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Supplementary method 

To build an accuracy and reliable bioinformatics tool, sufficient feature information should be incorporated into the 

model (Chen, et al., 2018; Liu, et al., 2019; Chen, et al., 2020; Wang, et al., 2020). In this study, 10 feature encoding 

algorithms were used for the protein sequence representing, including amino acid composition (AAC), composition 

of k-spaced amino acid pairs (CKSAAP), dipeptide composition (DPC), dipeptide deviation from expected mean 

(DDE), composition (CTDC), transition (CTDT), conjoint triad (CTriad), quasi-sequence-order (QSOrder), 

normalized Moreau-Broto (NMBroto) and pseudoamino acid composition (PAAC). For convenience, assume that a 

given protein sequence of N amino acid residues is denoted as S=R1R2R3R4…RN, where the i-th residue is represented 

as Ri. The detailed feature representation algorithm is explained in the following subsections. 

AAC, DEP, CKSAAP and DDE 

The AAC descriptor(Bhasin and Raghava, 2004; Liu, 2019) encodes the frequencies of all 20 amino acids in a protein 

sequence and is represented by a 20-D vector. The CKSAAP descriptor(Chen, et al., 2007) measures the frequency 

of any k residue-spaced amino acid pairs, the dimension of the this feature vector is 400×(k+1). 

The DPC(Saravanan and Gautham, 2015) calculates the frequencies of all dipeptides in a sequence and is 

defined as: 

D(r, s) =
𝑁𝑟𝑠

𝑁−1
, 𝑟, 𝑠 ∈ {𝐴, 𝐶, 𝐷 …𝑌}                    (1) 

where 𝑁𝑟𝑠 is the number of dipeptides composed by r and s, which gives a 400-D vector. The DDE(Saravanan and 

Gautham, 2015), which also gives a 400-D vector, is computed as follows: 

DDE(r, s) =
𝐷𝐶(𝑟, 𝑠) − 𝑇𝑚(𝑟, 𝑠)

√𝑇𝑉(𝑟, 𝑠)
                      (2) 

where 𝐷𝐶(𝑟, 𝑠) is calculated in a similar way as 𝐷(𝑟, 𝑠); 𝑇𝑚(𝑟, 𝑠), the theoretical mean, is calculated as: 

𝑇𝑀(𝑟, 𝑠) =
𝐶𝑟

𝐶𝑁
×

𝐶𝑆

𝐶𝑁
                                (3) 

where, for a dipeptide ‘rs’, 𝐶𝑟 is the number of codons that code for the first amino acids and 𝐶𝑠 is the number of 

codons that code for the second amino acids, and 𝐶𝑁 is all possible codons, excepting stop codons. 𝑇𝑉(𝑟, 𝑠), the 

theoretical variance of the dipeptide ‘rs’, is defined as: 

𝑇𝑉(𝑟, 𝑠) =
𝑇𝑀(𝑟,𝑠)(1−𝑇𝑀(𝑟,𝑠)))

𝑁−1
                       (4) 

CTDC, CTDT and CTriad 

The composition (C) and transition (T) features(Govindan and Nair, 2011) characterizes the amino acid distribution 

patterns or physicochemical property in a protein. Twenty amino acids are categorized into three groups according 

to their physicochemical property (supplementary Table S1). Taking the charge attribute for example, twenty amino 

acids are categorized into positive group (KR), neutral group (ANCQGHILMFPSTWYV) and negative group (DE). 

The three features of the composition descriptor represent the percentage of each group of residues in the protein 

sequence and is calculated as follows: 

CTDC (r) =
𝑁(𝑟)

𝑁
, 𝑟 ∈ {𝑝𝑜𝑠𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}     (5) 

where 𝑁(𝑟) is the number of amino acids of type r in a given sequence and N is the protein length.  

 The three features of the transition descriptor characterize the frequencies of three kinds of residue pairs. For 

example, two adjacent residues where a negative residue followed by a neutral residue or vice versa, it is calculated 

as follows: 

  CTDT(r, s) =
𝑁(𝑟,𝑠)+𝑁(𝑠,𝑟)

𝑁
                          (6) 

where𝑟, 𝑠 ∈ {(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙), (𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)}, and 𝑁(𝑟, 𝑠) and 𝑁(𝑠, 𝑟) equal 

to the numbers of dipeptides composed by “rs” and “sr”, respectively, in the protein sequence. Thirteen types of 

physicochemical properties (supplementary Table S1) are used for computing the features of CTDC and CTDT, 

which yield a 39-D vector for each feature. 

CTriad(Shen, et al., 2007) characterizes the properties of one amino acid and its neighbors, where any three 

continuous amino acids were regarded as a single unit. Specifically, all 20 amino acids were categorized into seven 

groups based on their physicochemical properties. Then, all sets of the three successive amino acids (triad) within a 

given protein sequence were considered, and the triad frequencies were counted. Accordingly, CTriad is a 343-D 

vector and is defined as follows: 

𝑑𝑖 =
𝑓𝑖 −min {𝑓1 , 𝑓2, 𝑓3, … , 𝑓343}

𝑚𝑎𝑥 {𝑓1, 𝑓2, 𝑓3, … , 𝑓343}
, 𝑖 = 1,2,3,… , 343     (7) 

where 𝑓𝑖 denotes the frequency of the i-th triad that appears in the protein sequence. 
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QSOrder, NMBroto and PAAC 
The first 20 features (Equation 8) of the QSOrder represents the amino acid frequency, and the remaining features 

characterize the sequence order based on the Schneider-Wrede physicochemical distance matrix(Schneider and 

Wrede, 1994) and the Grantham chemical distance matrix(Grantham, 1974) (Equation 9). It is defined as: 

𝑋𝑟 =
𝑓𝑟

∑
20

𝑟=1
𝑓𝑟+𝑤 ∑

𝑛𝑙𝑎𝑔

𝑑=1
𝜏𝑑

, 𝑟 = 1, 2, 3,… , 20                   (8) 

𝑋𝑑 =
𝑤𝜏𝑑−20

∑
20

𝑟=1
𝑓𝑟+𝑤 ∑

𝑛𝑙𝑎𝑔

𝑑=1
𝜏𝑑

, 𝑑 = 21,2 2, 23,… , 𝑛𝑙𝑎𝑔             (9) 

𝜏𝑑 = ∑ (𝑑𝑖,𝑖+𝑑)
2𝑁−𝑑

𝑖=1 , 𝑑 = 1, 2,3,… , 𝑛𝑙𝑎𝑔               (10) 

where 𝑓𝑟 is the normalized occurrence of amino acid type r and weighting factor w = 0.1; 𝑑𝑖,𝑖+𝑑 is the distance 

between the two amino acids at position i and i + d in protein sequence; nlag is the maximum value of the lag, N is 

the protein length .Accordingly, the descriptor dimension will be 40+2×nlag. 

 The NMBroto descriptor(Horne, 1988) is used to characterize the distribution of amino acid properties along 

the sequence. In this paper, eight amino acid indices are selected from the AAindex database (supplementary Table 

S2). The NMBroto is defined as follows: 

NMB =
𝐴𝐶(𝑑)

𝑁−𝑑
, 𝑑 = 1,2,… , 𝑛𝑙𝑎𝑔                    (11) 

AC(d) = ∑ 𝑃𝑖 × 𝑃𝑖+𝑑
𝑁−𝑑
𝑖=1 , 𝑑 = 1,2, … , 𝑛𝑙𝑎𝑔           (12) 

where 𝑃𝑖 and 𝑃𝑖+𝑑 are the related amino acid properties at positions i and i+d, respectively; d is the lag of the 

autocorrelation, nlag is the maximum value of the lag, N is the protein length, and the descriptor dimension is 8×nlag. 

PAAC introduces a discrete model derived from the amino acid sequence to represent its sequence-order or 

pattern information. The PAAC descriptors(Chou, 2001, 2005) can be defined as follows: 

Denoting the original hydrophobicity values of the 20 amino acids as 𝐻1
𝑂(i) (i = 1, 2, 3, …, 20). Similarly, the 

original hydrophobicity values and the original hydrophilicity values were denoted as 𝐻2
𝑂 (i) and 𝑀𝑂(𝑖) , 

respectively. They are transformed to the following quantities: 

{
 
 
 
 
 

 
 
 
 
 𝐻1(𝑖) =

𝐻1
𝑂(𝑖)−

1

20
∑ 𝐻1

𝑂(𝑖)20
𝑖=1

√∑ [𝐻1
𝑂(𝑖)−

1
20
∑ 𝐻1

𝑂(𝑖)20
𝑖=1 ]

2
20
𝑖=1

20

, 𝑖 = 1,2,3,… ,20

𝐻2(𝑖) =
𝐻2
𝑂(𝑖)−

1

20
∑ 𝐻2

𝑂(𝑖)20
𝑖=1

√∑ [𝐻2
𝑂(𝑖)−

1
20
∑ 𝐻2

𝑂(𝑖)20
𝑖=1 ]

2
20
𝑖=1

20

, 𝑖 = 1,2,3,… ,20

𝑀𝑂(𝑖) =
𝑀𝑂(𝑖)−

1

20
∑ 𝑀𝑂(𝑖)20
𝑖=1

√∑ [𝑀𝑂(𝑖)−
1
20
∑ 𝑀𝑂(𝑖)20
𝑖=1 ]

2
20
𝑖=1

20

, 𝑖 = 1,2,3,… ,20

         (13) 

Θ(𝑅𝑖 , 𝑅𝑗) =
1

3
{[𝐻1(𝑅𝑖) − 𝐻1(𝑅𝑗)]

2
+ [𝐻2(𝑅𝑖) − 𝐻2(𝑅𝑗)]

2
+ [𝑀(𝑅𝑖) − 𝑀(𝑅𝑗)]

2
}   (14) 

 𝜃𝜆 =
1

𝑁−𝜆
∑ 𝛩(𝑅𝑖
𝑁−𝜆
𝑖=1 , 𝑅𝑖+𝜆)                           (15)  

𝑋𝑐 =
𝑓𝑐

∑ 𝑓𝑟
20
𝑟=1 +𝑤∑ 𝜃𝑗

𝜆
𝑗=1

, (1 ≤ 𝑐 ≤ 20)                    (16) 

𝑋𝑐 =
𝑤𝜃𝑐−20

∑ 𝑓𝑟
20
𝑟=1 +𝑤∑ 𝜃𝑗

𝜆
𝑗=1

, (21 ≤ 𝑐 ≤ 20 + 𝜆)                (17) 

where 𝐻𝑘(𝑅𝑖) denotes the kth property of the amino acid 𝑅𝑖 in the amino acid property set, λ (λ < N) is an integer 

parameter that is chosen; 𝑓𝑐  is the normalized occurrence of the amino acids, weighting factor w = 0.05, and N is 

the sequence length. The descriptor dimension will be 20+λ. 

 

Supplementary Tables 

Supplementary Table S1 Thirteen types of physicochemical properties that used for computing the features of 

CTDC and CTDT. 

 

physicochemical 

properties 

categorized groups 

Hydrophobicity_PRAM9

00101 

Polar: RKEDQN Neutral: GASTPHY Hydrophobicity: 

CLVIMFW 

Hydrophobicity_ARGP82

0101 

Polar: QSTNGDE  Neutral: RAHCKMV  Hydrophobicity: LYPFIW  

Hydrophobicity_ZIMJ680

101  

Polar: 

QNGSWTDERA  

Neutral: HMCKV  Hydrophobicity: LPFYI 

Hydrophobicity_PONP93

0101  

Polar:KPDESNQT Neutral: GRHA  Hydrophobicity:YMFWLC

VI 

Hydrophobicity_CASG92

0101  

Polar:KDEQPSRN

TG 

Neutral: AHYMLV  Hydrophobicity: FIWC 

Hydrophobicity_ENGD86

0101  

Polar:RDKENQH

YP 

Neutral :SGTAW  Hydrophobicity: CVLIMF 

Hydrophobicity_FASG89

0101 

Polar: KERSQD  Neutral: NTPG  Hydrophobicity:AYHWV

MFLIC 



 

Normalized van der Waals 

volume 

Volume range: 0-

2.78GASTPD 

Volume range: 2.95-

94.0NVEQIL 

Volume range: 4.03-

8.08MHKFRYW 

Polarity Polarity value:4.9-

6.2LIFWCMVY 

Polarity value: 8.0-

9.2PATGS 

Polarity value: 10.4-

13.0HQRKNED 

Polarizability Polarizability 

value: 0-

1.08GASDT 

Polarizability value:0.128-

120.186GPNVEQIL 

Polarizability value: 0.219-

0.409KMHFRYW 

Charge Positive: KR  Neutral:ANCQGHILMFPST

WYV 

Negative: DE 

Secondary structure  Helix:EALMQKR

H 

Strand: VIYCWFT  Coil: GNPSD 

Solvent accessibility  Buried:ALFCGIV

W 

Exposed: PKQEND  Intermediate: MPSTHY 

 

Supplementary Table S2 Amino acid indices selected from the AAindex database used for NMBroto descriptor. 

 

Amino acid indices Description 

CIDH920105  Normalized average hydrophobicity scales 

BHAR880101 Average flexibility indices 

CHAM820101 Polarizability parameter 

CHAM820102 Free energy of solution in water, kcal/mole 

CHOC760101 Residue accessible surface area in tripeptide 

BIGC670101 Residue volume 

CHAM810101 Steric parameter 

DAYM780201 Relative mutability 

 

https://www.genome.jp/aaindex/ 

 

Supplementary Table S3 Preliminary experiment results of feature combination. 

Feature combination among the ten feature subsets using an exhaustive searching. We evaluated all possible 

1023 models for each of the ten training dataset TD1, the maximum value of accuracy and the related value on 

independent test data are listed a follows. 

𝑐10
1  max acc of 10-fold CV:  0.9362 

independent_test_score:  0.8529 
𝑐10
6  max acc of 10-fold CV: 0.9400 

independent_test_score: 0.7941 

𝑐10
2  max acc of 10-fold CV: 0.9398 

independent_test_score: 0.8382 
𝑐10
7  max acc of 10-fold CV: 0.9400 

independent_test_score: 0.8088 

𝑐10
3  max acc of 10-fold CV: 0.9398 

independent_test_score: 0.7941 
𝑐10
8  max acc of 10-fold CV: 0.9400 

independent_test_score: 0.7941 

𝑐10
4  max acc of 10-fold CV: 0.9431 

independent_test_score: 0.7941 
𝑐10
9  max acc of 10-fold CV: 0.9364 

independent_test_score: 0.8088 

𝑐10
5  max acc of 10-fold CV: 0.9433 

independent_test_score: 0.7941 
𝑐10
10 max acc of 10-fold CV: 0.9364 

independent_test_score: 0.7647 

 

Supplementary Table S4 Performance comparison between the models built on individual training subsets and the 

ensemble model by 10-fold cross validation. 

 

Subdataset ACC SN SP MCC AUC 

TD_1 0.857882 0.821905 0.892857 0.7217 0.9142 

TD_2 0.918596 0.942857 0.89381 0.842793 0.9660 

TD_3 0.893103 0.921429 0.864286 0.792923 0.9527 

TD_4 0.857759 0.9 0.815238 0.723731 0.9253 

TD_5 0.858128 0.88619 0.830952 0.727112 0.9407 

TD_6 0.843719 0.857619 0.829524 0.693192 0.9111 

TD_7 0.857512 0.85 0.864286 0.72676 0.9281 

TD_8 0.83633 0.864762 0.808095 0.67739 0.9180 

TD_9 0.871798 0.843333 0.9 0.75071 0.9390 

TD_10 0.882759 0.9 0.865714 0.771259 0.9405 

Ensemble 0.932266 1 0.890123 0.876823 0.9975 
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