Supplementary Methods

Capture-based sequencing

RNA capture probes for the coding regions of the 69 genes were designed using Agilent's SureDesign service (https:// earray.chem.agilent.com/suredesign/home.htm). Pooled and barcoded libraries for NGS were prepared using SureSelect QXT kits (Agilent Technologies, Santa Clara, California), according to the manufacturer's protocol. Prepared libraries were sequenced by 150-bp SE reads using Illumina MiSeq sequencers. Filtering of candidate variants was achieved, as described previously¹. We first excluded single nucleotide variants (SNVs) with allele frequencies of >0.01 in any population within the Exome Aggregation Consortium² (ExAC: http://exac.broadinstitute.org); National Heart, Lung, and Blood Institute Exome Sequencing Project exome variant server dataset ESP6500 (http://evs.gs.washington.edu/EVS/); 1000 Genomes catalog ³ (http://browser.1000genomes.org/index.html); Human Genetic Variation Database ⁴ (HGVD: http://www.genome. med.kyoto-u.ac.jp/SnpDB/); or the genome cohort study of Tohoku Medical Megabank Organization⁵ (ToMMo: https://ijgvd.megabank. tohoku.ac.jp). We excluded SNVs with "LOW" impact severities, based on the definition in the GEMINI software ⁶; these included the following functional predictions: "synonymous coding," "intergenic," "upstream," "UTR," "intron," etc. To interpret the significance of the variants, we used the Polyphen2⁷, SIFT⁸, CADD⁹, MCAP¹⁰, and GERP conservation scores¹¹. The literature that was available in the Human Gene Mutation Database Pro¹² was reviewed to assess current evidence on the pathogenicity of previously reported variants. The detailed methods were described in our previous reports^{13,14}.

Supplementary Methods References

 Chong JX, Burrage LC, Beck AE *et al.* Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3. *Am J Hum Genet* 2015; **96**: 841–849.
 Lek M, Karczewski KJ, Minikel E V. *et al.* Analysis of protein-coding genetic

variation in 60,706 humans. Nature 2016; 536: 285–291.

 3. 1000 Genomes Project Consortium, Auton A, Brooks LD *et al*. A global reference for human genetic variation. *Nature* 2015; **526**: 68–74.

4. Higasa K, Miyake N, Yoshimura J *et al.* Human genetic variation database, a reference database of genetic variations in the Japanese population. *J Hum Genet* 2016;
61: 547–53.

5. Nagasaki M, Yasuda J, Katsuoka F et al. Rare variant discovery by deep

whole-genome sequencing of 1,070 Japanese individuals. Nat Commun 2015; 6: 8018.

Paila U, Chapman BA, Kirchner R *et al.* GEMINI: Integrative Exploration of Genetic
 Variation and Genome Annotations. *PLoS Comput Biol* 2013; **9**: e1003153.

7. Adzhubei IA, Schmidt S, Peshkin L *et al*. A method and server for predicting damaging missense mutations. *Nat Methods* 2010; **7**: 248–249.

 Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc* 2009; 4: 1073–1082.

9. Kircher M, Witten DM, Jain P *et al.* A general framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet* 2014; **46**: 310–315.

 Jagadeesh KA, Wenger AM, Berger MJ *et al.* M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. *Nat Genet* 2016;
 48: 1581–1586.

11. Davydov E V., Goode DL, Sirota M *et al.* Identifying a high fraction of the human genome to be under selective constraint using GERP++. *PLoS Comput Biol* 2010; 6: e1001025.

12. Stenson PD, Mort M, Ball E V. *et al.* The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. *Hum Genet* 2017; **136**: 665–677.

 Mori T, Hosomichi K, Chiga M *et al.* Comprehensive genetic testing approach for major inherited kidney diseases, using next-generation sequencing with a custom panel. *Clin Exp Nephrol* 2017; **21**: 63–75.

14. Fujimaru T, Mori T, Sekine A *et al.* Kidney enlargement and multiple liver cyst
formation implicate mutations in PKD1/2 in adult sporadic polycystic kidney disease. *Clin Genet* 2018; **94**: 125–131.

Supplementary Table S1. Disease categories and the targeted genes included in this

panel

Disease family	Targeted Gene
ADPKD	PKD1, PKD2
ARPKD	PKHD1
NPHP	NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8,
	SDCCAG8, TMEM67, TTC21B, WDR19, ZNF423, CEP164, ANKS6, IFT172,
	CEP83, DCDC2, XPNPEP3, SLC41A1
JBS	NPHP1, CEP290, RPGRIP1L, TMEM67, TTC21B, ZNF423, CEP164,
	IFT172, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, OFD1, KIF7,
	TCTN1, TMEM237, CEP41, TMEM138, C5orf42, TCTN3, TMEM231,
	CSPP1, PDE6D, MKS1, TCTN2, B9D1
MKS	NPHP3, CEP290, RPGRIP1L, TMEM67, TMEM216, CC2D2A, TMEM231,
	MKS1, TCTN2, B9D1, B9D2
SLS	NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, SDCCAG8,
	WDR19, CEP164
BBS	CEP290, SDCCAG8, TMEM67, TTC21B, WDR19, IFT172, MKS1, BBS1,
	BBS2, ARL6, BBS4, BBS5, MKKS, BBS7, TTC8, BBS9, BBS10, TRIM32,
	BBS12, WDPCP, BBIP1, IFT27, CCDC28B
Skeletal ciliopathies	TTC21B, WDR19, IFT172, WDR35, IFT122, IFT140, IFT43
ADTKD	MUC1, UMOD, HNF1B
Others	ASS1, NOTCH2

ADPKD, autosomal dominant polycystic kidney disease; ARPKD, autosomal recessive

polycystic kidney disease; NPHP, nephronophthisis; JBS, Joubert syndrome; MKS, Meckel syndrome; SLS, Senior–Løken syndrome; BBS, Bardet–Biedl syndrome; IFT, intraflagellar transport; ADTKD, autosomal dominant tubulointerstitial kidney disease

Amplified	Primer	Sequence	Product size	Annealing
Region ^a			(bp)	Temperature (°C)
Exon 1	Forward	GCCGGTTGGTTTCCCTG	209	60
	Reverse	TAGGTGGGGTCACGGTGG		
Exon 10	Forward	GGCATTTTGGAAGTGCCTG	258	60
	Reverse	TTGCAACTATGACAAAATCTGG		
Exon 20	Forward	TCCTACCTCTTAGGTGGCTTTTAG	509	60
	Reverse	AATCGTGGAGGATCCATCTG		

Supplementary Table S2. Primer sequences of NPHP1

^a The following NCBI reference sequences were used: NPHP1, NM_000272.3

Patient	Chromosome	Start ^a	End ^a	Gene	Gain/Loss
883	2	g.110879716	g.110962709	NPHP1	loss
896	2	g.110962410	g.110879895	NPHP1	loss
1207	2	g.110879716	g.110962709	NPHP1	loss

Supplementary Table S3. Detected copy number variants in NPHP1

^a Based on the GRCh37 assembly

Patient	Mutation	Gene ^a	cDNA change	Protein change	Mutation type	CADD	Polyphen	SIFT	ExAC	ТоММо	Previous reports
720	Frameshift	NPHP3	c.2425dupA	p.M809fs	Heterozygous	None	None	None	None	None	None
720	Missense	NPHP3	c.2171G>A	p.R724H	Heterozygous	4.99	0.001	0.6	None	None	None
179b	Missense	NPHP4	c.2198G>A	p.G733D	Heterozygous	20.1	1	0	9.10E-05	0.0037	None
4/0	Missense	NPHP4	c.2717G>A	p.R906H	Heterozygous	5.89	0.003	0.21	0.0002	0.0061	None
1107	Nonsense	NPHP1	c.1639C>T	p.Q547*	Homozygous	38.0	None	None	None	None	None
ozob	Missense	CEP164	c.3737G>A	p.R1246Q	Heterozygous	3.32	0.001	0.65	8.24E-06	0.0005	None
930	Missense	<i>CEP164</i>	c.452G>A	p.R151Q	Heterozygous	24.6	0.999	0.0	4.12E-05	0.0049	None

Supplementary Table S4. Mutations in the genes related with nephronophthisis

CADD, combined annotation-dependent depletion; SIFT, sorting intolerant from tolerant; ExAC, exome aggregation consortium; ToMMo, Tohoku

Medical Megabank Organization

^a The following NCBI reference sequences were used: NPHP3, NM_153240.4; NPHP4, NM_015102.4; NPHP1, NM_000272.3; CEP164,

NM_014956.4

^b Patient numbers 478 and 930 were confirmed compound heterozygous mutations by trio analysis

Age ^a	Sex	eGFR ^a , mL/min/1.73 m ²	Pathologic diagnosis	Percentage of tubulointerstitial fibrosis
42	М	30.1	IgA nephropathy	30-40%
49	М	26.0	IgA nephropathy	30-40%
54	М	33.3	Diabetic nephropathy	N.D.
63	М	19.5	Tubulointerstitial nephritis	30%
63	F	30.0	Tubulointerstitial nephritis	10%
68	М	15.7	Diabetic nephropathy	80–90%
70	F	33.8	IgA nephropathy	30%
74	М	86.0	Diabetic nephropathy	20%
80	М	20.0	IgA nephropathy	30%

Supplementary Table S5. Clinical characteristics of the pathologic control group

M, male; F, female; N.D., no data

^a At the time of renal biopsy

Supplementary Figure 1. Representative pathologic findings

a. Tubular diverticulum (patient number 914, PAM stain, 20× magnification). b. Tubular floret, which is defined as branching in at least four directions (patient number 742, PAM stain, 20× magnification). c. Cyst, which is defined as >200 μ m in diameter (patient number 742, PAM stain, 10× magnification). All slides were scanned on a NanoZoomer NDP system with 40× resolution (0.23 μ m/pixel) (Hama-matsu Photonics, Hamamatsu-City, Japan).

PAM, periodic acid methenamine silver

