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1 Sensitivity analysis for CCMV

Identification conditions such as CCMV are not generally empirically testable and therefore, it
is important that inferences in a given analysis are assessed for sensitivity to violation of such

assumptions. Specifically, a violation of the CCMV assumption can occur if for some 7,
R ,ﬁ_ L(_r)|L(T), Re {1,7‘} ,

which can be encoded by specifying the degree of departure from the identifying assumption, on

the odds ratio scale using the selection bias function:

0 (Lo L) = ™ (Ley Len) ™ (Eey: En = 0)
71 (L L)) 7 (Lirys Ly = 0)

CCMV corresponds to the null 6, (L(_r),L(r)) =1 for all r, and 6, (L(_T), L(T)) # 1 for some r
indicates violation of the assumption. The function 6, (-, -) is not nonparametrically identified from
the observed data. Therefore we propose that one may specify a functional form for 6, (-,-) for
use in a sensitivity analysis in the spirit of Robins et al (1999). Hereafter, suppose that one has
specified functions @ ={6, : r}. For such specification, we describe IPW, PM and DR estimation
incorporating a non-null 6,.

For IPW estimation, we propose to modify W, of Section 5 as follows. Let W, (G,; a,0,) = G,. X
1{R=r}—-1{R=1}06, (L)1, (o) /II; (v)] , and denote by a (#) the solution to P,,W, (G,;a (8) .,0,) =

0, then a consistent IPW estimator @pw (0) solves equation (10) in the main text with II; replaced



by I (@ (60)) = {14 5,06, (L) 1L, (@ (6) /L (& (6)}

Likewise, PM estimation hinges on the following expression
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which may be used in place of E {U(L; B)|R =1, Ly; 77} in equation (12), which in turn may be
used to obtain the PM estimator Bpm (6). Finally, for a given value of 8, the DR estimator Gy, (6)

solves equation (14) with V/ (B\dr, &,ﬁ) replaced by

where

Y

~

A sensitivity analysis then entails reporting Bipw (6), Bom (8) or Bay (8) for a range of values of

2 Proof of Lemmas

Proof of Lemma 1: The result follows from the following generalized odds ratio representation

of the joint likelihood of f(R, L) (see Chen, 2007 and Tchetgen Tchetgen et al, 2010)

f(R|L=0)f(LIR=1)OR(R,L)
f(R,L) = :
//f (r*|L = 0) £(I*|[ R = 1)OR (r*, I*) dys (r*, 1)




provided that //f (r*|L=0) f(I*|R = 1)OR (r*,I*) dp (r*,I*) < oo, where the generalized odds
ratio function OR (R, L) is defined as

Then

F(RIL=0) f(LIR = 1)OR (R, L)
//f (r*|L = 0) £(I| R = 1)OR (r*, I*) dp (r*, 1)

AB=0OR (R, L) f(LIR = 1)

J [ OR (1) 10 R = i 1)

[T0dds, (L)'= f (L|R = 1) f(LIR = 1)
r#l

[ Toaas, @)= s@ir = .

r#l

proving the result.

Proof of Lemma 2: The complete-case joint distribution f(L|R = 1) is nonparametrically
just-identified under assumption (1). Furthermore, pairwise MAR implies that Odds, (L) =
Odds, (L) is nonparametrically just-identified from data {(R, L)) : R € {1,7}}, because L(_,)

is MAR conditional on L(py and R € {1,r} . Specifically,

Pr{R=r|L,R e {1,r}}
Pr{R=rL}
T Pr{L,Re{lr}}
_ Odds, (L¢y) f(LIR =1) f(LIR = 1)
Odds, (L) f(LIR=1) f(LIR =1) + f(LIR=1) f(LIR = 1)
_ _0dds, (L)
~0dds, (L) +17

proving the result.

Proof of Theorem 3: The result essentially follows from the following DR property of V (3, «r, 1) .

Let V (B3, a*,n,) denote the estimating function evaluated at the incorrect II, and true E[U(L; 8)| L, R

3



1] for all r. Likewise let V' (3, ag, ) for the opposite setting. DR property holds if £ {V (8o, a*, 1)} =
E{V (8o, a0,m*)} = 0. First, note that under Mg, @ — oy and 7 — n* in probability, then
P,V (Bo, @) — EA{V (Bo, 2, n*)} in probability by Continuous Mapping Theorem and the Law

of Large Numbers. We also have that
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By the same token, under My, @ — a* and 77 — 1 in probability, then P,V (5o, a,n) —
EA{V (Bo,a*,my)} . Next we show that E{V (B, a*,n,)} = 0. Note that for all

N e
m (a) 1+§H1(a)

=1+ Z OddST (L(r); Oé) .
r#£1



Then we have that

E(V(8,a0,7") = E { 11%%(:*;) { TZ#H 1 B8)| Ly, R = 1;770}}

+;1 ;B Ly, R 1$770}}

= F {1 (R=1) {%ﬁﬁo)) — ; El EZ;E [U(L; B)|Liry, R = 1;?70]}

+Y 1(R ;B Ly, R 1$770}}
oy

— B ; 0dds, (L @) (E [U(L; 6o)| R = 1, L»] — E [U(L; )| Linys R = 13m0))
L(R L; Bo) +;1 s B)IL,s —1;770]}

:E{l( L; o) +§1 8| Ly —1;770]}

:E{l( ﬁ0+;1 :B)| Ly T}}

:E{l(R: 1) E[U(L; )| R = 1] +;1(RZT)E[U(L;6)|RZT]}

E[U(L; Bo)] = 0

proving the result.



Proof of Corollary 4: E (V (5,a,n)) can be written

E(V(8,0,n))
= {Z LA ;11();;7" (a)U(L; Bo) =) LA ;11();;7" CF [U(L; 8)|Lry, R = 1;7]
r#1 r#1

_ L(R=1DI, (o), (R =1)TI, (o) | o
N {Z IL (o) UL Bo) = ; 0, (@) E [U(L; B)| Ly, R = 1;1]

+Y L(R=7r){E[U(L; 8)|L¢), R = 1;n] = U(L; o) } +U(L;ﬁ0)}

=k

> {1(R=1)0dds, (Lyia) = 1(R=1)} {U(L; o) — E [U(L; B)| L), R = 1;7] }]
r#1

Under Mg (r), we have that Odds, (L(T); &) — Odds, (L(r); ao) in probability, and

E[{1(R =1)0dds, (L) a0) — 1 (R =)} {U(L; fo) = E [U(L; B)| Ly, R = 1] }]

I
&

HMR: D 1A= r>} (U(L: fo) = B [U(L: D) Loy, B = 1]}
BTl — B[R =) |1]} {U(L: o) — E [U(L: )| Lo, R = 1:7°]}]

=0

Likewise, under My, (r), we have that E [U(L; 8)|Ly, R =1;7] = E [U(L; B)|L(r), R = 1;10] in

probability, and



E[{1(R=1)0dds, (Ly);a*) — 1(R=7)} {U(L; B) — E [U(L; B)| Ly, R = L;10] }]
= E[1(R=1)0dds, (L, ){E{U :B0)|R=1,Lin} — E [U(L; 8)| Ly, R = 1;m0) }]

—E[{l R:T}{E{U s Bo)| R =, r}_E[ (L; B)| Ly, R :1;770}}}
E[{1(R=r)}{E{U(L; ) \R—1L<r} E[U(L; B)| Ly, R = 1;1m0] }]

proving the result.



Table S1: Monte Carlo results of the IPW, PM and DR estimators: bias, standard error and root
mean squared error. The true value of § is 0.634, and the sample size is 2000.

bth*

nrm

ccm

bad

Bias(SE)
IPW
PM
DR

RMSE

IPW
PM
DR

-0.004(0.002)
-0.002(0.001)
-0.002(0.002)

0.072
0.046
0.048

-0.004(0.002)
-0.367(0.002)
-0.006(0.002)

0.072
0.373
0.057

-0.641(0.012)
-0.002(0.001)
-0.002(0.002)

0.748
0.046
0.057

-0.641(0.012)
-0.367(0.002)
-0.371(0.003)

0.748
0.373
0.385

*: bth: both models correct; nrm: nonresponse model correct; ccm: complete-case model correct; bad: both models

incorrect.

3 Additional Simulation Results

Table shows Monte Carlo results comparing the proposed large sample estimator of standard

deviation (and corresponding coverage probabilities of Wald 95% confidence intervals) of IPW,

PM and DR estimators of 8 to corresponding Monte Carlo standard deviations .
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