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1 Sensitivity analysis for CCMV

Identification conditions such as CCMV are not generally empirically testable and therefore, it

is important that inferences in a given analysis are assessed for sensitivity to violation of such

assumptions. Specifically, a violation of the CCMV assumption can occur if for some r,

R 6⊥⊥ L(−r)|L(r), R ∈ {1, r} ,

which can be encoded by specifying the degree of departure from the identifying assumption, on

the odds ratio scale using the selection bias function:
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L(−r), L(r)

)
=
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(
L(r), L(−r)

)
π1

(
L(r), L(−r) = 0

)

π1

(
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πr

(
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CCMV corresponds to the null θr
(
L(−r), L(r)

)
= 1 for all r, and θr

(
L(−r), L(r)

)
6= 1 for some r

indicates violation of the assumption. The function θr (·, ·) is not nonparametrically identified from

the observed data. Therefore we propose that one may specify a functional form for θr (·, ·) for

use in a sensitivity analysis in the spirit of Robins et al (1999). Hereafter, suppose that one has

specified functions θ = {θr : r} . For such specification, we describe IPW, PM and DR estimation

incorporating a non-null θr.

For IPW estimation, we propose to modifyWr of Section 5 as follows. LetWr (Gr;α,θr) = Gr×

[1 {R = r} − 1 {R = 1} θr (L) Πr (α) /Π1 (α)] , and denote by α̂ (θ) the solution to PnWr (Gr; α̂ (θ) ,θr) =

0, then a consistent IPW estimator β̂ipw (θ) solves equation (10) in the main text with Π1 replaced
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by Π∗
1 (α̂ (θ)) =

{
1 +

∑
r 6=1 θr (L) Πr (α̂ (θ)) /Π1 (α̂ (θ))

}−1

Likewise, PM estimation hinges on the following expression

E
{
U(L; β)|R = r, L(r); η̃, θ

}

=

∫
θr

(
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)
U(l(−r), L(r)); β)f

(
l(−r), L(r))|R = 1; η

)
dµ

(
l(−r)

)
∫
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)
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(
l(−r)

)

which may be used in place of E
{
U(L; β)|R = 1, L(r); η̃

}
in equation (12) , which in turn may be

used to obtain the PM estimator β̂pm (θ). Finally, for a given value of θ, the DR estimator β̂dr (θ)

solves equation (14) with V
(
β̂dr, α̃,η̃

)
replaced by

V (β, α̂ (θ) , η̃; θ) =

{
1 (R = 1)

Π∗
1 (α̂ (θ))

U(L; β)

}

−
1 (R = 1)

Π∗
1 (α̂ (θ))

∑

r±1

Π∗
r (α̂ (θ))E

[
U(L; β)|L(r), R = r; η̃, θ

]

+
∑

r±1

I (R = r)E
[
U(L; β)|L(r), R = r; η̃, θ

]
,

where

Π∗
r (α̂ (θ)) =

θr (L) Πr (α̂ (θ)) /Π1 (α̂ (θ)){
1 +

∑
r′ 6=1 θr′ (L) Πr′ (α̂ (θ)) /Π1 (α̂ (θ))

} ,

A sensitivity analysis then entails reporting β̂ipw (θ), β̂pm (θ) or β̂dr (θ) for a range of values of

θ.

2 Proof of Lemmas

Proof of Lemma 1: The result follows from the following generalized odds ratio representation

of the joint likelihood of f(R,L) (see Chen, 2007 and Tchetgen Tchetgen et al, 2010)

f(R,L) =
f (R|L = 0) f(L|R = 1)OR (R,L)∫∫

f (r∗|L = 0) f(l∗|R = 1)OR (r∗, l∗) dµ (r∗, l∗)
,
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provided that

∫∫
f (r∗|L = 0) f(l∗|R = 1)OR (r∗, l∗) dµ (r∗, l∗) < ∞, where the generalized odds

ratio function OR (R,L) is defined as

OR (R,L) =
f (R,L) f(R = 1, L = 0)

f (R = 1, L) f(R,L = 0)
.

Then

f (R|L = 0) f(L|R = 1)OR (R,L)∫∫
f (r∗|L = 0) f(l∗|R = 1)OR (r∗, l∗) dµ (r∗, l∗)

=

f(R|L=0)
f(R=1|L=0)

OR(R,L) f(L|R = 1)
∫∫

f(r∗|L=0)
f(R=1|L=0)

OR(r∗, l∗) f(l∗|R = 1)dµ (r∗, l∗)

=

∏

r 6=1

Oddsr (L)
I(R=r) f (L|R = 1) f(L|R = 1)

∫∫ ∏

r 6=1

Oddsr (l∗)
I(r∗=r) f (l∗|R = 1) dµ (r∗, l∗)

proving the result.

Proof of Lemma 2: The complete-case joint distribution f(L|R = 1) is nonparametrically

just-identified under assumption (1). Furthermore, pairwise MAR implies that Oddsr (L) =

Oddsr
(
L(r)

)
is nonparametrically just-identified from data

{
(R,L(R)) : R ∈ {1, r}

}
, because L(−r)

is MAR conditional on L(R) and R ∈ {1, r} . Specifically,

Pr {R = r|L,R ∈ {1, r}}

=
Pr {R = r, L}

Pr {L,R ∈ {1, r}}

=
Oddsr

(
L(r)

)
f (L|R = 1) f(L|R = 1)

Oddsr
(
L(r)

)
f (L|R = 1) f(L|R = 1) + f (L|R = 1) f(L|R = 1)

=
Oddsr

(
L(r)

)

Oddsr
(
L(r)

)
+ 1

,

proving the result.

Proof of Theorem 3: The result essentially follows from the following DR property of V (β, α, η) .

Let V (β, α∗, η0) denote the estimating function evaluated at the incorrect Πr and true E[U(L; β)|L(r), R =
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1] for all r. Likewise let V (β, α0, η
∗) for the opposite setting. DR property holds ifE {V (β0, α

∗, η0)} =

E {V (β0, α0, η
∗)} = 0. First, note that under MR, α̃ → α0 and η̃ → η∗ in probability, then

PnV (β0, α̃,η̃) → E {V (β0, α0, η
∗)} in probability by Continuous Mapping Theorem and the Law

of Large Numbers. We also have that

E (V (β, α0, η
∗)) = E

{
1 (R = 1)

Π1 (α0)
U(L; β0)

−
∑

r 6=1

(
1 (R = 1)Πr (α0)

Π1 (α)
− 1 (R = r)

)
E
[
U(L; β)|L(r), R = 1; η∗

]
}

= E

{
E {1 (R = 1) |L}

Π1 (α0)
U(L; β0)

−
∑

r 6=1

(
E {1 (R = 1) |L}Πr (α0)

Π1 (α)
−E {1 (R = r) |L}

)

︸ ︷︷ ︸
=0

E
[
U(L; β)|L(r), R = 1; η∗

]

= E [U(L; β0)] = 0

By the same token, under ML, α̃ → α∗ and η̃ → η0 in probability, then PnV (β0, α̃,η̃) →

E {V (β0, α
∗, η0)} . Next we show that E {V (β0, α

∗, η0)} = 0. Note that for all α

1

Π1 (α)
= 1 +

∑

r 6=1

Πr (α)

Π1 (α)

= 1 +
∑

r 6=1

Oddsr
(
L(r);α

)
.
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Then we have that

E (V (β, α0, η
∗)) = E

{
1 (R = 1)

Π1 (α∗)

{
U(L; β0)−

∑

r 6=1

Πr (α
∗)E
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]
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[
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]
}
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{
1 (R = 1)

{
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−

∑

r 6=1

Πr (α
∗)

Π1 (α∗)
E
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U(L; β)|L(r), R = 1; η0

]
}

+
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r 6=1

1 (R = r)E
[
U(L; β)|L(r), R = 1; η0

]
}

= E
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r 6=1
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∗
) (

E
[
U(L; β0)|R = 1, L(r)

]
− E

[
U(L; β)|L(r), R = 1; η0

])

︸ ︷︷ ︸
=0





1 (R = 1)U(L; β0) +
∑

r 6=1

1 (R = r)E
[
U(L; β)|L(r), R = 1; η0

]
}

= E

{
1 (R = 1)U(L; β0) +

∑

r 6=1

1 (R = r)E
[
U(L; β)|L(r), R = 1; η0

]
}

= E

{
1 (R = 1)U(L; β0) +

∑

r 6=1

1 (R = r)E
[
U(L; β)|L(r), R = r

]
}

= E

{
1 (R = 1)E[U(L; β0)|R = 1] +

∑

r 6=1

1 (R = r)E [U(L; β)|R = r]

}

= E[U(L; β0)] = 0

proving the result.
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Proof of Corollary 4: E (V (β, α, η)) can be written

E (V (β, α, η))

= E

{∑

r 6=1

1 (R = 1)Πr (α)

Π1 (α)
U(L; β0)−

∑

r 6=1

1 (R = 1)Πr (α)

Π1 (α)
E
[
U(L; β)|L(r), R = 1; η

]

+
∑

r 6=1

1 (R = r)E
[
U(L; β)|L(r), R = 1; η

]
+ 1 (R = 1)U(L; β0)

}

= E

{∑

r 6=1

1 (R = 1)Πr (α)

Π1 (α)
U(L; β0)−

∑

r 6=1

1 (R = 1)Πr (α)

Π1 (α)
E
[
U(L; β)|L(r), R = 1; η

]

+
∑

r 6=1

1 (R = r)
{
E
[
U(L; β)|L(r), R = 1; η

]
− U(L; β0)

}
+ U(L; β0)

}

= E

[∑

r 6=1

{
1 (R = 1)Oddsr

(
L(r);α

)
− 1 (R = r)

}{
U(L; β0)− E

[
U(L; β)|L(r), R = 1; η

]}
]

Under MR (r) , we have that Oddsr
(
L(r); α̃

)
→ Oddsr

(
L(r);α0

)
in probability, and

E
[{

1 (R = 1)Oddsr
(
L(r);α0

)
− 1 (R = r)

}{
U(L; β0)−E

[
U(L; β)|L(r), R = 1; η∗

]}]

= E

[{
1 (R = 1)

Πr

Π1
− 1 (R = r)

}{
U(L; β0)−E

[
U(L; β)|L(r), R = 1; η∗

]}]

= E
[
{Πr − E [1 (R = r) |L]}

{
U(L; β0)− E

[
U(L; β)|L(r), R = 1; η∗

]}]

= 0

Likewise, under ML (r) , we have that E
[
U(L; β)|L(r), R = 1; η̃

]
→ E

[
U(L; β)|L(r), R = 1; η0

]
in

probability, and
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E
[{

1 (R = 1)Oddsr
(
L(r);α

∗
)
− 1 (R = r)

}{
U(L; β0)− E

[
U(L; β)|L(r), R = 1; η0

]}]

= E
[
1 (R = 1)Oddsr

(
L(r);α

∗
) {

E
{
U(L; β0)|R = 1, L(r)

}
−E

[
U(L; β)|L(r), R = 1; η0

]}]

− E
[
{1 (R = r)}

{
E
{
U(L; β0)|R = r, L(r)

}
− E

[
U(L; β)|L(r), R = 1; η0

]}]

= −E
[
{1 (R = r)}

{
E
{
U(L; β0)|R = 1, L(r)

}
− E

[
U(L; β)|L(r), R = 1; η0

]}]

= 0

proving the result.
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Table S1: Monte Carlo results of the IPW, PM and DR estimators: bias, standard error and root
mean squared error. The true value of β is 0.634, and the sample size is 2000.

bth
∗

nrm ccm bad

Bias(SE)

IPW -0.004(0.002) -0.004(0.002) -0.641(0.012) -0.641(0.012)
PM -0.002(0.001) -0.367(0.002) -0.002(0.001) -0.367(0.002)
DR -0.002(0.002) -0.006(0.002) -0.002(0.002) -0.371(0.003)

RMSE

IPW 0.072 0.072 0.748 0.748
PM 0.046 0.373 0.046 0.373
DR 0.048 0.057 0.057 0.385

*: bth: both models correct; nrm: nonresponse model correct; ccm: complete-case model correct; bad: both models

incorrect.

3 Additional Simulation Results

Table S1 shows Monte Carlo results comparing the proposed large sample estimator of standard

deviation (and corresponding coverage probabilities of Wald 95% confidence intervals) of IPW,

PM and DR estimators of β to corresponding Monte Carlo standard deviations .
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