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Bacterial glycogen synthesis pathways

The GIgC-GIgA pathway has been known as the classical glycogen pathway.
In this pathway glycogen is synthesized from glucose-1-phosphate (Glc-1P) by three
enzyme actions catalyzed by glucose-1-phosphate adenylyltransferase (GIgC), glycogen
synthase (GIgA) and glycogen branching enzyme (GlgB) (reviewed by Preiss, 2006).
The Rv3032 pathway is associated with methylglucose lipopolysaccharide biosynthesis
(Jackson and Brennan, 2009). Glucose-1-phosphate is also a primary substrate of
glycogen in this pathway. An alternative branching enzyme (Rv3031) catalyzes
formation of branched glucan chains having a-l,6-glucosidic linkages. In contrast, the
GIgE pathway utilizes a disaccharide phosphate (maltose 1-phosphate) as the building
block (Kalscheuer et al., 2010). Maltose 1-phosphate is generated from trehalose in two
steps catalyzed by Maltose a-glucosyltransferase/a-amylase (TreS) and maltokinase
(Pep2). On the other hand, glycogen is degraded to glucose-1-phosphate by debranching
enzyme (GlgX) and glycogen phosphorylase (GIgP) or to trehalose via the (TreX)-TreY-
TreZ pathway (Chandra et al., 2011).

References

1. Chandra, G., Chater, K. F., and Bronemann, S. (2011) Unexpected and widespread
connections between bacterial glycogen and trehalose metabolism. Microbiol 157:
1565-1572.

2. Jackson, M., and Brennan, P.J. (2009) Polymethylated polysaccharides from
mycobacterium species revisited. J Biol Chem 284: 1949-1953.

3. Kalscheuer, R., Syson, K., Veeraraghavan, U., Weinrick, B., Biermann, K. E., Liu,
Z., Sacchettini, J.C., Besra, G., Bornemann, S., and Jacobs, W. R., Jr. (2010) Self-
poisoning of Mycobacterium tuberculosis by targeting GIgE in an a-glucan
pathway. Nat Chem Biol 6: 376-384.

4. Preiss, J. (2006) Bacterial glycogen inclusions: enzymology and regulation of
synthesis. In Microbiology Monographs, pp. 71-108. Edited by J. M. Shively.
Heidelberg, Germany, Springer.



Figure S1. “Ca. B. sinica” culture in the membrane bioreactor (MBR) during growing
phase (A), near-zero growth phase (B), and starvation phase (C), respectively. (D) FISH
image of the MBR culture showing free-living planktonic cells of “Ca. B. sinica” after
hybridization with Alexa555-labeled probe AMX820 and Alexa488-labeled probes
EUB338, EUB338Il and EUB338I11 (bacterial universal probes). “Ca. B. sinica” made
up more than 96% of total population. Scale represents 20 um.
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Figure S2. Time course of nitrogen (NHs" and NO") loading rate (NLR) and removal
rate (NRR) (A) and biomass concentration (protein and ODeoo) (B) in a MRB during

approx.70 days of continuous operation (Experimental Run-1). Blue, orange, and white

area indicate the growing phase, near-zero growth phase, and starved phase, respectively.

The error bars show SD of duplicate measurement.
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Figure S3. Change in intracellular glycogen content in “Ca. B. sinica” with time
(Experimental Run-1). Glycogen accumulation was immediately observed when the

substrate supply was resumed after 16-day starvation. Blue, orange, and white area

indicate the growing phase, near-zero growth phase, and starved phase, respectively.

The error bars show SD of duplicate measurement.
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Figure S4. (A) Change in the concentrations of NH4", NO>", and NOs™ in MBR culture
medium with time. (B) Change in the stoichiometric ratios of produced NO;™ and
consumed NH4" (0.355 + 0.119 in the growing phase, 0.095 £ 0.079 in the near-zero
growth phase, and 0.420 + 0.147 in the 2" growing phase (P < 0.0001)), showing that the

reducing power (equivalent) for CO; fixation generated from NO; oxidation to NO3"

decreased under near-zero growth phase (Experimental Run-1).
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Figure S5. Time course of nitrogen (NH4" and NO5") loading rate (NLR) and removal
rate (NRR) (A) and biomass concentration (protein and ODeoo) (B) in a MRB during

approx. 50 days of continuous operation (Experimental Run-2). Biomass cultures were

collected for proteomic analysis in the growing (day 18), near-zero growth (day 31), and

starved (day 50) phase, respectively. The error bars show SD of duplicate measurement.
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Figure S6. Change in intercellular glycogen content and ATP content in “Ca. B. sinica”
with time (Experimental Run-2). Blue, orange, and white area indicate the growing
phase, near-zero growth phase, and starved phase, respectively. The error bars represent
the standard deviations of duplicate measurements. The error bars show SD of duplicate

measurement.
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Figure S7. (A) Change in the concentrations of NH4" and NO>™ in MBR culture medium

with time. (B) Change in the stoichiometric ratio of produced NO, and consumed NHy",

showing that the reducing power (equivalent) for CO> fixation obtained from NO7

oxidation to NO3™ decreased under near-zero growth phase. (Experimental Run-2) Blue,

orange, and white area indicate the growing phase, near-zero growth phase, and starved

phase, respectively. The error bars indicate the standard deviations of duplicate

measurements. The error bars show SD of duplicate measurement.
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Figure S8. Venn diagram showing numbers of shared genes of “Ca. B. sinica” growing

in three different growth conditions.
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