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A A word on notation

Firstly, we use the terms ’filter’ and ’kernel’ interchangably in this paper. Secondly,
following the notation of amongst others Dayan and Abbott [1], we describe a
spike-triggered average (STA) or an input filter as a filter where positive time t denotes
the time before the spike:

STA(t) = s(−t) ∗ ρ(t) =
1

n

n∑
i=1

s(ti − t) (1)

where the symbol ∗ stands for a convolution, s(t) denotes the input signal and ti are the
spike times of the spike train ρ(t):

ρ(t) =

n∑
i=1

δ(t− ti)

To make an estimate of the input signal given the output spike train, we use a
representing filter g(t):

ŝ(t) = g(t) ∗ ρ(t) =

n∑
i=1

g(t− ti) (2)

It has been shown that under certain conditions (a linear-nonlinear model, where
circular symmetrical input is filtered by an input filter and put through an exponential
threshold [2]), the STA can be used as an input filter, which is equal to the flipped
version of the representing filter:

STA(t) = gin(t) = g(−t)

In the context of classical linear-nonlinear poisson neuron (LNP) models [3–5] and GLM
models [6–9], the representing filter g(t) will typically be (mainly) acausal, and the STA
and input filter causal, since each spike represents the current leading up to that spike.
Any causal part of g(t) represents the future prediction that each spike makes, i.e. this
represents assumptions of the system about correlations in the input (given that the
system has only one form of output, i.e. a spike; this interpretation can change if bursts
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are taken into account). An acausal input filter can only be used if (a part of) the
future of the input is known. This works well for reconstructing a spike train from a
stimulus, when the whole stimulus is known. However, when spike times have to be
estimated online, i.e. when the decision to place a spike at time t is made at time t, so
the stimulus is only known up to time t, only causal input filters can be used. Therefore,
we will use only causal input filters.

B Technical notes

B.1 An ambiguity in the spike rule

The model can overestimate the signal, if the network is very small (only a few neurons)
and the delay ∆ is the same size or larger than the nonzero part of the filter. Therefore,
in the following, we will only use values of ∆ that are smaller than the size of the filter.
Alternatively, the threshold parameter ν can be adjusted to match the amplitude of the
input. The alternative spike rule (5) does not need an adjustment of the threshold, but
a neuron using this spike rule does not respond to slowly increasing input, or can
respond too late to other inputs. Finally, assumptions about how the input changes can
be made.

B.1.1 Ambiguity

The spike rule as introduced in equation (4) of the main text has an ambiguity: there
are multiple times at which a spike can be placed so that the error is reduced. As
formulated now, with online assessment of the error, the system chooses the spike times
at the first moment at which a spike reduces the error. However, sometimes the error
can be reduced even more if the system would wait a bit longer. The first spike-time at
which a spike would reduce the error is not an optimal choice and can lead to an
overestimation of the signal. In this section we will give solutions on how to improve the
performance of the system.

B.1.2 Solution 1: choose ∆ smaller than the size of the filter

If the delay ∆ is larger than the size of the filter, the problem explained above does not
occur. This can be understood as follows: the MSE is calculated up to T + ∆. However,
if ∆ exceeds the time of the filter g, there is no estimate between T and T + ∆, so any
non-zero signal will add to the MSE. The system tries to reduce this error by firing
more spikes, which results in an overestimation of the signal.

B.1.3 Solution 2: gain modulation

A simple solution to the problem posed before, is increasing the threshold of the system
with the parameter ν. If we take ν to be slightly smaller than the average surface of the
input filter

ν =
1

2

∫ T+∆

0

gm(t− T )2dt− ε, (3)

the neuron will now spike at the right time. However, this also makes the neuron spike
more sparsely and hence make a worse estimation of signals with a small amplitude.
The threshold will have to be put even higher for larger-amplitude signals. Therefore,
the threshold parameter ν should depend on the shape and amplitude of the input
signal (ideally on the amplitude of the input signal convolved with the input filter).
This assumes a mechanism of gain modulation that we would have to add to the model.
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B.1.4 Solution 3: adjusting the spike rule

A third solution is adjusting the spike rule, so that the system waits with firing a spike
to see if the error is reduced more one time step later:

∆E = Eno spike at T (T + ∆)− Espike at T (T + ∆) > 0 ∧ d∆E

dt
<= 0 (4)

which reduces to

Vm > Θm + ν ∧ dVm
dt

<= 0 (5)

This spike rule can induce a bursting response to a step input. The system is now
capable of responding optimally to a variety of inputs without the need to adjust a
parameter line ν. However, wIth this spike rule, the model is not GLM-like anymore.
Moreover, the neuron cannot respond to slowly increasing inputs such as ramps.

B.1.5 Solution 4: make an assumption about the autocorrelation of the
input

The overestimation-problem arises, because at time T + ∆, we only know the spikes up
to T :∫ T+∆

t=0

dt

gk(t− T )

N∑
n=1

∑
tin 6=T

gn(t− tin)

 =

∫ T+∆

t=0

dt

 N∑
n=1

gk(t− T )
∑
tin<t

l
k

gn(t− tin)

 +

∫ tlk+∆

t=0

dt

 N∑
n=1

gk(t− T )
∑
tin>T

gn(t− tin)

 .

(6)

We can make an estimation for the second term on the right of equation (6). For
instance, we can assume that the estimate changes slowly relative to the length of the
filter, i.e. that the spike train of the network in T < t < T + ∆ is the spike train of
T −∆ < t < T mirrored. However, gk(t− T )gn(t− tin) is typically not symmetric in
tin = T . If we average over the surface of gk(t− T )gn(t− tin) before tin = T to
compensate for this, this results in an output filter defined by

go
k = (1 + fkk)gi

k ∗ gk (7)

and the lateral filters received by neuron k from neuron n defined by

gl
kn = (1 + fkn)gi

k ∗ gn, (8)

where

fkn =

∫ T
τ=0

∫ T+∆

t=0
|gk(t− T )gn(t− τ)|dtdτ∫ T+∆

τ=T

∫ T+∆

t=0
|gk(t− T )gn(t− τ)|dtdτ

(9)

B.2 Conclusion

The model can overestimate the signal, if the amount of neurons is very small and the
delay ∆ is the same size or larger than the nonzero part of the filter. Therefore, in this
paper, we only used values of ∆ that are smaller than the size of the filter. Alternatively,
the threshold parameter ν can be adjusted to match the amplitude of the input. The
alternative spike rule (5) does not need an adjustment of the threshold, but a neuron
using this spike rule does not respond to slowly increasing input, or can respond too late
to other inputs. Finally, assumptions about how the input changes can be made.
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C Efficiency measures

There is not a single standard measure to calculate eficiency. Therefore, we include here
two figures similar to Fig 4 and Fig 5 of the main text, but using different efficiency
measures. In particular, we first correct for signal amplitude, i.e. we multiply by the
stimulus amplitude Amp, reasoning that a network that spikes less to represent a higher
stimulus amplitude is more efficient:

Ea = Amp · E =
Amp

MSE ·A
. (10)

Similarly, one could reason that the efficiency should scale with the power of the
stimulus, i.e. the square of the amplitude

Ea2 = Amp2 · E =
Amp2

MSE ·A
. (11)

Finally, one could also express the linear cost of the network activity, by giving each
spike and each unit of error a certain cost:

C = a ·A+ b ·MSE (12)

Parameters a and b need to be chosen in such a way that both network activity and
error contribute similarly to the cost C. On the basis of the results in Fig ?? we choose
a = 0.001 and b = 1.
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Fig A. Comparison of efficiency measures Results of two simulations using the
same stimulus, but different initial network states, in a homogeneous ‘type 1’ network
(first row), a network with ‘type 1’ and ‘type 2’ neurons (second row) and a
heterogeneous network (third row). Three alternative efficiency measures are compared:
1) the network efficiency multiplied by the stimulus amplitude (Ea, see eq. (10, first
column), 2) the network efficiency multiplied by the stimulus power (Ea2 , see eq. (11),
second column) and 3) the network cost (C, see eq. (12), third column). The bottom
row shows how the network efficiency or cost depends on the spike reliability Γ.
Parameters: ∆ = 7, 5 ms, ν = µ = 1, 5, N = 100, #trials = 10. The white star denotes
the parameter values used in section ‘Heterogeneous networks are more efficient than
homogeneous networks’ of the main text.
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Fig B. Comparison of efficiency measures for the noise simulations Efficiency
normalized by amplitude Ea (first column), amplitude squared Ea2 (second column)
and cost (third column) of a homogeneous network (top row), a network with ‘type 1’
and ‘type 2’ neurons (middle row) and a heterogeneous network (bottom row). Next to
the stimulus, each neuron in the network was presented with a noise input, with a
varying relative amplitude (horizontal axis) and number of copies of the noise signal
(vertical axis; 1 copy means all neurons receive the same noise, 100 copies means all
neurons receive independent noise). Network: ∆ = 7, 5 ms, ν = µ = 1, 5, N = 100.
Stimulus: amplitude = 10, τ = 15 ms. Noise: τ = 15 ms.
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