Plasmids shape the diverse accessory resistomes in Escherichia coli ST131

Supplementary Data

Page Item Title

A shared core and diverse accessory preterm infant resistome in E. coli

1	Table S1	The 16 antibiotics used to identify 794 AMR genes on contigs originally from
		preterm infants.
1	Table S2	The five AMR genes unique to all ST131 Clade C genomes except 8289_1#27
		encoded <i>bla</i> _{TEM} genes (an Ambler class A β -lactamase).

Extensive plasmid rearrangements in closely related ST131 Clade C genomes

2	Table S3	PlasmidFinder Inc group alignments against pV130 and seven ST131 isolates.
_	1 4010 00	i lubilitat illast filo group alignitionito agailist p (150 alia se (eli s 1 151 isolates.

- 3 **Table S4** Key known AMR, plasmid persistence and conjugation genes for pEK204, pEK499, pEK516, pCA14, pV130a and pV130b.
- 4 **Figure S1** Comparison of pEK516 (64,471 bp) with ST131 and 83972.
- 5-6 Figure S2 Read mapping distributions for seven ST131 to pV130 contigs.
- 7 **Figure S3** Comparison of plasmid pCA14 (155 Kb) with seven ST131 C1/C2 isolates.

Higher rates of pEK499, pEK516 and pEK204 protein interactions with chromosomal proteins

- 8 **Table S5** The PPIN characteristics of the protein-coding genes from Miryala et al (2018).
- 8 **Table S6** The seven plasmids' accessions, numbers of genes with interactions given a
- combined score of 400+, Inc groups, conjugative ability and AMR genes.
 Figure S4 The ratio of non-trivial loops per PPI (y-axis) versus the STRING combin
- 9 **Figure S4** The ratio of non-trivial loops per PPI (y-axis) versus the STRING combined score (x-axis) for all 60 genes from Miryala et al (2018) Table 1 [99].
- 9 **Figure S5** The ratio of non-trivial loops per interaction versus the STRING combined score for all chromosomal genes, all genes on pEK499 and all those on pEK204.
- 9 **Figure S6** The ratio of interactions per protein for genes encoded on the chromosome or the pEK499 and pEK204 plasmids across the STRING combined score.

ST131 genomes had an ancestral pEK499-like plasmid but some gained a pEK204-like one

- 11 **Figure S7** The distributions of pEK204-like and pEK499-like regions in ST131 assemblies.
- 11 **Figure S8** The distributions of pEK204-like regions in ST131 Clade C genome assemblies.
- 12 **Table S7** Read library summary statistics for each ST131 sample and reference genome.
- 12 **References** (not in main text)

A core preterm infant resistome within across E. coli isolates
--

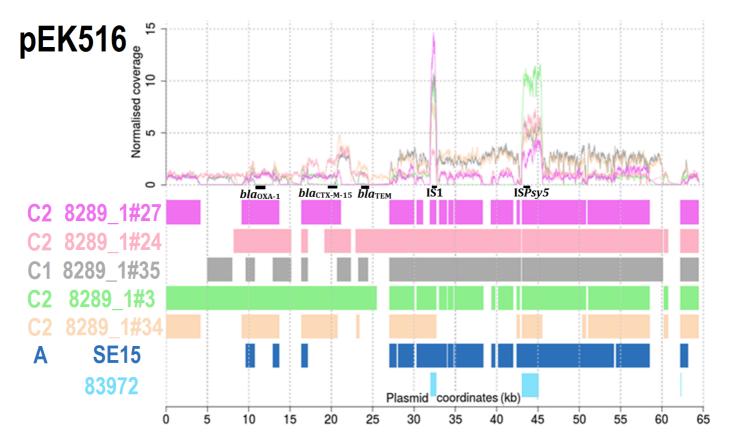
Antibiotic	Class	Abbreviation	MIC (ug/ml)
Amoxicillin	β-lactam	AX	16
Amoxicillin+Clavulanate	β-lactam	AXCL	16-8
Ampicillin	β-lactam	AP	64
Aztreonam	β-lactam	AZ	8
Cefepime	β-lactam	СР	8
Cefoxitin	β-lactam	CX	64
Ceftazidime	β-lactam	CZ	16
Chloramphenicol	amphenicol	СН	8
Ciprofloxacin	quinolone	CI	0.5
Colistin	polymixin	COL	8
Gentamicin	aminoglycoside	GE	16
Meropenem	Carbapenem	ME	16
Penicillin-G	β-lactam	PE	128
Piperacillin	β-lactam	PI	16
Tetracycline	tetracycline	TE	8
Tigecycline	tetracycline	TG	2

Table S1. The 16 antibiotics used to identify 794 AMR genes from functional metagenomic screening [74]. This reference resistome came from 21 infants' faecal samples that were assembled together as 2,004 redundant contigs following experimentally testing for resistance to these 16 antibiotics and Illumina HiSeq sequencing [74]. This approach sheared metagenomic DNA into fragments ligated in *E. coli* that were grown on media with these antibiotic concentrations [74]. A total of 336 (16x21) transformants were attempted, of which 183 (54%) were successful [74]. From the colonies that grew enough during 18 hours, they found 2,004 contigs (longer than 0.5 Kb) with 794 unique genes [74].

A shared core and diverse accessory preterm infant resistome in E. coli

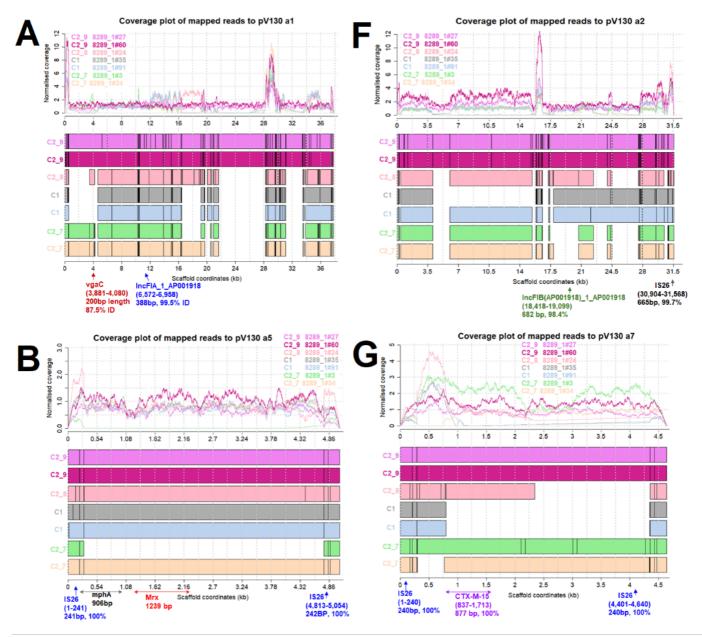
Contig ID (length)	(length) location on contig		Contig antibiotic profile
1_C6_AXC.3	<i>APH(3'')-Ib</i> (aminoglycoside phosphotransferase) at bases 2-811 *	4	Amoxicillin +
(1,647 bp)	<i>APH(6')-Id</i> (aminoglycoside phosphotransferase) at bases 811-1,647	2	Clavulanate
1_C6_AP.7	<i>APH(3'')-Ib</i> (aminoglycoside phosphotransferase) at bases 5,637-6,440 *	4	A mnioillin
(7,018 bp)	<i>APH(6')-Id</i> (aminoglycoside phosphotransferase) at bases 4,801-5,637	2	Ampicillin
5_D1_AXCL.	<i>tetA</i> (tetracycline efflux pump) at bases 2,805-3,221	1	Amoxicillin +
$\overline{8}$ (9, $\overline{1}68$ bp)	<i>tetD</i> (tetracycline efflux pump) at bases 788-2,011 **	2	Clavulanate

Table S2. Four AMR genes unique to 8289_1#24 were derived from six contigs, three of which are listed here. The other three were: * a *APH(3'')-Ib* gene was at bases 166-969 on a 6,254 bp-long contig 1_C6_AX.4 associated with amoxicillin-resistance, and at bases 441-1,244 on a 2,077 bp-long contig 1_C6_PE.1 associated with penicillin-G-resistance; and ** a *tetD* gene was at bases 1,850-2,266 on a 3,300 bp-long contig 5_D1_AP.6 associated with ampicillin-resistance.


Replicon ID	8289_1 #27	8289_1 #60	8289_1 #24	8289_1 #3	8289_1 #34	8289_1 #35	8289_1 #91	pV130a contigs	pV130b contigs
Subclade	C2_9	C2_9	C2_8	C2_7	C2_7	C1	C1		
IncFI	1	1	1		1	1	1	1	1***
IncFIA	1	1	1	1	1	1	1	1	
IncFIB	1	1	1			1	1	1**	
IncFII						1	1		
IncX1						1	1		
IncQ1			1		1	1			
IncI1	1								
IncX4		1					1		
IncX3									1
Col156	1	1				1	1	1*	
Col_BS51	1	1	1		1	1			
Col_MG8	1	1	1	1	1	1	1		
ColRNAI				1					

Extensive plasmid rearrangements in closely related ST131 Clade C genomes

Table S3. PlasmidFinder Inc group assignments for pV130 and seven ST131 isolates. Values indicate presence of the replicon type or element. Matches for pV130a shown for scaffold a_1, except for * in a_4 and ** in a_2. Matches for pV130a shown for scaffold a_1, except *** in b_3. The IncF1B replicon was IncFIB_AP00918.


AMR genes	Description		pEK499	pEK516	pCA14	pV130a	pV130b
	aminoglycoside N(3')-acetyltrans-						
aac(3)-II	ferase III; gentamicin-R, netilmicin-R,			1			
	tobramycin-R, sisomicin-R						
aac(6')-Ib-cr	aminoglycoside N(6')-acetyltrans- ferase type Ib-cr; quinolone-R		1	1	1		1
aadA5	aminoglycoside resistance protein		1		1		
	chloramphenicol acetyltransferase;		1		1		
catB4	inactivates chloramphenicol		1	1			
CTX-M	extended spectrum beta-lactamase	1	1	1	1	1	
16.17	dihydrofolate reductase type VII;		1				
dfrA7	trimethoprim resistance		1				
mph(A)	macrolide 2-phosphotransferase;		1		1	1	1
	inactivates erythromycin		-		-	-	-
OXA-1	extended spectrum beta-lactamase		1	1	I		I
sull	dihydropteroate synthase; sulfonamide resistance protein		1		1		
TEM-1	beta-lactamase	1	1	1			
tetA	tetracycline resistance protein	1	1	1	1		
Persistence	· · · · ·						
genes	Description	pEK204	pEK499	pEK516	pCA14	pV130a	pV130b
ccdA	plasmid maintenance protein		1		1	1	
ccdB	plasmid maintenance protein		1		1	1	
hok	post-segregation killing protein		1	1	1		1
mok	modulator of Hok		1	1	1		1
parM	plasmid segregation protein	1		1			1
pemI	stable plasmid inheritance		1	1	1	1	1
penn	transcriptional regulator/antitoxin		1	1	1	1	1
pemK	stable plasmid inheritance protein		1	1	1	1	1
stbB	toxin-antitoxin system toxin stable plasmid inheritance protein B	1		1			1
	virulence-associated protein vagC;	1		1			1
vagC	toxin addiction system; antitoxin		1		1	1	
D	virulence-associated protein vagD;		1		1	1	
vagD	toxin addiction system; antitoxin		1		1	1	
Conjugation	Description	nEK204	pEK499	nEK516	nCA14	nV1309	nV130h
genes	-	PLINEVT	r	PLICIU	r critt	r' 100a	F, 1000
traC	conjugal transfer ATP-binding protein;	1	1		1		
	conjugal transfer						
traX	responsible for N-terminal acetyl-ation of F pilin; F pilus assembly	1			1		

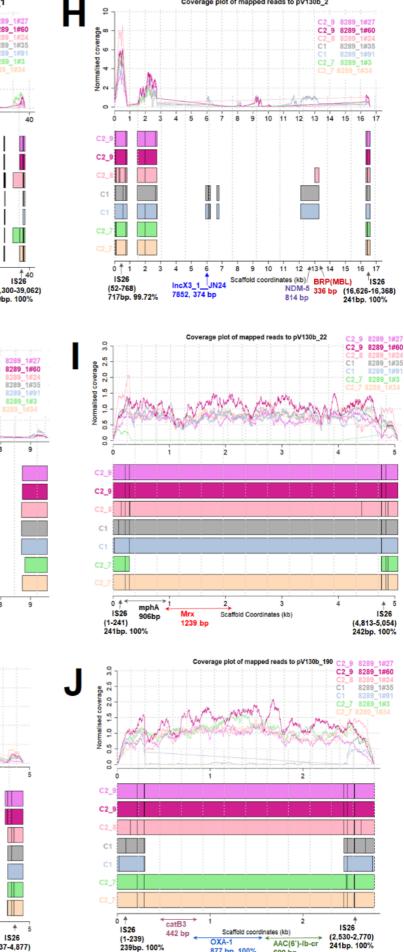
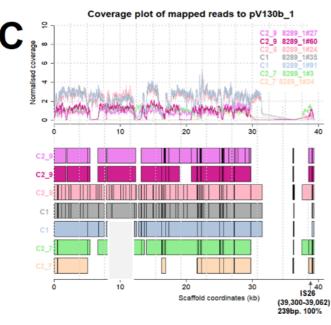
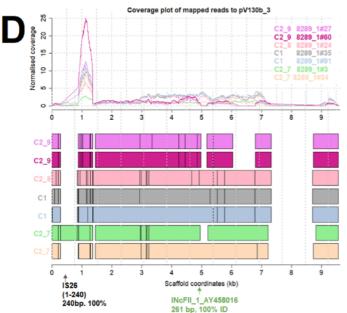
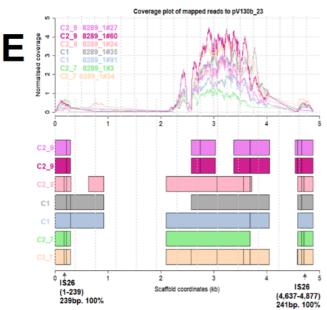

Table S4. Key known AMR, plasmid persistence and conjugation genes for pEK204, pEK499, pEK516, pCA14, pV130a and pV130b based on alignment with BLAST to CARD with confirmation using the annotation files. 1 indicates presence. PEK499 is stably inherited because it has post-segregation killing genes *hok* and modulator *mok*, toxin-antitoxin system genes (*pemI-pemK*, *ccdA-ccdB*), and two copies of virulence-associated genes, *vagC* and *vagD*. *Bla*_{TEM-1b} was 860 bp in pEK204 and 728 bp in pEK499 and pEK516. *ParM* and *StbB* were 980 bp in pEK204 but 962 bp in pEK499 and pEK516.

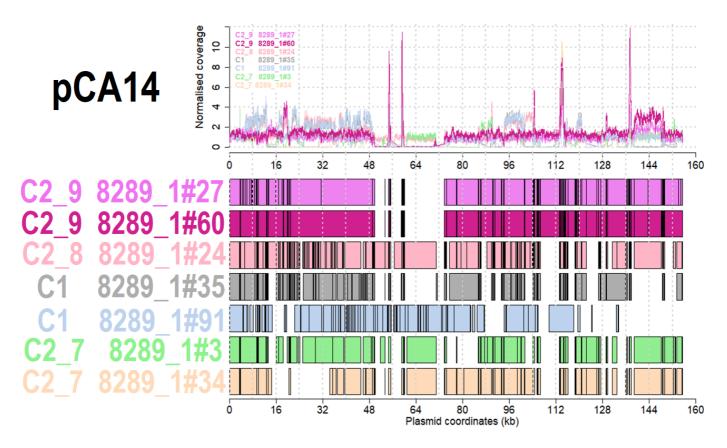
Figure S1. Comparison of pEK516 (64,471 bp) with five ST131 Subclade C1 and C2 isolates, Clade A reference SE15 (navy) and 83972 (cyan). Top: normalised coverage of mapped reads for the five ST131 Clade C isolates showed high copy numbers at IS*1* (32 Kb) and IS*Psy5* (with unannotated genes at 43-45 Kb) (shown by black boxes). Bottom: BLAST alignment similarity showed limited showed limited matching for 83972 and SE15, relative to the Subclade C1 and C2 assemblies: 8289_1#27 from C2_9 (mauve), 8289_1#24 from C2_8 (pink), 8289_1#35 from C1 (grey), 8289_1#3 from C2_7 (light green) and 8289_1#34 from C2_7 (beige). Genes encoding *bla*_{OXA-1}, *bla*_{CTX-M-15} and *bla*_{TEM} were at 12, 20 and 24 Kb (respectively) highlighted with black boxes. Plasmid pEK516 lacks *traX* and *traC*, but has *traA/B/D/E/K/L/M/P/V/Y*. Matches spanning >300 bp are shown. The region at 22-61 Kb that is inverted relative to pEK499 was largely present in the ST131 here. 8289_1#34 had limited homology at the *tra* region (33-40 Kb).

Figure S2 (below and overleaf). Read mapping distributions for seven ST131 to pV130 contigs showing (top of each panel) the normalised read coverage and (bottom) the presence of regions as coloured bars for 8289 1#27 from C2 9 (pink), 8289 1#60 from C2 9 (mauve), 8289 1#24 from C2 8 (light pink), 8289 1#35 from C1 (grey), 8289 1#91 from C1 (blue), 8289 1#3 from C2 7 (green) and 8289 1#34 from C2 7 (biege) for (A) pV130a 1 with a vgaC gene (encoding a ABC-F subfamily protein associated with streptogramin-resistance) absent in C1 and IncF2A replicon present in all; (B) pV130a 5 with two IS26 copies, a *mph(A)* gene (encoding a macrolide 2-phosphotrans-ferase that inactivates erythromycin) and a Mrx gene (encoding a macrolide phosphotransferase assisting MphA); (C) pV130b 1 with an IS26; (D) pV130b 3 with an IS26 and an IncF2 replicon; (E) pV130b 23 with two IS26 copies; (F) pV130a 2 with an IS26 and IncF1B replicon present in all; (G) pV130a 7 with two IS26 copies and a *bla_{CTX-M-15}* gene (position 837-1,713) in C2 only; (H) pV130b 2 with two IS26 copies, a bleomycin resistance protein (BRP) metallo-beta-lactamase (MBL) gene in C1 and C2-8 only, and a *bla*_{NDM} gene (position 13,589-14,146) in C1 only; (I) pV130a 22 with two IS26 copies, a mph(A) gene and a Mrx gene; and (J) pV130b 190 with two IS26 copies and a region in C2 only with a *catB3* gene (encoding a chloramphenicol acetyltransferase that inactivates phenicols), an bla_{OXA-1} gene and quinolone-resistance gene aac(6')-Ib-cr. Plasmid pV130 was isolated by [93] from sewage treatment plant water in India that found 49 plasmids of which two were pV130a and pV130b, with a total of 15 contigs. The former was 108,055 bp, has nine contigs, was *bla*_{CTX-M-15}-positive, contained 134 genes and had replicon types FIA, FIB and FII. Plasmid pV130b was 78,386 bp, had six scaffolds, was *bla*_{NDM}-positive, had 111 genes and replicon type FII. Both have six plasmid persistence genes each and lack *traC* and *traX*.






877 bp, 100%


600 bp

Coverage plot of mapped reads to pV130b 2

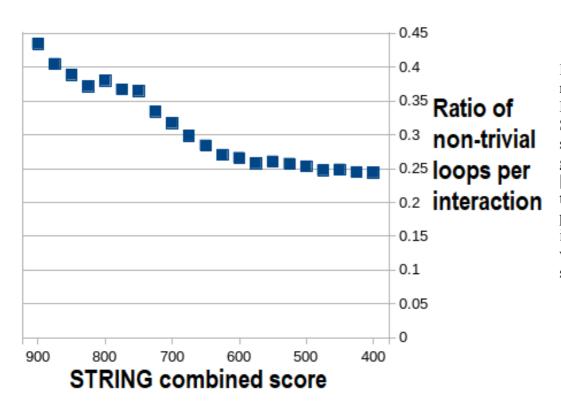
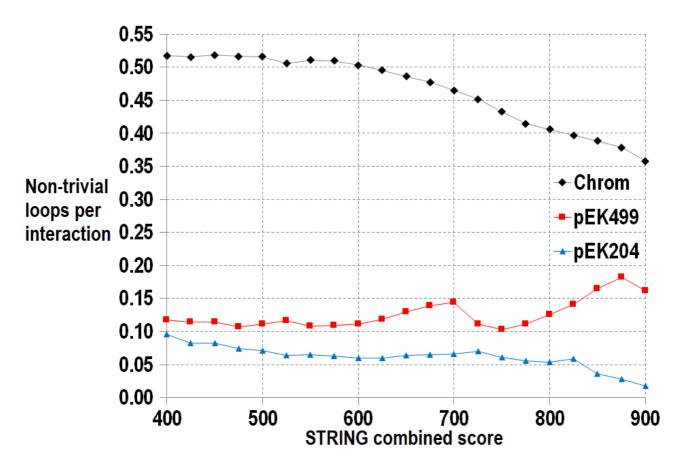
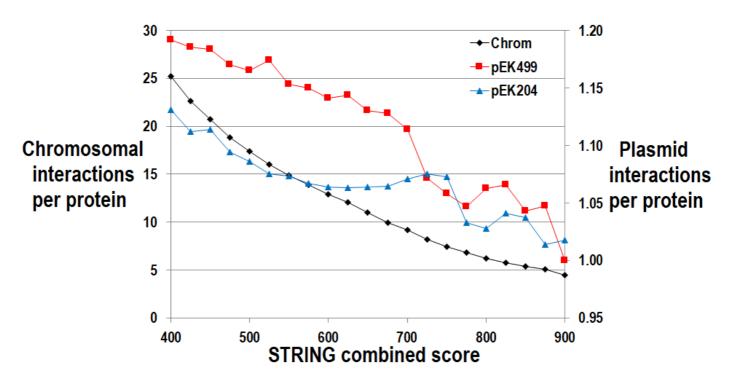


Figure S3. Comparison of F31:A4:B1 plasmid pCA14 (155 Kb) with seven ST131 Clade C1 and C2 isolates. Reads for all seven ST131 were mapped to conjugative plasmid pCA14, is structurally similar to pEK499, has seven known AMR genes and eight plasmid persistence genes [59] (Table S9). Top: normalised coverage of mapped reads for the seven read libraries a showed high copy number at different regions. Bottom: Regions of similarity based on BLAST alignments showed variable matching for the samples: $8289_1#27$ from C2_9 (pink), $8289_1#60$ from C2_9 (mauve), $8289_1#24$ from C2_8 (light pink), $8289_1#35$ from C1 (grey), $8289_1#91$ from C1 (blue), $8289_1#36$ from C2_7 (green) and $8289_1#34$ from C2_7 (beige). All seven libraries had extensive similarity but a mosaic structure, and all bar $8289_1#3$ possessed the *mph(A)* and *Mrx* genes (associated with erythromycin resistance).

Subset #genes #		#PPIs within group	#PPIs with chromosome	#PPIs per protein (within group)	#PPIs per protein (chromosome)
All	60	229	2,307	3.8	10.1
Cluster_1	30	138	1,125	4.6	8.2
All_AMR	19	57	852	4.0	14.9


Table S5. The PPI network connectivity of genes from Table 1 of [99]. All were unique and had PPI data (bar six in the full set of 60). The numbers of PPIs within each cluster is shown, followed by the numbers per group with the chromosome. The TDA-based approach was tested using results from a previous clustering analysis that had five clusters with 60 proteins in total (see Table 1 of [99]). We examined the full set of 60 (Figure S8), cluster 1 alone with 30 proteins to examine intra-cluster patterns, and 19 AMR-related proteins from all five clusters to look at inter-cluster trends. This showed that the within-cluster interactions per protein (3.8 to 4.6) and chromosomal interactions per protein (8.2 to 14.9) were consistent across groups.


Figure S4. The ratio of non-trivial loops per PPI (y-axis) versus the STRING combined score (x-axis) for all 60 genes from Table 1 of [99]. This showed that the non-trivial loops per PPI (missing interactions) increased with the combined score.

Plasmid	Accession	#genes with PPIs	Inc group(s)	Conjugative (intact tra)	AMR
pEK204	EU935740	24	I1	Yes	Yes
pEK499	EU935739	26	F2/F1A	No	Yes
pEK516	EU935738	26	F2A	No	Yes
pJIE186-2	NC 020271	7	F1B/F2A/F1A	No	No
pCA14	CP009231	14	F2/F1A/F1B	Yes	Yes
pEC958A	HG941719	13	F1A/F2	No	Yes
pECSF1	NC 013655	3	F2A/FIB	Yes	No

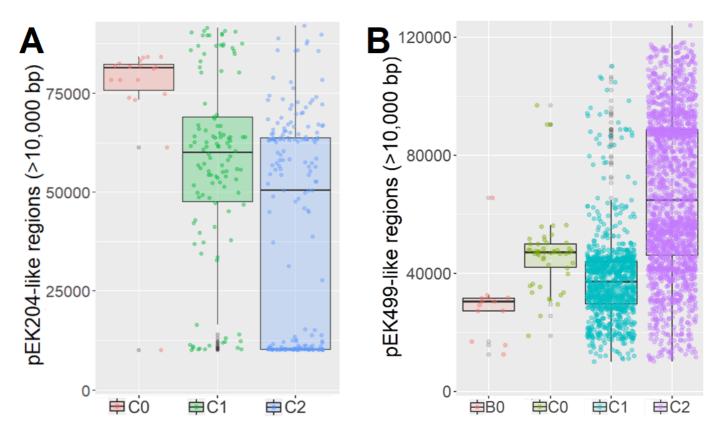

Table S6. The seven plasmids' accessions, numbers of genes with interactions given a combined score of >400, Inc groups, conjugative ability and presence of AMR genes. PJIE186-2's IncF1A was partial.

Figure S5. The ratio of non-trivial loops per PPI (y-axis) versus the STRING combined score (x-axis) for all *E. coli* 4,146 chromosomal genes (black), all genes on pEK499 (red) and all those on pEK204 (blue). This showed that the non-trivial loops per PPI (missing interactions) varied little for these plasmids with respect to the STRING combined score.

Figure S6. The ratio of PPIs per protein for genes encoded on the chromosome in black (left y-axis) or the pEK499 in red and pEK204 in blue plasmids (right y-axis, note difference in scale) versus the STRING combined score (x-axis). As the combined score threshold became higher, the decay of PPIs per protein was about equivalent across datasets, showing the STRING combined score was not a confounder here.

Figure S7. The distributions of pEK204-like (A, left) and pEK499-like (B, right) regions in ST131 Clade B and C genome assemblies. Only assemblies with regions spanning >10 Kb in total are shown for matches spanning >300 bp. For pEK204 (93,732 bp), this corresponded to 18 out of 51 for C0 (red), 111 out of 1,119 for C1 (green) and 178 out of 2,051 for C2 (light blue), suggesting initial independent integrations of pEK204-like plasmids across the subclades coupled with subsequent rearrangements. For pEK499 (117,536 bp), this corresponded to 13 out of 14 for B0 (orange), 50 out of 51 for C0 (olive), 1,047 out of 1,119 for C1 (turquoise) and 1,926 out of 2,051 for C2 (mauve), suggesting long-term retention and rearrangement of pEK499-like DNA regions in all four subclades. Note the y-axis length ranges differ.

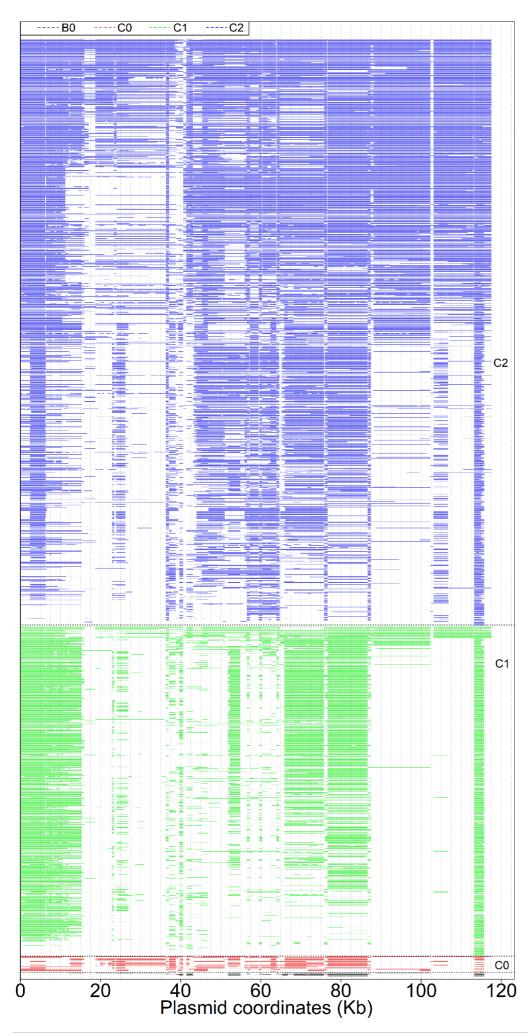


Figure S8. The distributions of pEK499like regions in ST131 Clade B and C genome assemblies. The regions of similarity spanned (from the bottom) B0 (n=14 in black), C0 (n=59 in red), C1 (n=1,047 in green) and C2 (n=1,926 in blue). Similarity across pEK499 (117,536 bp) was based on BLAST alignments. Genes encoding *bla*_{TEM}, *bla*_{OXA-1} and *bla*_{CTX-M-15} are at 40, 58 and 63 Kb (respectively).

Library	Clade	Number	Re	ad length	
Library	Claue	of reads	Media	Mean	SD
8289_1#34_1	C2	2,145,896	101	99.3	6.5
8289 1#34 2	C2	2,145,690	100	97.7	8.0
8289_1#3_1	C2	1,824,030	101	99.4	6.5
8289 1#3 2	C2	1,824,030	100	97.6	8.2
8289_1#35_1	C1	2,297,624	101	99.4	6.5
8289_1#35_2	U	2,297,024	100	97.7	8.0
8289_1#91_1	C1	2,227,251	101	99.3	6.6
8289 1#91 2	U	CI 2,227,231	100	97.7	8.1
8289_1#24_1	C2	2,014,250	101	99.3	6.5
8289 1#24 2	C2	2,014,230	100	97.7	8.1
8289 1#27 1	C2	5,756,848	101	99.4	6.5
8289 1#27 2	C2	5,750,848	100	97.7	8.1
8289_1#60_1	C2	1,800,070	101	99.3	6.5
8289 1#60 2	C2	1,800,070	100	97.6	8.1
NCTC13441		2,857,729	43	42.5	1.4
SE15		418,045	218	192.2	67.3
EC958		1,514	1,486	1,401.6	549.2

Table S7. Read library summary statistics for each main ST131 sample and the three main reference genomes. The read distributions differed for NCTC13441, SE15, and EC958 because they were generated using long read approaches. For GROOT, paired-end read library files were mapped individually. SD stands for standard deviation.

References not in main text

- Bocher et al. 2009. *Staphylococcus lugdunensis*, a Common Cause of Skin and Soft Tissue Infections in the Community. Journal of Clinical Microbiology, 47(4):946-950.
- Kennedy et al. 2010. Complete Nucleotide Sequence Analysis of Plasmids in Strains of *Staphylococcus aureus* Clone USA300 Reveals a High Level of Identity among Isolates with Closely Related Core Genome Sequences. Journal of Clinical Microbiology, 48(12):4504-4511.
- Liang et al. 2012. Structural insights into the broadened substrate profile of the extended-spectrum betalactamase OXY-1-1 from *Klebsiella oxytoca*. Acta Crystallographica Section D-Biological Crystallography, 68:1460-1467.
- Nikaido 2011. Structure and mechanism of rnd-type multidrug efflux pumps. Advances in Enzymology and Related Areas of Molecular Biology, 77:1-60.
- Ruiz C, Levy SB. 2010. Many chromosomal genes modulate MarA-mediated multidrug resistance in *Escherichia coli*. Antimicrobial Agents and Chemotherapy, 54(5):2125-2134.
- Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. 2015. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1):90-101.
- Stoesser N, et al. 2014. Genome sequencing of an extended series of NDM-producing *Klebsiella pneumoniae* isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrobial Agents and Chemotherapy, 58(12):7347-7357.
- Tse et al. 2010. Complete Genome Sequence of *Staphylococcus lugdunensis* Strain HKU09-01. Journal of Bacteriology, 192(5):1471-1472.