Cell Reports, Volume 35

Supplemental information

Glucose-mediated proliferation of a gut commensal

bacterium promotes Plasmodium infection

by increasing mosquito midgut pH

Mengfei Wang, Yanpeng An, Li Gao, Shengzhang Dong, Xiaofeng Zhou, Yuebiao Feng, Penghua Wang, George Dimopoulos, Huiru Tang, and Jingwen Wang

Cell Reports, Volume 35

Supplemental information

Glucose-mediated proliferation of a gut commensal

bacterium promotes Plasmodium infection

by increasing mosquito midgut pH

Mengfei Wang, Yanpeng An, Li Gao, Shengzhang Dong, Xiaofeng Zhou, Yuebiao Feng, Penghua Wang, George Dimopoulos, Huiru Tang, and Jingwen Wang

1

2 Figure S1. Daily blood glucose level and parasitemia in *P. berghei* infected mice, Related to

- 3 Figure 1.
- 4 Blood glucose levels (left y axis) of Balb/c mice infected with *P. berghei* (red line) or without *P.*
- 5 *berghei* (grey line), and the parasitemia (right *y* axis, black line) from 0 to 7 days post infection. Data
- 6 were shown as mean \pm SEM (*n* =10). Significance was determined by Student's *t* test. NS, not
- 7 significant, **, p < 0.01, and ****, p < 0.0001

Supplementary Table 1: Significantly changed metabolites with corresponding correlation
coefficients in the mosquito extract between NB and IB Group. Related to Figure 1. Lipids: R-*CH*₃, R-*CH*₂, *CH*₂CH₂CO, *CH*₂C=C, UFA: unsaturated fatty acids; PC: phosphorylcholine; GPC:
glycerophosphocholine; DMA: dimethylamine; ADP: adenosine diphosphate; IMP: Inosine 5'phosphate.

	Keys	Metabolite	NB1D vs. IB1D
	1	R-C <i>H</i> ₃	-0.98
	2	R-C <i>H</i> ₂	-0.99
Lipids	3	CH ₂ CH ₂ CO	-0.97
	4	$CH_2C=C$	-0.92
	5	UFA	-0.97
	6	trehalose	-0.85
	7	glucose	-0.88
Glucose & TCA Cycles	8	pyruvate	0.60
	9	succinate	-0.87
	10	citrate	-0.77
	11	acetate	0.85
	12	acetoacetate	0.79
Amino acids	13	tyrosine	0.69
	14	choline	0.74
Cholines	15	PC	0.79
	16	GPC	-0.96
	17	DMA	0.60
	18	xanthurate	0.74
Nucleotides	19	inosine	-0.66
& Nucleosides	20	ADP	-0.88
	21	IMP	0.61

15 Figure S2. The influence of sugar treatments on *An. stephensi*, Related to Figure 2.

(B) *P. berghei* oocyst intensity in mosquitoes fed with 2%, 5%, and 10% sucrose.

(C) Weight of fully engorged mosquitoes fed with 2%, 5%, and 10% sucrose.

(D) The number of mature eggs in ovaries of mosquitoes fed with 2%, 5%, and 10% sucrose.

(E) *P. berghei* oocyst intensity in antibiotics treated mosquitoes (Abx) fed with 2%, 5%, and 10%
 sucrose.

(F) *P. berghei* oocyst intensity in mosquitoes fed with S, G, 2-DG and HS diets post blood meal.

Each dot represents an individual mosquito and horizontal lines represent the medians. Results shown in A-F were pooled from at least two independent experiments. Significance in A, B, E and F was determined by ANOVA with Dunn's tests. Significance in C and D was determined by ANOVA with Dunnett tests. NS, not significant, *, p < 0.05, and ***, p < 0.001. S, 2% sucrose; G, 2% sucrose + 0.1 M glucose; 2-DG, 2% sucrose + 0.1 M glucose + 5 mM 2-DG; HS, 10% sucrose.

30 Figure S3. The influence of *A. bogorensis* on glucose consumption and *P. berghei* infection,

31 **Related to Figure 3.**

(A) The relative concentration of total sugar (glucose + trehalose) in the midgut of antibiotics treated
 mosquitoes fed on different sugar diets 1 day prior to (-1 dpi) and 1 day (1 dpi) post infection,
 respectively.

- 35 (B) Principal Component Analysis (PCA) of bacterial composition by unweighted (left panel) and
- ³⁶ weighted (right panel) unifrac analyses. Each plot represents 5 midguts as a biological repeat.
- 37 (C) LEfSe analysis of midgut microbiota fed on S and G diets. LDA scores showed significant
- 38 bacterial differences within groups at the different levels. Green, mosquitoes fed on 2% sucrose;
- Red, mosquitoes fed on 2% sucrose + 0.1 M glucose.

- 40 (D) The abundance of *A. bogorensis* in the midgut of *An. stephensi* determined by qPCR.
- 41 (E) The relative concentration of total sugar (glucose and trehalose) in the midgut of mosquitoes 1
- 42 day prior to (-1 dpi) and 1 day (1 dpi) post infection.
- 43 Glucose and trehalose concentrations in A and E were normalized to genomic DNA extracted from
- 44 midgut. Significance in A, and E was determined by Student's *t* test, in D was determined by ANOVA
- 45 with Dunnett tests. Data were shown as mean \pm SEM (A and E, n = 5, D, n = 10). *, p < 0.05, **, p
- 46 < 0.01, and ***, p < 0.001, S, 2% sucrose; G, 2% sucrose + 0.1 M glucose, Abx, antibiotics treatment,
- 47 A. b., A. bogorensis re-colonization.

48

49 Figure S4. Influence of mosquito midgut pH on *P. berghei* infection, Related to Figures 4 and

50 **5**.

(A) The relative expression levels of *caudal, pgrp-lc, defensin,* and *cecropin* in mosquitoes fed with
 T at -1 dpi. The expression levels of genes in T fed mosquitoes were normalized to the gene's
 expression in S fed ones.

- 54 (B) Caudal knocking down efficiency. Relative expression level of Caudal was normalized to that in
- 55 dsGFP control. Ribosomal gene S7 used as an internal control. Error bars indicate standard error
- (n = 8). Results from one of two independent experiments are shown.

57 (C) *P. berghei* oocyst intensity in dsRNA treated mosquitoes fed with S and G diets, respectively.

(D) The abundance of *A. bogorensis* in the midgut of S and G fed *An. stephensi* treated with dsRNA.

59 (E) *V-ATPase_H_N3* knocking down efficiency. Relative expression level of *V-ATPase_H_N3* was

normalized to that in dsGFP control. Ribosomal gene S7 used as an internal control. Error bars

- indicate standard error of the mean (*n* =10). Results from one of three independent experiments are
 shown.
- (F) *P. berghei* oocyst intensity in mosquitoes fed with S and S + 0.02 M, 0.1 M and 0.5 M NaHCO₃,
 respectively.
- (G) The pH staining of mosquito midguts fed with increasing concentration of NaHCO₃ by m-cresol

⁶⁶ purple. Images are the three representatives of at least five individual mosquito midguts.

(H) The expression levels of *caudal, pgrp-lc, defensin,* and *cecropin* in mosquitoes fed with S + 0.1

M NaHCO₃ diet one day prior to (-1 dpi) and one day (1 dpi) post infection, were normalized to the
 gene's expression of the ones fed with S diet.

(I) Influence of *Enterobacter* sp. re-colonization on the pH of midguts by m-cresol purple. Images
 are three representatives of at least five individual mosquito midguts.

72 (J) The CFU of *Enterobacter* sp. colonized in the midgut of antibiotics treated *An. stephensi*.

Figure 73 Each dot in C and F represents an individual mosquito and horizontal lines represent the medians.

⁷⁴ Significance in A, B, E and H was determined by Student's *t* test. Significance in D and J was

determined by ANOVA with Tukey tests. Error bars indicate standard error of the mean (A, B, E and

H, n = 8; D and J, n = 10). Results shown in C and F were pooled from at least two independent

experiments. Significance was determined by ANOVA with Dunn's tests. NS, not significant, *, p <

78 0.05, **, p < 0.01, ***, p < 0.001, and ****, p < 0.0001. T, 2% sucrose + 0.1 M trehalose; S, 2%

sucrose; G, 2% sucrose + 0.1 M glucose.

- 80 Supplementary Table 3: Significantly changed metabolites in conditioned media from A.
- 81 **bogorensis grown. Related to Figure 5.** S, 2% sucrose; G, 2% sucrose + 0.1 M glucose; T, 2%

82 sucrose + 0.1 M trehalose. ***, P<0.001.

Keys	Metabolites	Fold change (G/S)	Fold change (T/S)	
1	sucrose	1.93 ***	0.39 ***	
2	glucose	0.45 ***	0.7 ***	
3	trehalose	1.15 ***	86.11 ***	
4	citrate	0.65 ***	0.5 ***	
5	succinate	0.56 ***	0.65 ***	
6	ethanol	0.70 ***	0.55 ***	
7	valine	0.62 ***	0.48 ***	
8	isoleucine	0.64 ***	0.51 ***	
9	leucine	0.66 ***	0.49 ***	
10	alanine	0.58 ***	0.41 ***	
11	tyrosine	0.70 ***	0.53 ***	
12	phenylalanine	0.69 ***	0.53 ***	
13	trimethylamine	2.22 ***	0.51 ***	
14	dimethylamine	0.65 ***	0.51 ***	
15	inosine	1.13 ***	0.49 ***	

83

84

85 Figure S5. Addition of NaCHO₃ induces the expression of genes associated with

86 microgamete development, Related to Figure 6.

87 (A) Workflow of NaCHO₃ treatment and qPCR assay.

(B) Quantification of expression levels of genes associated with male gametogenesis. The
 expression level of male gametogenesis related genes in NaHCO₃ (0.1 M) supplemented
 mosquitoes was normalized to that in mosquitoes fed on S diet.

- 91 (C) Quantification of expression levels of genes associated with mitochondrial energy metabolism.
- 92 *SDH*, succinate dehydrogenase; *CS*, citrate synthase; *IDH*, isocitrate dehydrogenase; *FH*, fumarate
- 93 hydratase; KDH, alpha-Ketoglutarate dehydrogenase; ACO, acyl-CoA oxidase. The expression
- level of target genes in NaHCO₃ (0.1 M) supplemented mosquitoes was normalized to that in
- 95 mosquitoes fed on S diet.
- 96 Significance in B and C was determined by Student's *t* test. Error bars indicate standard error of the
- 97 mean (*n* = 8). NS, not significant, *, p <0.05, and **, p <0.01. S, 2% sucrose.

98 Supplementary Table 4: qRT-PCR primers used in this study. Related to Figure 3, Figure 6,

Figure 7, Figure S2, Figure S3, Figure S4 and Figure S5.

Gene	Forward primer	Reverse primer	Reference
VATPase_	TGGCATCAGCACGCTCATCA	TCCTTCGCACAGTCGCTCAGA	This paper
H_N3	G		
Caudal	CAAGGACCGCAAGCAGAA GAA	CGATTGACCGCCGAGACC	This paper
Ab16S rRNA	GATGACATGAACCGTGCCCT GG	ACCTCCGTCTTGATGGCGTACA	(Favia et al., 2007)
AsteS7	TGCGGAGCGTCGTATTCTGC	ACACAGCGGTGAGCGTTCG	(Salazar et al., 1993)
PbCDPK1	TGGTGGGCAAAACGATCAAG A	GCTTCCTCAGCCGTACATCT	This paper
PbPPM1	AGGGGATAGTCGCTGTGTCT T	ACCTCGGCATACTCCTAAGCAT	This paper
PbAcint2	TTCTTGATAGTGGTGATGGC GTAA	CGATTTCTCTTTCAGCGGTTGT AG	This paper
PbGEST	CTACATTCGAGAGCCATGATA CTT	AAACTGTGTCACCAATTTCAAG AT	This paper
PbMDV-1	TCCAACATCAACCATAGGGT GTCT	TGCCTTGCCTCCACTTCCA	This paper
PbSAS-6	AAAGGATATGGGCGTGATGG AT	ACACTCATTAGATGTACCACCA CT	This paper
Pb18S	AAGCATTAAATAAAGCGAATA CATCCTTAC	GGAGATTGGTTTTGACGTTTAT GTG	(Baptista et al., 2010)
PbACO	TGGCACCAGAATATGGAGCT ACAA	TCTCGTCATCTCGTCCTGTTTG TT	This paper
PbKDH	ATGAACATCCAGACGCACTA G	AGGTAACAACATAACAACTCCA GA	This paper
PbIDH	GAGGGTTTGTTTGGGCGTGT AAA	GGCTTCCATATCCTTGTGCAAC TG	This paper
PbCS	TTCACGAGAGCTATATTGCCG AG	TAGGGTGTGTAAATGGTGGTAT GC	This paper
PbSDH	TCGCTGGATAGTTGATACAAG AGA	GCACACTGAGCAATTCATTATT CC	This paper
PbFH	GCCAACAACTGCTGGAAGA	GCCAAAGAAATTAAAGACGCAT TG	This paper
AsteCec	GCTGCTCTTTCTCGTTGCG	CGGCACCTTCCACCTTCT	This paper
AsteDef	CCGCCTTGAACACGCTCCT	GCTGCCGACACCGAATCCA	This paper
AsteLC	TGTGCCATCGTAGCGGTCAT	AGCCACTCGGTTCTCGTCAC	This paper