SUPPLEMENTAL TABLES

Table S1. Number of samples collected of each sample type for this study. Only one sample of each sample type was collected per animal, however multiple sample types were often collected from the same animal. A total of 128 Hirudo verbana and 46 Macrobdella decora animals were used in this study.

	ILF			Intest	inum	Bladder	
DaF*	H. verbana S1 [†]	H. verbana S2	M. decora	H. verbana	M. decora	H. verbana	M. decora
0	—	20	10	_	10	—	6
1	—	5	2	—	2	—	1
2	13	17	1	_	1	2	—
4	5	9	4	—	3	—	2
7	11	11	5	1	3	_	2
30+	—	5	3	_	3	_	2
90+	19	8	5	11	_	8	_
TOTAL	48	75	30	12	22	10	13

^{*} Days after laboratory-administered, sheep blood meal. † S2 = supplier 2, S1 = supplier 1.

Table S2: Permutational multivariate analysis of variance (PERMANOVA), using Bray-Curtis and Binary Ochiai metrics, comparing ILF microbiome of Macrobdella decora and Hirudo verbana when bacterial ASVs are clustered at various taxonomic levels.

Taxonomic	Bra	Bray-Curtis			Binary Ochiai		
Level	Pseudo-F	\mathbb{R}^2	\mathbf{p}^*	Pseudo-F	\mathbb{R}^2	р	
Phylum	57.35	0.22	0.001	11.37	0.05	0.001	
Class	55.51	0.21	0.001	9.46	0.04	0.001	
Order	51.77	0.20	0.001	9.95	0.05	0.001	
Family [†]	248.54	0.54	0.001	37.46	0.15	0.001	
Genus	214.30	0.51	0.001	48.33	0.19	0.001	
ASV	186.02	0.47	0.001	53.30	0.20	0.001	

* Bold values indicate significant differences ($p \le 0.01$). p values are based on 999 permutations. † Taxonomic levels below the grey line have R² value ~ double of those above the line.

Table S3: Permutational multivariate analysis of variance (PERMANOVA) between leech-

derived samples based on binary Ochiai dissimilarities. Variables were tested and listed in order

of decreasing	R ² .
---------------	------------------

Metadata Variable	Df^*	Pseudo-F	\mathbb{R}^2	\mathbf{p}^{\dagger}
Hirudo verbana				
Organ	2	13.44	0.16	0.001
Supplier	1	23.13	0.14	0.001
Feeding	4	2.71	0.06	0.001
Shipment Lot	3	3.64	0.06	0.001
Blood Meal Lot [‡]	5	1.09	0.03	0.279
Macrobdella decora				
Organ	2	9.55	0.17	0.001
Feeding	6	2.34	0.13	0.001
Month Collected	5	2.35	0.11	0.001
Collection Site	3	2.42	0.07	0.001
Collection/Blood Lot§	3	1.43	0.04	0.045

^{*} Df = degrees of freedom

[†] Bold values indicate significant differences ($p \le 0.01$). p values are based on 999 permutations. [‡] Blood Meal Lot indicates the fresh shipment of blood on which the animals fed in the

laboratory.

[§] Because of the extended time between collection events and the short shelf-life of blood products, each blood lot was only fed to one collection lot of *M. decora*. The variation caused by either of these metadata variables can therefore not be separated for *M. decora* samples.

Table S4: See Excel file

Table S5: List of leech host-specific ASVs from genera present in both *Hirudo verbana* and

Macrobdella decora^{*}.

Class	Closest Genus	$Organ^{\dagger}$	H. verbana	M. decora
Bacteroidia	Bacteroides	ILF	ASV34	ASV3, ASV5, ASV28 [‡]
Ducierolulu	Mucinivorans	Intestinum	ASV1, ASV23, ASV63, ASV35	ASV49
	Rikenella	Intestinum	ASV15, ASV31, ASV46	
Clostridia	Proteocatella	ILF	ASV22	ASV4
	Ensifer	Bladder	ASV53	ASV68
Alphaproteobacteria	Phreatobacter	Bladder	ASV81	ASV42
	Insolitispirillum	Intestinum	ASV11, ASV62	ASV38, ASV52
Betaproteobacteria	Comamonas	Bladder	ASV12	ASV21
Deltaproteobacteria	Desulfovibrio	Intestinum	ASV32, <i>ASV33</i>	ASV25

^{*} Only ASVs present in \geq 30% of samples in a sample group are listed. See Table S3 for a full list of ASVs and prevalences in all sample groups.

[†] Organ site in which comparison is made.

[‡] Core ASVs (present in \ge 90% of samples) are written in bold. Common ASVs (present in 70 – 90% of samples) are italicized. All other ASVs are transient (present in < 70% of samples).

Class	Closest Genus	Supplier 1	Supplier 2	
	Bacteroides		ASV34, ASV51	
Bacteroidia	Mucinivorans	ASV93, ASV35	ASV10	
	Rikenella		ASV15	
Clostridia	Proteiniclasticum		ASV7	
Closiriulu	Proteocatella	ASV113, ASV4	ASV22, ASV67	
Negativicutes	Veillonella	ASV110		
Fusobacteriia	Fusobacterium		ASV8	
Deltaproteobacteria	Desulfovibrio		ASV50, ASV71	
	Aeromonas	ASV108, ASV120		
Gammaproteobacteria	Morganella		ASV55	
	Proteus		ASV40	

Table S6: List of ASVs that exhibit specificity between *Hirudo verbana** suppliers.

^{*} Only ASVs present in \geq 30% of samples in a sample group are listed. See Table S3 for a full list of ASVs and prevalences in all sample groups.

Table S7: Calculated PERMANOVA p values (above diagonal line) and Bonferroni-adjusted Wilcoxon rank-sum p values (below diagonal line) for comparison of *Macrobdella decora* and *Hirudo verbana* ILF microbiomes as a function of days after feeding (DaF). See Figure 4 for a plot of Bray-Curtis distances between these microbial communities.

	DaF	0	1	2	4	7	30+	90+
	0		0.048	0.002*	0.012	0.017	0.756	0.266
	1	3x10 ⁻²⁰		0.028	0.041	0.092	0.151	0.334
do na	2	3x10 ⁻⁵³	1		0.626	0.944	0.121	0.184
Hirudo verbana	4	4x10 ⁻¹³	0.506	2x10 ⁻⁶		0.646	0.212	0.490
Нı vei	7	1x10 ⁻³⁷	1	1	0.001		0.243	0.232
	30+	3x10 ⁻¹³	1	0.599	1	1		0.663
	90+	1x10 ⁻¹²	0.038	9x10 ⁻¹³	1	9x10 ⁻⁸	0.379	
	0		0.054		0.022	0.052	0.293	0.008
lla	1	1			0.135	0.134	0.099	0.887
dei ra	2							
Macrobdella decora	4	1x10 ⁻⁴	0.943			0.687	0.122	0.018
	7	7x10 ⁻⁵	0.579		1		0.151	0.021
Μ	30+	1	0.613		0.003	0.006		0.281
	90+	0.021	2x10 ⁻⁴		3x10 ⁻⁶	8x10 ⁻⁶	0.729	

^{*} $p \le 0.05$ are in bold and $p \le 0.01$ are highlighted in grey.

Table S8: Wald test adjusted p-values for all ASVs significantly different in *Hirudo verbana* and *Macrobdella decora* ILF between days after feeding. Core and common ASVs are included as comparisons.

			ASV*	Days After Feeding					
	Class	Genus		1†	2	4	7	30+	90+
	D	Mucinivorans	ASV1	1	0.25	0.04	0.10	1	0.04
	Bacteroidia	Rikenella-like	ASV15	1	0.04	0.26	0.02	0.70	0.38
па	Clostridia	Proteocatella	ASV22	1	0.13	0.79	0.09	3x10 ⁻¹⁵	0.29
Hirudo verbana	Fusobacteriia	Fusobacterium	ASV8	1	0.72	0.99	0.85	0.03	0.53
ver		Desulfovibrio	ASV50	0.38	4.5x10 ⁻⁵	4x10 ⁻⁵	4x10 ⁻⁶	0.01	0.02
$_{jo}$	Deltaproteobacteria	Desulfovibrio	ASV71	1	0.03	0.12	0.01	0.70	0.01
irua	-	Desulfovibrio	ASV33	1	0.005	0.01	0.02	0.91	0.01
H		Aeromonas	ASV2	0.38	0.06	0.80	0.94	0.25	0.53
	Gammaproteobacteria	Pseudomonas	ASV36	1	1x10 ⁻²⁶	4x10 ⁻⁵	6x10 ⁻¹⁵	1	3.0x10 ⁻⁶
		Salmonella	ASV16	3x10 ⁻⁵	0.81	0.68	0.01	0.25	0.56
		Bacteroides-like	ASV3	1		0.81	0.43	1	0.95
ora	Bacteroidia	Bacteroides-like	ASV44	1		0.93	0.89	1	1x10 ⁻¹²
ec (Bacteroides-like	ASV5	0.60		0.21	0.13	1	0.88
ad		Butyricicoccus-like	ASV6	0.60		1x10 ⁻⁴	0.002	0.89	1
lell		Proteocatella	ASV4	0.60		0.31	0.13	1	0.95
Macrobdella decora	Clostridia	Sporobacter-like	ASV13	0.60		0.26	0.36	1	0.95
icre		Tyzzerella	ASV20	0.52		0.002	0.49	1	0.88
Ma		unk Clostridiales	ASV26	0.01		0.001	0.001	0.06	2x10 ⁻⁵
	Gammaproteobacteria	Aeromonas	ASV2	0.79		1x10 ⁻⁴	0.36	1	0.95

^{*} All ASVs that differ significantly in abundance are shown. ASV8, ASV16, ASV22, ASV26, ASV36, ASV44, ASV 50, ASV71are transient.

[†] Adjusted p values ≤ 0.001 are highlighted in grey. Adjusted p values ≤ 0.05 are in bold.

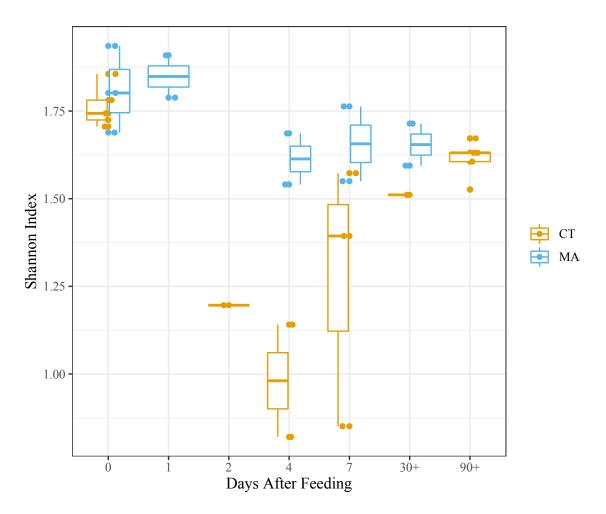


Figure S1: Shannon diversity index of *Macrobdella decora* ILF samples as a factor of days after feeding (DaF) and collection site. Orange = M. *decora* collected from CT, Cyan = M. *decora* collected from MA. Statistics for community comparisons are recorded in Table S5. A similar pattern is observed in Chao-1 and Inverse Simpson metrics.

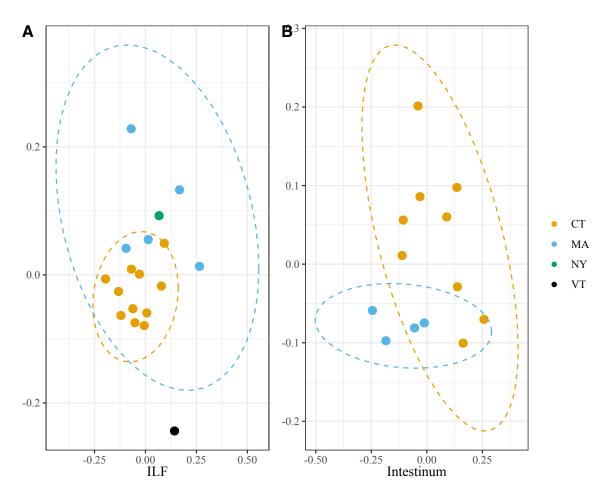


Figure S2: Bray-Curtis NMDS plot of wild-caught *Macrobdella decora* - associated microbiota. Animals were collected from four states of the Northeastern U.S.A.: Connecticut (orange), Massachusetts (cyan), New York (green), and Vermont (black). A) ILF samples show no significant difference between ILF of *M. decora* from CT, MA, NY, and VT ($p \ge 0.222$). B) Intestinum samples from CT and MA are significantly different from each other (p = 0.006). Data points do not include fed animals. Ellipses drawn at 95% confidence interval. Stress < 0.12.

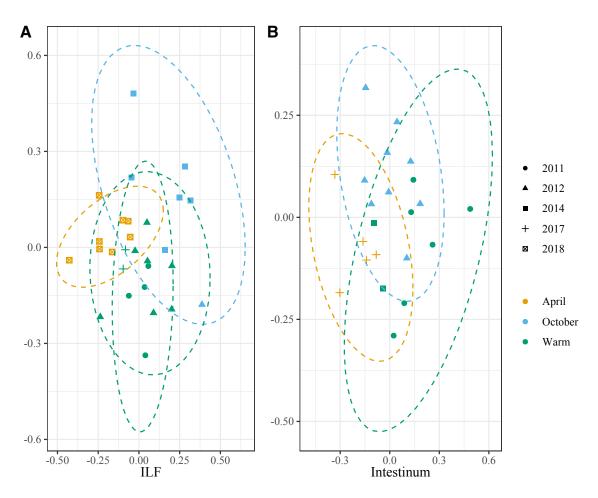


Figure S3: Binary Ochiai NMDS plot of wild-caught *Macrobdella decora* - associated microbiota shows that month of collection affects gut microbiome. Animals were collected in three seasons: late cold (April - orange), warm (June - September - green), and early cold (October - cyan). A) ILF samples. ILF microbiota from animals collected in October were significantly different from that of animals collected in April or warm months ($p \le 0.024$). B) Intestinum samples. Intestinum microbiota were not significantly different between animals collected over different seasons ($p \ge 0.096$). Data points include fed and unfed animals. Ellipses drawn at 95% confidence interval. Stress < 0.2.

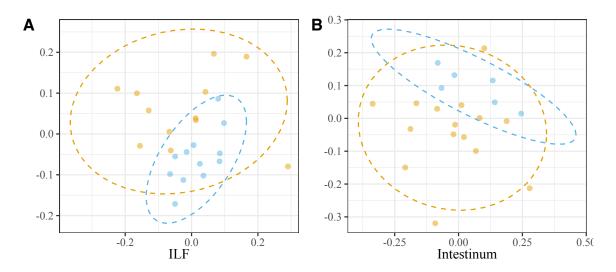


Figure S4: Bray-Curtis NMDS plots of *Macrobdella decora* A) ILF and B) intestinum - associated microbiota shows that extraction method did not affect observed microbiome. Sample extracted using the bead beating method are in orange. MasterPure extracted samples are in cyan. A) ILF samples. B) Intestinum samples. Ellipses drawn at 95% confidence interval. Stress < 0.15.