1		Revised manuscript: AEM02884-20R1
2	Supplemental Material f	or: Applied and Environmental Microbiology
3		
4	Soybean Root Nodule and	Rhizosphere Microbiome: Distribution of Rhizobial and
5	Non-rhizobial Endophytes	
6		
7	Parris Mayhood ¹ , Babur	[•] S Mirza ^{1*}
8		
9		
10	¹ Department of Biology, N	Missouri State University, Springfield, Missouri, 65897,
11	USA	
12		
13		
14		
15	*Corresponding author:	Babur S Mirza
16		Missouri State University
17 18		Department of Biology 901 S. National Ave. Springfield, MO 65897
18 19		Phone: 417-836-5062
20		Fax: 417-836-4204
21		E-mail: baburmirza@missouristate.edu
22		
23		
24		
25		
26		
27		

28

29 Supplementary Figures: Figures 1-9

30 Supplementary Tables: Table 1-4

Fig. S1. Roots from one of the soybean plants (L1P1N1-23). The 23 intact root nodules
 that were selected for the microbiome analysis are indicated (arrows).

33 Fig. S2: A comparison of bacterial genera identified by 16S rRNA gene

34 sequences from the root nodules and rhizosphere soil of plant 1 (L1P1N1-23).

35 The total number of DNA sequences obtained from root nodules (826,945) and

36 rhizosphere soil (19,345) of plant 1 were used for this comparison.

Fig. S3: Species accumulation curve for the root nodules and a rhizospheresample of plant 1 (L1P1N1-23).

Fig. S4 A&B: Nonmetric multidimensional scaling representation of 16S rRNA
 gene sequences from root nodules of plant 1 (L1P1N1-23). A). Describing the

41 influence of root nodule location on a root system and B) size of the root nodules

42 on bacterial endophytes. The two-dimensional stress was 0.11 and 0.10 for

43 panels A and B, respectively.

44 **Fig. S5:** Maximum likelihood phylogenetic tree based on partial sequences of the

45 16S rRNA gene of the *Nitrobacter* related sequences detected within root

46 nodules and rhizosphere soil of soybean plants. The distribution of

47 related *Nitrobacter* sequences from GenBank is shown next to the cluster. The

48 numbers at the nodes reflect bootstrap support values that were above 50%.

49 **Fig. S6:** Maximum likelihood phylogenetic tree based on partial sequences of

50 the 16S rRNA gene of the *Tardiphaga* related sequences detected within root

51 nodules and rhizosphere soil of soybean plants. The numbers at the nodes

52 reflect bootstrap support values that were above 50%.

Fig. S7: Soil and plant samples were collected from three locations within theKindrick farm.

Fig. S8: Soybean root nodules intact with the root system. A). before cleaningand B). after cleaning the nodule surfaces.

Fig. S9: Description of two step PCR approach for 16S rRNA gene amplification
and library preparation for Illumina MiSeq paired-end DNA sequencing.

59

60 **Supplemental Tables:**

- 61 **Table S1:** Culture and culture-independent based studies focused on the non-
- 62 rhizobial endophytes within soybean root nodules.

Table S2: Distribution of various non-rhizobial endophytes within root nodules of a
plant (L1P1N1-23).

- 65 **Table S3:** Bacterial diversity within root nodules of a plant and rhizosphere soil. In
- 66 sample ID, L1-3 represents three locations (1-3), P1-9 represents nine plant (1-9),
- 67 N represents the nodules per plant (N1-23), and R is for rhizosphere samples.
- **Table S4:** Soil physiochemical characteristics of soil attached with soybean plants
- 69 from three locations within Kindrick farm.
- 70 **Table S5:** List of unique indices used for each of the root nodules and soil
- 71 samples.

85

78

55

60

100

Location	1 Loc	cation 2	Location 3	3
Nodule	5,328 (12.5%)	4,982 (13.5%)	2,756 (11.4%)	Cluster 1
Rhizosphere	0 (0%)	0 (0%)	29 (6.3%)	Glusier
Nodule	3,836 (9.0%)	2,989 (8.1%)	363 (1.5%)	Observation
Rhizosphere	0 (0%)	0 (0%)	19 (4%)	- Cluster 2
Nodule	6,266 (14.7%)	5,831 (15.8%)	3,198 (13.5%)	Olympic 2
Rhizosphere	3 (2.7%)	0 (0%)	0 (0%)	- Cluster 3
Nodule	3,666 (8.6%)	2,473 (6.7%)	1,982 (8.2%)	Cluster 4
Rhizosphere	0 (0%)	5 (12%)	114 (25.7%)	- Cluster 4
Nodule	9,890 (23.2%)	7,750 (21%)	6,019 (24.9%)	Cluster F
Rhizosphere	19 (17%)	0 (0%)	48 (10.4%)	Nitrobacter han
Nodule	13,642 (32.1%)	12,843 (34.8%)	9,815 (40.6%)	
Rhizosphere	90 (80.4%)	36 (88%)	251 (54.4%)	 Cluster 6 Nitrobacter alk (AF069958.1),

acter hamburgensis strain Nb14 (L35502.1), Nitrobacter hamburgensis 11663), Nitrobacter hamburgensis X14 (NR_074313.1)

ster 6

pacter alkalicus strain AN2 (AF069957.1), Nitrobacter alkalicus strain AN4 69958.1), Nitrobacter sp. TH21 (AF080257.1), Nitrobacter winogradskyi (AM286374.1), Nitrobacter vulgaris (AM286378.1), Nitrobacter vulgaris (AM286381.1), Nitrobacter sp. 263 (AM286383.1), Nitrobacter sp. LIP (AM286385.1), Nitrobacter sp. BS5/19 (AM286387.1), Nitrobacter sp. D6/13 (AM286394.1), Nitrobacter sp. 311 (AM286397.1), Nitrobacter sp. PJN1 (AY055795.1), Nitrobacter winogradskyi (AY055796.1), Nitrobacter sp. NKU (KM061381.1), Nitrobacter winogradskyi (L11661.1), Nitrobacter winogradskyi ATCC 25381 (L35506.1), Nitrobacter alkalicus AN1 (AF069956), Nitrobacter vulgaris DSM 10236 (AM114522), Nitrobacter winogradskyi Nb-255 (CP000115), Nitrobacter alkalicus strain AN1 (NR 024920.1), Nitrobacter vulgaris strain Z (NR_042449.1), Nitrobacter winogradskyi strain Nb-255 (NR_074324.1)

Bradyrhizobium elkanii strain USDA 90 (AF293380.1), Bradyrhizobium elkanii strain USDA 121 (AF293374.1) Bradyrhizobium elkanii strain USDA 101 (AF293373.1) Bradyrhizobium elkanii strain USDA 23 (AF293376.1

PCR amplification and library preparation for Illumina MiSeq paired-end DNA sequencing

First PCR primer set

An example of a 2nd PCR primer set

U701	CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAGACGTGTG
U501	AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCCCTACACGACG

Table S1: Important bacterial genera identified as non-rhizobial endophytes within soybean root nodules

Isolates (genera)	Proposed Beneficial Feature	Reference								
Culturing-based studies										
Pseudomonas, Burkholderia, Enterobacter, Agrobacterium, Ochrobactrum, Acinetobacter, Proteus	Biocontrol agents	(1)								
Pseudomonas, Bacillus, Enterobacter, Klebsiella, Acetobacter Burkholderia, Rhizobium, Xanthomonas	Phytohromone and Siderophore production, Biocontrol agents	(2)								
Enterobacter, Microbacterium, Agrobacterium, Serratia	Increase plant growth	(3)								
Pseudomonas, Acinetobacter, Enterobacter, Bacillus, Ochrobacterum	BNF, IAA synthesis, nutrient availability	(4)								
Agrobacterium, Bacillus, Pantoea, Serratia, Burkholderia, Acinetobacter	BNF, IAA synthesis, nutrient availability	(5)								
Bacillus, Paenibacillus	biocontrol agent	(6)								
Tardiphaga, Afipia	-	(7)								
Bacillus spp. (subtilis and thuringiensis)	PGPR activity	(8,9)								
Bacillus endoradicis	-	(10)								
Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Serratia, and Variovorax.	PGPR properties in vitro	(11)								
Achromobacter xylosoxidans	BNF	(12)								
Paenibacillus polymyxa		(13)								
35 Non-rhizobial endophytes	IAA synthesis, cellulose, pectinase	(14)								
Enterobacter Iudwigii. Variovorax paradoxus (isolates										
from roots)	IAA synthesis, P- solublization, PGPR	(15)								
Pseudomonas, Ralstonia, Enterobacter, Pantoea, Acinetobacter.	IAA synthesis, P- solublization, BNF	(16)								
Culture-independent studies										
Pseudomonas, Enterobacter, Bacillus, Paenibacillus and se nodules from multiple plants) 1-40%	ome others (pooled root	(17)								
Members of Proteobacteria, Actinobacteria, Firmicutes and	Bacteroidetes. (pooled									
root nodules from multiple plants) 435 bacterial genera of 2	21 phyla	(18)								
Pseudomonas, Agrobacterium, Bacillus, Burkholderia, Microbacterium, Streptomyces and others (pooled root nodules from multiple plants) 2434 OTUs of NREs										

BNF = Biological N fixation; IAA = Indole acetic Acid; PGPR = Plant growth promoting rhizobacteria

Organism	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14	N15	N16	N17	N18	N19	N20	N21	N22	N23
Nitrobacter	820	253	118	160	179	1416	254	328	340	1296	184	247	2685	2105	19	334	218	2104	3096	363	307	399	1684
Tardiphaga	43	110	32	144	183	187	143	247	301	171	152	200	246	185	3	351	89	237	416	416	271	325	282
Novosphingobium	0	2	1	1	1	0	0	1	0	0	1	2	7	1	0	0	0	0	0	0	0	0	0
Variovorax	0	2	0	2	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudomonas	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Paenibacillus	0	0	0	0	1	0	0	0	0	2	0	2	3	0	0	0	0	0	0	1	0	0	1
Flavobacterium	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	2
Achromobacter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sphingobacterium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Planococcaceae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Arthrobacter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nitrospira	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Sporosarcina	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stenotrophomonas	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0

 Table S2: Distribution of various non-rhizobial endophytes within root nodules of a plant (L1P1N1-23).

Table S3: Bacterial diversity within root nodules of a plant and rhizosphere soil. In sampleID, L1-3 represents locations 1-3, P1-9 represents plant 1-9, N represents the
nodules per plant, and R is for rhizosphere samples.

Sample ID	Nodules per plant or soil samples	Average number sequences per plant	Chao 1 estimator	Shannon Diversity
L1P1N1-23	23	56781 ± 4064	29263 ± 2547	2.60 ± 0.09
L1P2N1-23	23	44829 ± 7763	27932 ± 2986	2.83 ± 0.15
L1P3N1-20	20	25356 ± 2873	13846 ± 1161	2.55 ± 0.10
L2P4N1-22	22	42484 ± 6579	20072 ± 2681	2.50 ± 0.08
L2P5N1-24	24	35969 ± 3513	22991 ± 2238	2.49 ± 0.09
L2P6N1-24	24	40697 ± 4773	19554 ± 2210	2.32 ± 0.11
L3P4N1-21	21	20031 ± 1995	9051 ± 853	2.03 ± 0.12
L3P5N1-17	17	14221 ± 1698	8327 ± 451	2.04 ± 0.19
L3P6N1-19	19	43637 ± 7497	17939 ± 2412	2.27 ± 0.07
L1RP1-3	3	55296 ± 17176	45861 ± 11477	5.78 ± 0.28
*L2RP6	1	104715	55208	5.72
L3RP7-9	3	61554 ± 24622	46193 ± 16634	6.40 ± 0.29

* Location 2, the two of three rhizosphere samples resulted in less than 5,000 sequences. These two samples were not included the diversity analysis.

	0 10004101								
Sample ID	рН	OM	NO ₃ -N	NH₄-N	Р	K	Са	Mg	CEC
Location 1 (Toe slope)	6.6±.2	3.5±0.1	9.7±.8	22.4±4.5	33±1.5	104±3	1223 ± 216	31±8	9.3±1.8
Location 2 (Sink hole 1)	6.5±0.1	3.1±0.2	8.7±1	11.4±3.5	16±2	103±2	1113±114	24±5	8.7±1
Location 3 (Sink hole 2)	6.8±0.1	3.5±.02	26.7±1.8	8.2±2.5	34±2.7	134±7	1358±12	28±4	10±0.2

Table S4: Soil physiochemical characteristics of soil attached with soybean plants from three locations within Kindrick farm

Measured soil variables: pH, organic matter (OM %), Nitrate N (ppm), Ammonium N (ppm), P (phosphorus); K (potassium); Ca (calcium); Mg (magnesium); P, K, Ca, Mg, are expressed as mg/L, CEC, potential cation exchange capacity (meq/100g). **Sampling locations:** Location 1 & 2 were related to (Keeno-Bona complex, Karst, 2 to 5 % slopes), whereas, Location 3 was related to (Hoberg, silt loam, 2 to 5 percent slopes).

Sample	F (indiana)	R (indiana)	Sample	F (indiana)	R (indiaca)	Sample	F (indiana)	R (indiana)	Sample	F (indiana)	R (indiana)	Sample	F (indiana)	R (indiana)	Sample	F (indiana)	R (indiana)	Sample	F (indiana)	R (indiaca)
I 1D1N1	(Indices)	(indices)	1 1 D 2 N 1 2	(indices)	(indices)	1.2DAN2	(Indices)	(indices)	1.2D5N42	(Indices)	(indices)	1.2D6N24	(indices)	(indices)	1 200114	(indices)	(indices)	1.2D0NI40	(indices)	(indices)
	0701	0509		0734	0509	LZP4NJ	0739	511		0724	512	LZPONZI	0709	513	LOPONII	0718	515	LOPONOO	0742	515
	0702	0509	L 1 P 2 N 1 3	0735	0509	L2F4N4	0740	511	L2P5N15	0725	512	LZPONZZ	0710	513	LOPON14	0719	515	L3P9N20	0743	515
	0703	0509	L 1F 2N 14	0730	0509	1 20/116	0741	511	L2F JN 14	0720	512	L2F0N23	0711	513		0720	515	L3F 3NZ 1	0744	515
	0704	0509	L 1 D 2 N 1 6	0737	0509	L2F4N0	0742	511	L2F JN 13	0121	512		0712	515	LOF ON TO	0721	515	LJF JNZ4	0743	515
	0705	0509		0730	0509		0743	511	L2F JN 10	0720	512		0737	514 514	LOPONIO	0722	515		0725	524
	0700	0509		0739	0509		0744	511		0729	512		0730	514 514	LOPON20	0723	515		0720	524
	0707	0509		0740	0509	L2F4N9	0745	511		0730	512	LJF/NJ	0739	514	LOPONZI	0724	515	LFJKJ	0727	524
L 1P 1N9	0700	0509	L 1 P 2 N 1 9	0741	0509	L2F4N10	0740	511	L2P JN 19	0731	512		0740	514 514	LJFONZZ	0725	515	LF4R4	0720	524
L 101N11	11710	0509	L 1 P 2 N 2 U	0742	0509	L2F4N11	11740	511	L2F JN20	11722	512		0741	514	LJF 0NZJ	0720	515		0729	524
L 1D1N12	11711	11500	L 11 21121	11744	11500	L21 4N12	11701	512	1 2D5N22	11734	512	1 307N0	11742	514	1 3D8N1/	11710	515		11731	524
L 101N12	11712	11500	L 11 21122	11745	11500	1 2D/N1/	11702	512	1 2D5N23	11735	512	L 3D7N10	11744	514	L 3D 8N 15	11720	515		11732	524
L 101N1/	11713	11500	L 11 21123	11746	11500	L21 4N14	11703	512	1 2D5N24	11736	512	L 3D7N11	11745	514	L 3D 8N 18	11721	515		11733	524
L 1P1N15	11714	11500		11747	11500	L21 4115	11704	512	L21 5N24	11737	512	1 3P7N12	117/6	514	1 3P8N19	11722	515		0755	524
L 1D1N16	11715	11500	1 1D3N2	117/18	11500	1 2D/N17	11705	512	1 2D6N2	11738	512	1 3D7N12	11747	514	1 3D8N20	11722	515			
I 1P1N17	U716	U509	1 1P3N3	U740	U510	I 2P4N18	U705	512	1 2P6N3	11739	512	1 3P7N14	11748	514	1 3P8N21	11724	515			
I 1P1N18	11717	11509	1 1P3N4	11702	U510	L 2P4N19	11707	512	1 2P6N4	11740	512	L 3P7N15	U701	515	1 3P8N22	11725	515			
I 1P1N19	11718	11509	1 1P3N5	U703	U510	1 2P4N20	11708	512	1 2P6N5	11741	512	1 3P7N16	11702	515	1 3P8N23	11726	515			
L1P1N20	U719	U509	L1P3N6	11704	U510	L2P4N21	U709	512	L2P6N6	U742	512	L3P7N18	U703	515	L3P9N2	11727	515			
L1P1N21	U720	U509	L1P3N7	U705	U510	L2P4N22	U710	512	L2P6N7	U743	512	L3P7N19	U704	515	L3P9N3	U728	515			
L1P1N22	U721	U509	L1P3N8	U706	U510	L2P4N23	U711	512	L2P6N8	U744	512	L3P7N20	U705	515	L3P9N4	11729	515			
L1P1N23	U722	U509	L1P3N9	U707	U510	L2P4N24	U712	512	L2P6N9	U745	512	L3P7N21	U706	515	L3P9N6	U730	515			
L1P1N24	U723	U509	L1P3N10	U708	U510	L2P5N1	U713	512	L2P6N10	U746	512	L3P7N22	U707	515	L3P9N7	U731	515			
L1P2N1	U724	U509	L1P3N13	U709	U510	L2P5N2	U714	512	L2P6N11	U747	512	L3P7N23	U708	515	L3P9N8	U732	515			
L1P2N2	U725	U509	L1P3N14	U710	U510	L2P5N3	U715	512	L2P6N12	U748	512	L3P7N24	U709	515	L3P9N9	U733	515			
L1P2N3	U726	U509	L1P3N15	U711	U510	L2P5N4	U716	512	L2P6N13	U701	513	L3P8N1	U710	515	L3P9N10	U734	515			
L1P2N5	U727	U509	L1P3N16	U712	U510	L2P5N5	U717	512	L2P6N14	U702	513	L3P8N2	U711	515	L3P9N11	U735	515			
L1P2N6	U728	U509	L1P3N17	U713	U510	L2P5N6	U718	512	L2P6N15	U703	513	L3P8N3	U712	515	L3P9N13	U736	515			
L1P2N7	U729	U509	L1P3N19	U714	U510	L2P5N7	U719	512	L2P6N16	U704	513	L3P8N6	U713	515	L3P9N14	U737	515			
L1P2N8	U730	U509	L1P3N20	U715	U510	L2P5N8	U720	512	L2P6N17	U705	513	L3P8N7	U714	515	L3P9N15	U738	515			
L1P2N9	U731	U509	L1P3N21	U716	U510	L2P5N9	U721	512	L2P6N18	U706	513	L3P8N8	U715	515	L3P9N16	U739	515			(
L1P2N10	U732	U509	L1P3N22	U717	U510	L2P5N10	U722	512	L2P6N19	U707	513	L3P8N9	U716	515	L3P9N17	U740	515			(
L1P2N11	U733	U509	L1P3N23	U718	U510	L2P5N11	U723	512	L2P6N20	U708	513	L3P8N10	U717	515	L3P9N18	U741	515			

Table S5: List of unique indices used for each of the root nodules and soil samples.

References

- 1. Tokgöz S. 2018. Exploration of soybean nodule microbiome for plant health management, Ms Thesis. University of Nebraska, Lincoln, NE.
- 2. Dalal J, Kulkarni N. 2013. Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (*Glycine max* L. Merr). Curr Res Microbiol Biotechnol 1:62–69.
- Vargas-Díaz AA, Ferrera-Cerrato R, Silva-Rojas HV, Alarcón AA. 2019. Isolation and evaluation of endophytic bacteria from root nodules of *Glycine max* L. (Merr.) and their potential use as biofertilizers. Span J Agric Res, 17:e1103. DOI:10.5424/sjar/2019173-14220.
- Zhao L, Xu Y, Lai X. 2018. Antagonistic endophytic bacteria associated with nodules of soybean (*Glycine max* L.) and plant growth promoting properties. Braz J Microbiol 49:269–278. <u>https://doi.org/10.1016/j.bjm.2017.06.007</u>.
- 5. Li JH, Wang E, Chen WF, Chen XC. 2008. Genetic Diversity and Potential for Promotion of Plant Growth Detected in Nodule Endophytic Bacteria of Soybean Grown in Heilongjiang Province of China. Soil Biol and Biochem 40:238–246.
- Senthilkumar M, Swarnalakshmi K, Gov-indasamy V, Lee YK, Annapurna K. 2009. Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, *Rhizoctonia bataticola*. Curr Microbiol 58:288–293. <u>https://doi.org/10.1007/s00284-008-9329-z</u>.
- Bromfield ESP, Cloutier S, Tambong JT, Tran Thi TV. 2017. Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel *Bradyrhizobium* spp. that possess agricultural potential. Syst Appl Microbiol 40:440–447. <u>https://doi.org/10.1016/j.syapm.2017.10.003</u>.
- 8. Bai Y, D'Aoust F, Smith DL, Driscoll BT. 2002. Isolation of plant-growth-promoting *Bacillus* strains from soybean root nodules. Can J of Microbiol 48:230–238. <u>https://doi.org/10.1139/w02-014</u>.
- Mishra PK, Mishra S, Selvakumar G, Kundu S, Gupta HS. 2009. Enhanced soybean (*Glycine max* L.) plant growth and nodulation by *Bradyrhizobium japonicum*-SB1 in presence of *Bacillus thuringiensis*-KR1. Soil Plant Sci 59:189– 196. <u>https://doi.org/10.1080/09064710802040558</u>.
- 10. Zhang YZ, Chen WF, Li M, Sui XH, Liu H-C, Zhang XX, Chen WX. 2012. *Bacillus endoradicis* sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 62:359–363. <u>https://doi.org/10.1099/ijs.0.028936-0</u>.
- Aserse AA, Rasanen LA, Aseffa F, Hailemariam A, Lindstrom K. 2013. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Appl Microbiol Biotechnol 97:10117– 10134. <u>https://doi.org/10.1007/s00253-013-5248-4</u>.
- Wedhastri S, Fardhani DM, Kabirun S, Widada J, Widianto D, Evizal R, Prijambada ID. 2013. Legume nodulating bacterium, *Achromobacter xylosoxidans* found in tropical shrub agroecosystem, Sumatera, Indonesia. Indones J Biotechnol 18:161– 167. <u>https://doi.org/10.22146/ijbiotech.7879</u>.
- Annapurna K, Ramadoss D, Bose P, Vithalkumar L. 2013. *In situ* localization of *Paenibacillus polymyxa* HKA-15 in roots and root nodules of soybean (*Glycine max* L.). Plant Soil 373:641–648. <u>https://doi.org/10.1007/s11104-013-1825-7</u>.
- Hung PQ, Kumar SM, Govindsamy V, Annapurna K. 2007. Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fertil Soils 44:155–162. <u>https://doi.org/10.1007/s00374-007-0189-7</u>.

- de Almeida Lopes KB, Carpentieri-Pipolo V, Oro TH, Stefani-Pagliosa E, Degrassi G. 2016. Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 120:740–755. <u>https://doi.org/10.1111/jam.13046</u>.
- Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. <u>https://doi.org/10.1111/j.1462-2920.2004.00658.x</u>.
- 17. Sharaf H, Rodrigues RR, Moon J, Zhang B, Mills K, Williams MA. 2019. Unprecedented bacterial community richness in soybean nodules vary with cultivar and water status. Microbiome 7:63. <u>https://doi.org/10.1186/s40168-019-0676-8</u>.
- 18. Xiao X, Chen W, Zong L, Yang J, Jiao S, Lin Y, Wang E, Wei G. 2017. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 26:1641–1651. <u>https://doi.org/10.1111/mec.14027</u>.
- Zhang B, Du N, Li Y, Shi P, Wei G. 2018. Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China. Sci Total Environ 643:569–578. https://doi.org/10.1016/j.scitotenv.2018.06.240.