Supplementary Information

Glycogen Metabolism of the Anammox Bacterium "*Candidatus* Brocadia sinica"

By

Satoshi Okabe^{1,*} Amrini Amalia Shafdar¹, Kanae Kobayashi¹, Lei Zhang¹ and Mamoru Oshiki¹

¹ Division of Environmental Engineering, Faculty of Engineering,

Hokkaido University, North-13, West-8, Kita-ku, Sapporo Hokkaido 060-8628, Japan

Supplementary information contains 1 Texts, 8 Figures, and 9 Tables.

Bacterial glycogen synthesis pathways

The GlgC-GlgA pathway has been known as the classical glycogen pathway. In this pathway glycogen is synthesized from glucose-1-phosphate (Glc-1P) by three enzyme actions catalyzed by glucose-1-phosphate adenylyltransferase (GlgC), glycogen synthase (GlgA) and glycogen branching enzyme (GlgB) (reviewed by Preiss, 2006). The Rv3032 pathway is associated with methylglucose lipopolysaccharide biosynthesis (Jackson and Brennan, 2009). Glucose-1-phosphate is also a primary substrate of glycogen in this pathway. An alternative branching enzyme (Rv3031) catalyzes formation of branched glucan chains having α-l,6-glucosidic linkages. In contrast, the GlgE pathway utilizes a disaccharide phosphate (maltose 1-phosphate) as the building block (Kalscheuer *et al*., 2010). Maltose 1-phosphate is generated from trehalose in two steps catalyzed by Maltose α-glucosyltransferase/α-amylase (TreS) and maltokinase (Pep2). On the other hand, glycogen is degraded to glucose-1-phosphate by debranching enzyme (GlgX) and glycogen phosphorylase (GlgP) or to trehalose via the (TreX)-TreY-TreZ pathway (Chandra *et al*., 2011).

References

- 1. Chandra, G., Chater, K. F., and Bronemann, S. (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. *Microbiol* **157**: 1565-1572.
- 2. Jackson, M., and Brennan, P.J. (2009) Polymethylated polysaccharides from mycobacterium species revisited. *J Biol Chem* **284**: 1949-1953.
- 3. Kalscheuer, R., Syson, K., Veeraraghavan, U., Weinrick, B., Biermann, K. E., Liu, Z., Sacchettini, J.C., Besra, G., Bornemann, S., and Jacobs, W. R., Jr. (2010) Selfpoisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway. *Nat Chem Biol* **6**: 376-384.
- 4. Preiss, J. (2006) Bacterial glycogen inclusions: enzymology and regulation of synthesis. *In* Microbiology Monographs, pp. 71-108. Edited by J. M. Shively. Heidelberg, Germany, Springer.

Figure S1. "*Ca.* B. sinica" culture in the membrane bioreactor (MBR) during growing phase (**A**), near-zero growth phase (**B**), and starvation phase (**C**), respectively. (**D**) FISH image of the MBR culture showing free-living planktonic cells of "*Ca.* B. sinica" after hybridization with Alexa555-labeled probe AMX820 and Alexa488-labeled probes EUB338, EUB338II and EUB338III (bacterial universal probes). "*Ca.* B. sinica" made up more than 96% of total population. Scale represents 20 μ m.

Figure S2. Time course of nitrogen $(NH_4$ ⁺ and NO_2 ⁻) loading rate (NLR) and removal rate (NRR) (A) and biomass concentration (protein and OD_{600}) (B) in a MRB during approx.70 days of continuous operation (Experimental Run-1). Blue, orange, and white area indicate the growing phase, near-zero growth phase, and starved phase, respectively. The error bars show SD of duplicate measurement.

Figure S3. Change in intracellular glycogen content in "*Ca*. B. sinica" with time (Experimental Run-1). Glycogen accumulation was immediately observed when the substrate supply was resumed after 16-day starvation. Blue, orange, and white area indicate the growing phase, near-zero growth phase, and starved phase, respectively. The error bars show SD of duplicate measurement.

Figure S4. (A) Change in the concentrations of NH_4^+ , NO_2^- , and NO_3^- in MBR culture medium with time. (B) Change in the stoichiometric ratios of produced $NO₃$ and consumed NH₄⁺ (0.355 \pm 0.119 in the growing phase, 0.095 \pm 0.079 in the near-zero growth phase, and 0.420 ± 0.147 in the 2nd growing phase ($P < 0.0001$)), showing that the reducing power (equivalent) for CO_2 fixation generated from NO_2^- oxidation to $NO_3^$ decreased under near-zero growth phase (Experimental Run-1).

Figure S5. Time course of nitrogen $(NH_4$ ⁺ and NO_2 ⁻) loading rate (NLR) and removal rate (NRR) (A) and biomass concentration (protein and OD_{600}) (B) in a MRB during approx. 50 days of continuous operation (Experimental Run-2). Biomass cultures were collected for proteomic analysis in the growing (day 18), near-zero growth (day 31), and starved (day 50) phase, respectively. The error bars show SD of duplicate measurement.

Figure S6. Change in intercellular glycogen content and ATP content in "*Ca*. B. sinica" with time (Experimental Run-2). Blue, orange, and white area indicate the growing phase, near-zero growth phase, and starved phase, respectively. The error bars represent the standard deviations of duplicate measurements. The error bars show SD of duplicate measurement.

Figure S7. (A) Change in the concentrations of NH_4^+ and NO_2^- in MBR culture medium with time. (B) Change in the stoichiometric ratio of produced $NO₂$ and consumed $NH₄$ ⁺, showing that the reducing power (equivalent) for $CO₂$ fixation obtained from $NO₂$ oxidation to NO₃⁻ decreased under near-zero growth phase. (Experimental Run-2) Blue, orange, and white area indicate the growing phase, near-zero growth phase, and starved phase, respectively. The error bars indicate the standard deviations of duplicate measurements. The error bars show SD of duplicate measurement.

Figure S8. Venn diagram showing numbers of shared genes of "*Ca*. B. sinica" growing in three different growth conditions.