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Abstract

To understand driving biological factors for complex diseases like cancer, regulatory
circuity of genes needs to be discovered. Recently, a new gene regulation mechanism
called competing endogenous RNA (ceRNA) interactions has been discovered. Certain
genes targeted by common microRNAs (miRNAs) “compete” for these miRNAs,
thereby regulate each other by making others free from miRNA regulation. Several
computational tools have been published to infer ceRNA networks. In most existing
tools, however, expression abundance sufficiency, collective regulation, and groupwise
effect of ceRNAs are not considered. In this study, we developed a computational tool
named Crinet to infer genome-wide ceRNA networks addressing critical drawbacks.
Crinet considers all mRNAs, lncRNAs, and pseudogenes as potential ceRNAs and
incorporates a network deconvolution method to exclude the spurious ceRNA pairs. We
tested Crinet on breast cancer data in TCGA. Crinet inferred reproducible ceRNA
interactions and groups, which were significantly enriched in the cancer-related genes
and processes. We validated the selected miRNA-target interactions with the protein
expression-based benchmarks and also evaluated the inferred ceRNA interactions
predicting gene expression change in knockdown assays. The hub genes in the inferred
ceRNA network included known suppressor/oncogene lncRNAs in breast cancer showing
the importance of non-coding RNA’s inclusion for ceRNA inference. The source code of
Crinet could be accessed on Github at https://github.com/bozdaglab/crinet.

A Supplementary Methods

A.1 Our novel scoring for sufficiency of interactions drastically
dropped the target distribution of miRNAs.

In this section, we evaluated our novel Interaction Regulation (IR) score that we used to 
eliminate miRNA-target interactions if there is no sufficient expression for miRNA or 
target. Since we had a much smaller number of miRNA as compared to targets, this 
step will affect the miRNAs more in terms of a decreased number of interactions. If a 
miRNA has many targets but low abundance, we expected a drastic change in the 
number of targets of this miRNA. To analyze the number of decrease in target numbers, 
we got the top 25% miRNAs (222 out of 888 miRNAs) with the highest number of 
targets in miRNA-target interactions set before abundance filtering and after 
abundance filtering. As in S1A Fig, it is clear that log median expression of top 
miRNAs are much higher after abundance filtering, suggesting that our scoring works 
well to eliminate the interactions with many targets without sufficient abundance.
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Overall, the median of top 25% miRNAs with a high number of targets before
abundance filtering had a minimum of 877 targets and maximum of 2428 targets with
median 1155.5, however, the log median expression of these miRNAs had a median of
0.42 (having minimum 0 and maximum 67484). On the other side, after abundance
filtering, top miRNAs with the highest number of targets had a minimum 222 and a
maximum of 1333 targets with 431 as the median. With abundance filtering, naturally,
the overall target numbers are dropped with the same number of miRNAs kept.
However, the log median expression for top 25% miRNAs had a median of 45.74 (having
minimum 0 and maximum 251417), much higher as compared to before abundance
filtering. As expected from our novel scoring, miRNAs had a high number of targets if
their abundance was sufficient.

Specifically, we got the top 6 miRNAs with the highest number of targets before the 
abundance step shown in S1A Fig. Namely, hsa-mir-939 with 2428 targets, hsa-mir-628 
with 1994 targets, hsa-mir-4726 with 1978 targets, hsa-mir-616 with 1971 targets, hsa-
mir-3191 with 1884 targets, and hsa-mir-4677 with 1806 targets. However, the median 
of these miRNAs are pretty low (0.9, 31.8, 0.0, 3.1, 0.2, 8.7, respectively). When we 
checked their target numbers after abundance filtering, they significantly dropped to 
519, 729, 300, 424, 218, and 692 respectively. Similarly, when we got the top 6 miRNAs 
with the highest targets after abundance filtering, we had hsa-mir-22 with 1333 
targets, hsa-mir-142 with 1323 targets, hsa-mir-210 with 1281 targets, hsa-mir-148b 
with 1233 targets, hsa-mir-17 with 1176 targets, and hsa-mir-183 with 1173 targets. 
When we checked their median miRNA expression, they have 67484.1, 1899.9, 385.1, 
186.8, 465.7, and 15124.2 respectively. These expression values are high enough, 
especially when compared to top ones before abundance filtering. When we checked 
the target numbers before abundance filtering, they are still high with the numbers 
1641, 1551, 1694, 1783, 1376, and 1445, respectively. These analyses showed that our 
scoring works well to exclude miRNA-target interactions from interactions set 
considering the sufficiency of abundance.

Moreover, we analyzed the number of targets overall before and after abundance 
filtering. Before the abundance step, we had miRNAs having targets starting from 8 to 
2428 with a median of 519. Even keeping all the miRNAs in the set after abundance 
filtering, the target number range was starting from 6 to 1333 with a median 99.5 (S1B 
Fig).

Also, we analyzed the number of reduced targets for each miRNA after abundance
filtering. When we just considered the miRNAs that are reducing more than half of
their targets after abundance filtering, their number of targets had a median of 591.
When we checked the median target number for the miRNAs reducing more than 75%
of their targets, it increased to 622 targets per miRNA (with minimum 39 and maximum
2,428), while it dropped to 305 (with minimum 8 and maximum 1,694) for miRNAs
reducing less than 25% of their targets. This shows the miRNAs with a higher number
of targets reducing their targets even as a percentage, showing the preference is not
because that they have a higher number of targets, but the ratio of reduced target
number relative to all targets before abundance filtering is also high for them.

We also observed that the density plot showed the density of the reduced number of 
miRNA targets with a peak occurring around 0, is much lower than the expected 
reduction for any miRNA, which is 415.9 (mean of overall reduced target number per 
miRNA with minimum 0 and maximum 1,909) (S1C Fig). These analyses suggested 
that we eliminated miRNA-target interactions having low abundance and many targets 
applying our novel scoring to the miRNA-target interaction set.
Density of ceRNA network was slightly more sparse after losing many 
genes following network deconvolution filtering: Also, we investigated the 
density of the final network as compared to before network deconvolution (ND) step.

2/11



Since we applied ND to eliminate the amplifying effect of ceRNA interactions, we
expected to have a more sparse network, even we expected to lose some ceRNAs totally
from the network. We examined the remained network’s edge density (the ratio of the
number of edges and the number of possible edges) and transitivity (the probability
that the adjacent nodes of a node are connected, also called the clustering coefficient).
When we applied ND filtering, degree distribution in the final network was significantly
lower as compared to the network before applying ND (p-value < 10−15). Even we lost
almost 3,000 ceRNAs from the network after applying the ND method, we had lower
degree distribution, lower transitivity (dropped from 0.22 to 0.14), and slightly lower
edge density (dropped from 0.0020 to 0.0017) for our final network.

A.2 Inferred network was scale-free as a biological network
and specific to Crinet

Since biological networks generally exhibit scale-free property, we checked whether our 
inferred ceRNA network is scale-free by computing its degree probability distribution 
function. Following the power-law rule, we fitted linear regression for the log of 
ceRNA’s degree probability to the log of ceRNA’s degree. The resulting plot of the 
inferred ceRNA network (S2 Fig) had a negative slope with high fitness (R2 = 0.93), 
indicating that the inferred ceRNA network was scale-free.

To show the specificity of Crinet, we compared our inferred ceRNA pairs from
different regulatory layers, namely protein-protein interactions (PPIs) and transcription
factor (TF)-gene interactions. We collected 1,663,810 TF-target interactions from
TRRUST v2 [3] database and from the ENCODE Transcription Factor Targets
dataset [1]. Within all inferred ceRNA interactions, very few interactions were TF-gene
interactions (0.46% of all inferred interactions). Similarly, we collected 1,847,774 PPIs
from BIOGRID v3.5.186 [4]. We also found that very few interactions were also PPIs
(0.51% of all inferred interactions).

A.3 Results were reproducible and robust to hyperparameter
selection

To check the reproducibility of Crinet based on different datasets and hyperparameters, 
we ran whole pipeline multiple times with different datasets and compared the 
overlapping of the inferred networks. In addition to that, we examined that our pipeline 
is robust to hyperparameter selection running the whole pipeline with different 
thresholds for each step, and checking the overlapping ceRNA pairs. 
Reproducibility of Crinet: We ran Crinet separately for randomly selected two 
different breast tumor sample sets. We divided all the breast tumor samples we had in 
our dataset into two equal-sized random sets with similar subtype distribution (namely 
basal-like, normal-like, luminal-A, luminal-B, Her2-enriched) to avoid bias in results. 
We ran the pipeline for both subsets and obtained inferred ceRNA interactions. We 
repeated this process for other random subsets of our samples, again having 
approximately the same number of samples for subtypes. We compared the results of 
two runs with two subsets. We had high overlapping among different runs and different 
subset for interactions and unique ceRNAs (S4 Table).

Furthermore, we got the overlapping pairs for all subsets having 17,419 ceRNA
interactions between unique 5223 ceRNAs. When we checked the distribution of
overlapping ceRNAs in our inferred network, the degree distribution of these ceRNAs
were much higher as compared to the overall degree distribution before filtering (p-value
< 2.10−16) suggesting that consistently inferred ceRNAs were the important ceRNAs
highly involving in our inferred ceRNA network.
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Robustness of hyperparameter selection: To show the hyperparameter selection
in Crinet is robust to hyperparameter selection, we modified hyperparameters in ceRNA
inference including network deconvolution step, and analyzed the results.

To show the robutness of ceRNA inference, we slightly changed hyperparameters 
eliminating more interactions with respect to one hyperparameter each time keeping 
similar number of interactions. The hyperparameters we used were hypergeometric 
p-value for common miRNA regulator among ceRNA pair, partial correlation and 
partial correlation bootstrapping threshold, and collective regulation correlation and its 
bootstrapping correlation, and we eliminated approximately one-third of the 
interactions concerning only one threshold for each run. Then we checked the 
overlapping interactions for them before network deconvolution filtering to see the effect. 
We got the overlapping of three different runs changing only one hyperparameter each 
time, and they had high overlapping having 17,419 interactions between unique 5223 
ceRNAs, still keeping half of the interactions the same with highly-overlapping ceRNAs.
(S6 Table). This analysis suggests that even each hyperparameter had significant effect 
on the results, they consistently kept similar interactions with high number of unique 
overlapped ceRNAs.

To analyze that selection of ranking score in the incorporated network deconvolution 
algorithm does not change results much, we tried several values, and evaluated the 
results with LINCS data in a same way with pairwise ceRNA inference. Since the 
incorporated network deconvolution algorithm [2] gives a ranking score for interactions, 
but this ranking score is not showing exact significant, we had a wide range for ranking 
selection, but still the evaluation of obtained network was around the same accuracy 
(S5 Table). These analysis showed that the network deconvolution step is important to 
eliminate indirect ceRNA interactions, but the selection of ranking did not significantly 
change Crinet results.

A.4 Skipping individual steps made a substantial difference in
inferred results

In this section, we assessed three major steps of ceRNA inference in our pipeline,
namely: partial correlation filtering, collective regulation filtering, and exclusion of
indirect ceRNA interactions. To examine the importance of each step, we skipped these
steps to see how it would modify the inferred ceRNA network. Specifically, we kept all
steps just skipping partial correlation filtering, referred to as “No CORR”. Since we had
much more interaction at this step, we used -0.2 for collective regulation threshold,
which is around 1.quartile of correlation distribution inferring 180,668 ceRNA
interaction. As a second step, we just skipped collective regulation filtering, referred to
as “No COLL”, and ran the pipeline similarly inferring 146,174 ceRNA interactions.
Also, we got the results of our network before applying network deconvolution filtering,
referred to as “No ND”. We also checked the skipped correlation and abundance
filtering without network deconvolution. We called our results with whole steps as
“Crinet”, and compare it in S1 Table with other runs using LINCS data that we used for
network accuracy assessment.

Based on these results, skipping any step drastically changed the results. For the
case “Crinet-no CORR”, the evaluation was based on a very limited number of
perturbagens. On the other hand, even we had a slightly better result for “Crinet-no
CORR no ND”, we had a huge number of inferred pairs, and a small number of
perturbagen to evaluate with respect to the inferred number of pairs. For other cases,
the accuracies of inferred networks were lower than the original results. Overall, these
results suggest that the ceRNA interaction obtained from the modified network was not
good at predicting gene expression change of its ceRNA partner, potentially inferring
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more false ceRNA interactions.

B Supplementary Tables and Figures

S1 Table. Analysis to check the accuracy of inferred ceRNA interactions 
for modified pipeline using LINCS-L1000 shRNA-mediated gene knockdown 
experiment in breast cancer cell line Table has interaction number, unique ceRNA 
number, and prediction accuracy of inferred network skipping different steps of Crinet. 
The values show the prediction accuracy of inferred network skipping different steps of 
Crinet along with the number of downstream ceRNAs whose ratios are smaller than 1 
over all including the percentages. Crinet: Inferred results running whole pipeline; No 
ND: Skipping network deconvolution filtering; No CORR: Skipping expression correlation 
filtering; No COLL: Skipping collective regulation filtering.

Interaction# ceRNA# Overall Accuracy
Crinet 17,443 4,494 92/154=60%
No ND 52,858 7,263 178/343=52%
No CORR 59,620 7,541 12/21=57%
No CORR no ND 180,668 10,895 44/71=62%
No COLL 48,237 5,642 119/225=53%
No COLL no ND 146,174 9,910 320/655=49%

S2 Table. Analysis with miRNA transfection. As negative control, we used 
non-inferred interactions using the same targets and miRNAs used in the corresponding 
step. Negative control shows the random preference being around 1 for each step when 
using non-inferred interactions with the same RNA and miRNAs in the corresponding 
step Step Interaction Phase Negative Control Gene Phase Negative Control

ALL 6,248/4,932=1.3 5,964/5,980=1.0 90/74=1.2 69/95=0.7
ALL40 613/403=1.5 11,118/9,862=1.1 97/59=1.6 74/82=0.9
CORR 183/112=1.6 7,778/7,155=1.1 71/37=1.9 48/60=0.8

CORR+ABUN 179/111=1.6 7,670/7,127=1.1 68/39=1.7 47/60=0.8
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S3 Table. Analysis with miRNA-protein expression anticorrelation. Interaction 
phase shows the anticorrelated expressions of miRNA-protein target pairs with respect 
to not anticorrelated ones. Gene phase shows the anticorrelated expression of target 
with average of all miRNA regulators with respect to not-anticorrelated ones. (ratio 
is expected to be more than 1 to have anticorrelation preference. Higher is better). 
Negative control shows the random preference being around 1 for each step when using 
non-inferred interactions with the same RNA and miRNAs in the corresponding step. 
ALL: All obtained miRNA-target interactions; ALL40: Top 40% of ALL interactions; 
CORR: After expression correlation filtering on ALL40 interactions; CORR+ABUN: 
After abundance sufficiency filtering on CORR interactions.

Step Interaction Phase Negative Control Gene Phase Negative Control
ALL 38,505/33,243=1.2 52,690/53,849=1.0 95/106=0.9 106/95=1.1

ALL40 2,720/2,688=1.0 80,157/76,993=1.0 107/91=1.2 93/105=0.9
CORR 751/370=2.0 36,855/34,459=1.1 115/50=2.3 74/91=0.8

CORR+ABUN 719/352=2.0 35,004/32,672=1.1 114/47=2.4 72/89=0.8

S4 Table. Reproducibility of Crinet with different subsets. Overlapping 
interac-tion number and overlapping unique ceRNA number (in parentheses) are 
shown in the lower triangular; while overlapping percentages of the cases in row and in 
column with respect to the smaller number are shown in upper triangular.

Case Case-inferred 1.Run 1.Set 1.Run 2.Set 2.Run 1.Set 2.Run 2.Set
1.Run 1.Set 8,156 (2,990) - 47% (82%) 54% (81%) 54% (86%)
1.Run 2.Set 18,093 (4,273) 3,834 (2,445) - 58% (88%) 66% (87%)
2.Run 1.Set 11,022 (3,559) 4,399 (2,431) 6,353 (3,122) - 51% (84%)
2.Run 2.Set 18,097 (4,210) 11,878 (3,674) 11,020 (4,441) 5,576 (2,980) -

S5 Table. Analysis to check the accuracy of pipeline with different ranking of 
network deconvolution based on LINCS-L1000 (MCF7) dataset.

Interaction# 96h Timepoint 144h Timepoint Overall
Top 10% 5,286 22/31=71% 13/30=43% 35/61=57%
Top 15% 7,929 30/42=71% 24/43=56% 54/85=64%
Top 20% 10,572 35/50=70% 27/50=54% 62/100=62%
Top 25% 13,214 40/60=67% 31/61=51% 71/121=59%

Top 15,000 15,000 43/68=63% 35/68=51% 78/136=57%
Top 30% 15,857 45/72=62% 39/72=54% 84/144=58%

Top one third 17,443 48/77=62% 44/77=57% 92/154=60%
Top 35% 18,500 49/79=62% 44/78=56% 93/157=59%

Top 20,000 20,000 54/86=63% 46/84=55% 100/170=59%
Ranking>0.7 20,423 55/88=62% 47/86=55% 102/174=59%

Top 40% 21,143 55/93=59% 47/91=52% 102/184=55%
Top 25,000 25,000 59/100=59% 48/98=49% 107/198=54%

Ranking>3rd quartile 26,428 61/104=59% 49/103=48% 110/207=53%
Top 50% 26,429 61/104=59 49/103=48% 110/207=53%
Top 60% 31,715 70/125=56 55/121=45% 125/246=51%
Top 70% 37,001 78/136=57 72/132=55% 150/268=56%
Top 80% 42,284 84/146=58 80/144=56% 164/290=57%
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S6 Table. Analysis to show the robustness to different hyperparameter se-
lection of Crinet. The hyperparameters are hypergeometric p-value for common 
miRNA regulator among ceRNA pair (referred to as thr1), partial correlation and par-
tial correlation bootstrapping threshold (referred to as thr2), and collective regulation 
correlation and its bootstrapping correlation (referred to as thr3), and we eliminated 
approximately one-third of the interactions with respect to only changing one threshold 
for each run. The values shows the overlapping of three different runs changing only one 
hyperparameter

thr1 thr2 thr3 Interaction # Overlap ceRNA # Overlap
Run1 0.0011 0.55 -0.01 35,509

17,419
6,636

5,223Run2 0.01 0.58 -0.01 37,107 6,175
Run3 0.01 0.55 -0.03 36,729 6,204

S7 Table. GO Slim terms from the biological process ontology enriched for 
the inferred ceRNA groups with coding genes. We put the GO Slim terms 
with at least half of the genes in the group. Group indicates the group we 
analyzed deeply shown in S4 Fig). Definition is the name of GO term. 
Gene ratio is the fraction of inferred genes in the term to total applicable 
genes in the term. We used the tool named GO Term Mapper from URL 
https://go.princeton.edu/cgi-bin/GOTermMapper

Group # GO term ID Definition Gene Ratio
1 GO:0007049 cell cycle 6/6
1 GO:0006950 response to stress 4/6
1 GO:0006259 DNA metabolic process 4/6
1 GO:0051276 chromosome organization 4/6
1 GO:0034641 cellular nitrogen compound metabolic process 4/6
1 GO:0007059 chromosome segregation 3/6
1 GO:0009058 biosynthetic process 3/6
1 GO:0051301 cell division 3/6
1 GO:0007010 cytoskeleton organization 3/6
2 GO:0002376 immune system process 1/2
2 GO:0030154 cell differentiation 1/2
3 GO:0002376 immune system process 3/4
3 GO:0048870 cell motility 3/4
3 GO:0007165 signal transduction 3/4
3 GO:0040011 locomotion 3/4
3 GO:0008219 cell death 2/4
3 GO:0007155 cell adhesion 2/4
3 GO:0048856 anatomical structure development 2/4
4 GO:0002376 immune system process 3/4
4 GO:0006950 response to stress 2/4
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S8 Table. GO Slim terms from the biological process ontology enriched for 
the inferred ceRNAs with applicable genes. We put the GO Slim terms 
with at least 100 genes in the term. Definition is the name of GO term. 
Gene ratio is the fraction of inferred genes in the term to total applicable 
genes in the term. We used the tool named GO Term Mapper from URL 
https://go.princeton.edu/cgi-bin/GOTermMapper

GO term ID Definition Gene Ratio
GO:0034641 cellular nitrogen compound metabolic process 1076/2888
GO:0009058 biosynthetic process 1008/2888
GO:0007165 signal transduction 941/2888
GO:0048856 anatomical structure development 929/2888
GO:0006810 transport 723/2888
GO:0006950 response to stress 701/2888
GO:0006464 cellular protein modification process 674/2888
GO:0030154 cell differentiation 646/2888
GO:0002376 immune system process 631/2888
GO:0022607 cellular component assembly 448/2888
GO:0008219 cell death 375/2888
GO:0009056 catabolic process 369/2888
GO:0007049 cell cycle 353/2888
GO:0040011 locomotion 341/2888
GO:0007155 cell adhesion 331/2888
GO:0016192 vesicle-mediated transport 331/2888
GO:0048870 cell motility 311/2888
GO:0065003 protein-containing complex assembly 287/2888
GO:0042592 homeostatic process 244/2888
GO:0007267 cell-cell signaling 230/2888
GO:0044281 small molecule metabolic process 229/2888
GO:0048646 anatomical structure formation involved in morphogenesis 220/2888
GO:0000278 mitotic cell cycle 214/2888
GO:0051276 chromosome organization 214/2888
GO:0007010 cytoskeleton organization 211/2888
GO:0000003 reproduction 200/2888
GO:0009790 embryo development 187/2888
GO:0006259 DNA metabolic process 185/2888
GO:0055085 transmembrane transport 169/2888
GO:0006629 lipid metabolic process 167/2888
GO:0044403 symbiont process 156/2888
GO:0000902 cell morphogenesis 152/2888
GO:0040007 growth 151/2888
GO:0051301 cell division 127/2888
GO:0061024 membrane organization 124/2888
GO:0050877 nervous system process 119/2888
GO:0030198 extracellular matrix organization 106/2888
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S9 Table. GO Slim terms from the biological process ontology enriched 
for the high-degreed ceRNAs (> 50 degrees) with applicable genes. We put 
the GO Slim terms with at least 10% of the genes in the term. Definition is 
the name of GO term. Gene ratio is the fraction of inferred genes in the 
term to total applicable genes in the term. We used the tool named GO 
Term Mapper from URL https://go.princeton.edu/cgi-bin/GOTermMapper

GO term ID Definition Gene Ratio
GO:0007165 signal transduction 26/45
GO:0034641 cellular nitrogen compound metabolic process 17/45
GO:0002376 immune system process 17/45
GO:0006810 transport 15/45
GO:0006464 cellular protein modification process 15/45
GO:0022607 cellular component assembly 14/45
GO:0009058 biosynthetic process 13/45
GO:0008219 cell death 13/45
GO:0048856 anatomical structure development 13/45
GO:0006950 response to stress 12/45
GO:0065003 protein-containing complex assembly 11/45
GO:0030154 cell differentiation 10/45
GO:0009056 catabolic process 10/45
GO:0008283 cell proliferation 9/45
GO:0048870 cell motility 9/45
GO:0040011 locomotion 9/45
GO:0042592 homeostatic process 8/45
GO:0007155 cell adhesion 8/45
GO:0016192 vesicle-mediated transport 7/45
GO:0044403 symbiont process 5/45
GO:0061024 membrane organization 5/45
GO:0007049 cell cycle 5/45
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S1 Fig. Plot showing the analysis of abundance sufficiency filtering for 
miRNA-target interactions. A. Heatmap showing median log expression of top 25%
miRNAs with the highest and lowest number of targets in miRNA-target interaction set 
obtained before and after abundance filtering. The miRNAs are ranked from right to left 
based on target numbers where the rightmost one is the miRNA with the highest target 
number. B. Boxplot showing the number of targets for each miRNA in the miRNA-target 
interaction set obtained before and after abundance filtering. C. Density plot showing 
the reduced number of targets for each miRNA in the miRNA-target interactions when 
miRNAs are filtered based on abundance sufficiency.

S2 Fig. Scale-free property of the inferred network. Computing inferred 
network degree probability distribution function, and following the power-law rule, we 
fitted linear regression for the log of ceRNA’s degree probability to the log of ceRNA’s 
degree. The plot for the inferred ceRNA network had a negative slope with high fitness 
(R2 = 0.93), indicating that the inferred ceRNA network was scale-free.
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S3 Fig. Density plots showing the correlation distribution for filtering 
steps A. Density plot showing the partial expression correlation distribution excluding 
copy number aberration effect for candidate ceRNA pairs having at least one common 
regulator with significant overlap (partial correlation filtering). B. Density plot showing 
the correlation distribution among the sum of Effective Regulation scores and the sum 
of the expression of each pair (collective regulation filtering) following partial correlation 
filtering. C. Density plot showing the maximum threshold for partial expression corre-
lation excluding copy number aberration to keep the ceRNA pair satisfying 99 out of 
100 calculations with replacement (partial correlation bootstrapping) following collective 
regulation filtering. D. Density plot showing the maximum threshold for correlation 
among the sum of Effective Regulation scores and the sum of the expression to keep 
the ceRNA pair satisfying 99 out of 100 calculations with replacement following partial 
correlation bootstrapping.

S4 Fig. Deeply analyzed inferred ceRNA groups
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