 

(C)  On left, violin and box plots showing distributions of TP2 score within CR/PR, SD, and PD response groups 

in the ICB arm of the Checkmate 025 RCC cohort. Significance of differential signature enrichment (p-value) 

was determined by two-sided Wilcoxon rank-sum test. On right, Kaplan-Meier analysis of overall survival (OS) 

in only the SD and PD response groups of Checkmate 025, with patients separated by high and low TP2 score 

in bulk RNA-seq. Box plots include center line, median; box limits, upper and lower quartiles; whiskers extend 

at most 1.5× interquartile range past upper and lower quartiles. 

(D)  Kaplan-Meier analysis of overall survival (OS) in the Checkmate 025 RCC cohort, with patients separated 

by high and low TP2 score in bulk RNA-seq. Plog-rank, log-rank test p-value. PCox, p-value determined via a 

multivariate Cox proportional hazard model using TP2 score dichotomized within treatment arm and 

incorporating age, sex, MSKCC risk group, prior lines of therapy (≤1 or ≥2), and days between biopsy 

collection and start of trial therapy as covariates. 

(E)  Bar plots comparing TP1 and TP2 score between mutant and wild-type samples for commonly mutated 

genes in the TCGA KIRC cohort (Stage III and IV tumors only). Only variants with predicted high impact 



Ensembl Sequence Ontology were considered. Significance of differential score enrichment (q-value) 

determined by two-sided Wilcoxon rank-sum test with Benjamini-Hochberg FDR correction. 

(F)  Bar plots comparing TP1 and TP2 score between mutant and wild-type samples for common copy number 

alterations in the TCGA KIRC cohort (Stage III and IV tumors only). Significance of differential score 

enrichment (q-value) determined by two-sided Wilcoxon rank-sum test with Benjamini-Hochberg FDR 

correction. 

(G)  Forest plot showing hazard ratios associated with variables in a multivariate Cox proportional hazard 

model for OS in the ICB arm of Checkmate 025, incorporating TP1 Score, PBRM1 mutational status, age, sex, 

MSKCC risk group, prior lines of therapy (≤1 or ≥2), and days between biopsy collection and start of trial 

therapy as covariates. 

(H)  Bar plots comparing CIBERSORTx-inferred immune population frequencies between Checkmate 025 RCC 

tumors with high and low TP1 Tumor Program Scores. CIBERSORTx signature matrix was derived from 

transcriptional profiles of lymphoid and myeloid subsets captured in our cohort. Significance of differential 

population frequencies (q-value) determined by two-sided Wilcoxon rank-sum test with Benjamini-Hochberg 

FDR correction. Gray dotted line corresponds to q = 0.05. 

(I)  Bar plots comparing CIBERSORTx-inferred immune population frequencies between Checkmate 025 RCC 

tumors with high and low TP2 Tumor Program Scores. CIBERSORTx signature matrix was derived from 

transcriptional profiles of lymphoid and myeloid subsets captured in our cohort. Significance of differential 

population frequencies (q-value) determined by two-sided Wilcoxon rank-sum test with Benjamini-Hochberg 

FDR correction. Gray dotted line corresponds to q = 0.05. 
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