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Constrained Maximum Entropy Optimization Algorithm

The constrained maximum entropy optimization algorithm is a generalization of our prior

study. For the sake of completeness, below we first outline the key ideas of the original

maximum entropy algorithm before introducing modifications used in the current paper.

In Ref. S1, we combined maximum entropy optimization with least square fitting to derive

transferable force fields for intrinsically disordered proteins (IDPs). We start with an initial

model defined as

UMOFF(r) = Ubackbone + Umemory + Uelectrostatics + Ucontact. (S1)

Explicit expressions of the various terms are provided in the Section: Mathematical Expres-

sions of the Energy Function. The goal of the algorithm is to introduce corrections to the

the pairwise tertiary contact potential, Ucontact, such that the model can better reproduce ex-

perimental data. For any given protein, a linear biasing term can be derived from maximum

entropy optimization to correct UMOFF(r) such that the new model, UME(r), reproduces its

radius of gyration,S2–S4 i.e.,

UME(r) = UMOFF(r) + αRg(r). (S2)

α is a unique Lagrange multiplier and Rg is the radius of gyration of a protein configuration,

r. The biasing strength α can be fine tuned manually for each protein to ensure that

the average Rg for simulated protein structures is within 0.5 Å of the experimental value.

However, this resulting energy function UME is not transferable and cannot be directly applied

to new proteins without experimental input. We instead desire a transferable energy,

Unew
MOFF(r) = UMOFF(r) +

∑
I,J

∆εIJCIJ(r), (S3)

which is based on the contacts (CIJ(r) =
∑

i∈I,j∈J C(rij)) between amino acid types I and J ,
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and the energy formed or gained (∆εIJ) by creating such contacts. Here, we note the energy

change in the MOFF algorithm (here denoted ∆εIJ), was originally termed εIJ in Ref. S1.

The contact function between a pair of amino acids i and j separated at a distance rij is

defined as

C(rij) =
1

2
(1 + tanh[η(ro − rij)]) (S4)

with ro = 8 Å and η = 0.7 Å
−1

.

Previously, we then solved for ∆εIJ by equating the contact energy to the maximum

entropy biasing energy, which takes the form

∑
I,J

∆εIJ [CIJ(rnm)− Cn,expIJ ] ≡ αn[Rg(r
n
m)−Rn,exp

g ], for m = 1, · · · ,M and n = 1, · · · , N.

(S5)

In Eq. S5, Cn,expIJ was estimated by averaging the contacts for all structures where the Rg

is within 0.05 nm of the original structure. Rn,exp
g is the experimental radius of gyration,

and M structures for each of N proteins in our training set were used to ensure sufficient

sampling in both contact and sequence space. The two additional terms Cn,expIJ and Rn,exp
g

were introduced to ensure that the left and right hand side of Eq. S5 reach zero at the same

structures.

Eq. S5 can be simplified by casting it in matrix form as

∆εC ≡ αRg. (S6)

∆ε, C, α, and Rg are matrices for the corrections to contact energy, difference in contact

number between the sampled ensemble and structures in which theRg is within 0.05 nm of the

experimental value, the Lagrange multiplier from maximum entropy optimization, and the

difference in radius of gyration between the simulated and experimental value, respectively.

C, α, and Rg depend on protein structure and can be found from simulations, which allows

for determination of ∆ε. Previously, we utilized least squares fitting, though other fitting
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procedures are possible.

Our new optimization scheme adopts the spirit of our previous strategy described above,

with additional requirements. According to the energy landscape theory,S5–S8 a gap in energy

between molten globule configurations and the folded state is necessary in order for the

protein to fold reliably. Optimization techniques that maximize this gap have proven quite

successful at deriving transferable force fields for globular proteins.S9–S12 Inspired by this

methodology, we aimed to ensure that the contact energy of the PDB structure was lower

than that of any structure sampled in simulations, up to a tolerance. This requirement takes

the form

ε′CPDB ≤ ε′Csim + γσsim, (S7)

where ε′CPDB are the total contact energies of the PDB structure (see Table S6), and ε′Csim

are contact energies from simulated structures. The last term is a flexible tolerance parameter

based on the standard deviation of the energy distribution sampled for a particular protein in

the preceding simulations (σsim). Values for γ are shown in Figure S3. Here it is important

to notice that the new contact energy matrix (ε′) differs from the change in contact energy

(∆ε), and are related by ε′ = ∆ε + ε, where ε is the contact energy from the previous

iteration.

We simultaneously solve Eq. S6 for all proteins in our training set and Eq. S7 for the

ordered portion of our training set with the interior-point algorithm (Figure 1). As seen

previously,S1 the relationship between energy and contact formation is not perfectly linear,

requiring this entire algorithm to be done iteratively. More details on force field optimization

are provided in Section: Simulation Details on Force Field Optimization.

Mathematical Expressions of Energy Function

The potential energy of a protein in MOFF is defined as

UMOFF(r) = Ubackbone + Umemory + Uelectrostatics + Ucontact. (S8)
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As described below, Ubackbone, Umemory, and Uelectrostatics describe basic features of protein

structure, while the Ucontact is the tertiary interaction optimized by our maximum entropy

procedure.

Ubackbone and Umemory are secondary structure potentials dependent on the input protein

conformations. They are defined using the PDB structure for ordered proteins and from I-

TASSER structure predictions for disordered proteins.S13,S14 The backbone energy is defined

as

Ubackbone = Ubond + Uangle + Udihed. (S9)

The bonding potential Ubond =
∑

i Vb(ri,i+1) with

Vb(ri,i+1) =
kb
2

(ri,i+1 − r0)2. (S10)

We used kb = 1000 kJ mol−1nm−2 and r0 = 0.38 nm. The angular potential Uangle =∑
i Va(θi) with

Va(θi) =
ka
2

(θi − θi0)2. (S11)

θi is the angle formed between the three consecutive beads i, i + 1, and i + 2. ka = 120 kJ

mol−1 deg−2. The dihedral potential Udihed =
∑

i Vd(φi) with

Vd = kd[(1− cos(φi − φi0)) + 0.5(1− cos(3(φi − φi0)))]. (S12)

φi is the dihedral angle formed between the four consecutive beads i, i+ 1, i+ 2, and i+ 3.

kdihed = 3 kJ mol−1. Equilibrium values for each angle and dihedral (θi0, φ
i
0) were taken from

the PDB structures for ordered proteins, and I-TASSER structure predictions for disordered

proteins.S14

Umemory takes the from Umemory(r) =
∑

i,j Vmemory(rij) with

Vmemory(rij) = εmemory

[
5

(
r0ij
rij

)12

− 6

(
r0ij
rij

)10]
, (S13)
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where rij is distance between atoms i and j, and r0ij is the equilibrium distance taken from

initial structures. During training, εmemory = 6 kJ mol−1 in ordered proteins, and εmemory =

3 kJ mol−1 in disordered proteins. Equilibrium distances (r0ij) are taken from PDB structures

or I-TASSER predictions.S14 This potential was restricted to regions identified as alpha

helices by the STRIDE algorithm’s assessment of the input structure.S15

Uelectrostatics accounts for electrostatic interactions between charged residues. Based on

the Debye-Hückle theory, it can be approximated as

Uelectrostatics =
∑
i,j

qiqj
4πε0rijε(rij)

exp(−rij/λD), (S14)

where ε0 is the permittivity of free space, λD is the Debye screening length, rij is the distance

between particles i and j, and qi and qj are charges of particles i and j. To maximize accuracy

at a minimal computational cost, we used a distance dependent dielectric constant, ε(rij),

to capture the change in the solvation environment upon protein folding.S16,S17 This new

dielectric takes the form

ε(rij) = A+
B

1 + ke−λBrij
, (S15)

where A = −8.5525, k = 7.7839, λ = 0.03627nm−1, and B = εw − A, where εw = 78.4 is

the dielectric constant of water. These parameters were shown to work well for describing

interactions at protein surfaces,S17,S18 and a plot for ε(rij) is provided in Figure S1.

Ucontact describes tertiary interactions, and is the sum of the contact energies between all

pairs of amino acids i and j separated at a distance rij, given by Ucontact =
∑

ij Vnb(rij, εIJ).

The pairwise potential is a combination of excluded volume and contact terms given by

Vnb(rij, εIJ) =
|εIJ |σ12

IJ

r12ij
+ εIJC(rij). (S16)

I and J correspond to the amino acid type of bead i and j. σIJ = σI+σJ
2

is defined using the

individual size of each amino acid type (Table S1).
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Simulation Details on Force Field Optimization

Paramterization of MOFF force field was based on simulations of 23 sequences, 7 from

ordered proteins and 16 from disordered proteins. Experimental values of radius of gyration

(Rg) and ionic strength are in Table S2. To carry out simulations with MOFF in GROMACS,

we implemented Umemory, Uelectrostatics, and Ucontact through tabulated potentials. Examples

on how to generate these tables are provided in the Scripts folder of our GitHub. Ubackbone

makes use of native GROMACS functionality. SMOG was used to extract equilibrium angles,

dihedrals, and distances from initial structures.S13

At each iteration, we carried out the following steps to update the force field.

(1): We carried out two independent replica exchange simulations for each one of the 23

proteins using UMOFF and UME. Each simulation consisted of 6 replicas (300, 320, 340,

360, 380, and 400 K) and lasted for 4 × 107 steps. We used a time step of 10 fs and

attempted exchanges every 100 steps, with odd pairs on odd attempts and even pairs

on even attempts. The first 1 × 107 steps were excluded for equilibration, and data

were recorded every 2× 104 steps, resulting in 1500 structures from each simulation.

(i) Initial configurations for these simulations were taken from PDB structures for or-

dered proteins and I-TASSER structure predictions for disordered proteins. Pro-

teins were placed in a cubic simulation box with side lengths of 50 nm. We then

performed the steepest descent energy minimization for 10000 steps with a cutoff

in the change in energy of 10 kJ mol−1 before using these structures as starting

configurations.

(ii) To determine UME (Eq. S2) for each protein, we used the same force field param-

eters as UMOFF, but placed a linear bias on the Rg using the PLUMED plugin.S19

The values for α in Eq. S2 were determined through manual tuning. α would be

positive if Rsim
g,i > Rexp

g,i , and negative if Rsim
g,i < Rexp

g,i . With this information, we

began the first iteration by scanning possible values of α with 5 kJ mol−1 nm−1
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increments to find an appropriate range for each protein. We then scanned that

range with 0.5 kJ mol−1 nm−1 increments. At each subsequent iteration, we began

with the α from the previous iteration, and tried shifting it in 0.5 kJ mol−1 nm−1

increments. In all cases, this process was repeated until |Rexp
g,i − RME

g,i | < 0.05nm,

where Rexp
g,i is the experimental radius of gyration and RME

g,i is the average Rg

from the 1500 structures sampled in the maximum entropy ensemble. This op-

timization was done for each protein i to determine a unique αi, and needs to

be independently repeated at each iteration of force field optimization. More ad-

vanced algorithms to determine α are possible, and would be particularly useful

if biases were placed on multiple variables.S20

Ready-to-run simulation files for the first and last iteration are available in the opti-

mization folder of our GitHub.

(2): From the two simulations performed for each protein, we collected 3000 structures to

build the list of equations in Eq. S6.

Before solving these equations, we first reduced noise and limited the change in our

force field from one iteration to the next. We removed noise from our data using single

value decomposition (SVD) to reconstruct the contract matrix, C, in Eq. S6. To do

this, we decompose C as

C = UΣVT , (S17)

where Σ is a matrix whose diagonal entries, σi, are the singular values of C. We then

keep only the largest values of σi that account for 95% of the variance, and reconstruct

the matrix C using Eq. S17, as seen in this script.

(3): For ordered proteins in our training set, we added additional equations specified in

Eq. S7 for all 3000 structures of each protein. In Eq. S7, γ represents how tightly the

constraint is enforced. The value for γ in Eq. S7 begins at 0, but is increased if no
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solution can be found at the current value of γ. The values used in our optimization

are given in Fig. S3B.

(4): We then solved the linear Eq. S6, with the constraint Eq. S7. The change in energy from

one iteration to the next was limited with the requirement |∆εIJ | < 2σMJ, where σMJ is

the standard deviation of all energies in the initial MJ matrix used in the first iteration

of the optimization. This constraint prevents an iteration of the algorithm from giving

unrealistically strong interactions to individual contact pairs. MATLAB’s constrained

linear least square solver solves this equation using the interior point algorithm, as seen

in this script.

(5): The amino acid contact energy was updated using values obtained from solving Eq. S6

and S7, ε′IJ = εIJ + ∆εIJ .

(6): We further normalize the contact energy (ε′IJ) to ensure that amino acids maintain

physiological size as the contact strength changes. Specifically, if ε′IJ < 0, the corre-

sponding effective contact energy, εnewIJ was chosen to normalize Vnb(rij, ε
new
IJ ) such that

Vnb(σIJ , ε
new
IJ ) = 0 and Vnb(rij, ε

new
IJ ) reaches a minimum value of ε′IJ . In this way, εIJ

and σIJ can be interpreted as analogues of ε and σ in a Lennard-Jones potential. In

this formalism,

εnewIJ =
ε′IJ · ε′IJ
|Vnorm|

, (S18)

where Vnorm is the minimum of Vnb(rij, ε
′
IJ). However, if ε′IJ > 0, then Vnb(rij) > 0,

and a different form of normalization is required. In this case, we chose

εnewIJ =
ε′IJ · ε′IJ
Vnorm

, (S19)

where Vnorm = Vnb(σIJ , ε
′
IJ). This normalization ensures Vnb(σIJ , ε

new
IJ ) = ε′IJ . Vnb(rij, ε

new
IJ )

was then used in simulations for the next iteration. This potential is exemplified in

Figure S17.
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(7): Finally, the new values of εnewIJ were used as εIJ in Eq. S16 to update UMOFF for the

next iteration of simulations.

Inital contact energies for MOFF

To initialize force field optimization with a list of contact energies, we scaled the Miyazawa-

Jerrigan (MJ) potentialS21 by a factor of 0.4, which was shown to best predict Rg for proteins

in the training set (Figure S2). These rescaled values were then normalized according to Eq.

S18 and S19 to obtain initial values for εIJ in Eq. S16.

Varying the secondary structure potential during optimization

During optimization, we began with weak secondary structure potentials introduced in Eq. S8

and Eq. S9, and then increased their strength to refine structure prediction. This allows our

optimization to first distinguish expanded from collapsed structures, and then improve for

structure prediction. At the start of the optimization, Uangle, Udihed, and Umemory were only

applied within individual α-helices and β-sheets of ordered proteins, which were determined

by STRIDE secondary structure determination of the PDB structure.S15 The initial energy

constants for Uangle, Udihed, and Umemory are ka = 40 kJ mol−1 deg−2 (Eq. S11), kdihed = 1

kJ mol−1 (Eq. S12), and εmemory = 2 kJ mol−1 (Eq. S13) respectively. From iteration 13

onward, we strengthened the potentials and applied them to the entire amino acid sequence

for both ordered and disordered proteins. The resulting equations are identical to those

described in Mathematical Expressions of Energy Function. The final Ubackbone is the same

in both ordered and disordered proteins, with ka = 120 kJ mol−1 deg−2 (Eq. S11) and

kdihed = 3 kJ mol−1 (Eq. S12). Umemory is slightly weaker in disordered proteins than in

ordered proteins with εmemory = 6 kJ mol−1 in ordered proteins and εmemory = 3 kJ mol−1 in

disordered proteins. This allows for increased helix flexibility in disordered proteins.
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Determination of Tθ

We determined the theta temperature (Tθ) for all proteins in the training set and validation

set. To make this determination, we preformed replica exchange simulations at windows from

80K to 720K for disordered proteins and 200K to 720K for ordered proteins with an increment

of 40K. Settings beside temperature were identical to the optimization simulations. Using

the simulated protein configurations, we determined the scaling exponent ν as a function of

temperature. ν was obtained by fitting the average distance between pairs of amino acids at

a given sequence separation to the expression R(|i− j|) = b|i− j|ν , with b = 0.55 nm.S22,S23

We then approximated Tθ as the temperature at which ν = 0.5 via linear interpolation.

Folding potential for HP1 tertiary structure stabilization

As mentioned in the main text, in its current form, MOFF has not yet achieved consistent

accuracy for de novo structure prediction. When studying large proteins with both ordered

and disordered regions, it is beneficial to include biases that stabilize the tertiary structure.

Therefore, in our simulations of HP1, we introduced Ufold(r) =
∑

i,j Vfold(rij), where

Vfold(rij) = εfold

[
5

(
r0ij
rij

)12

− 6

(
r0ij
rij

)10]
, (S20)

where rij is distance between atoms i and j, r0ij is the equilibrium distance taken from the

initial structure, and εfold can be determined by fitting to the RMSF of all atom simulations.

For the above definition, it is clear that Ufold(r) is a structure-based potentialS13 designed to

suppress large fluctuations away from the PDB conformation. The final potential for HP1

simulations used a combination of MOFF and the folding potential UMOFF(r)+Ufold(r). With

the ordered regions restricted to the PDB conformations, MOFF should provide accurate

description of interactions between domains within the same protein and interactions between

proteins. We provide a separate script to add such a folding potential to UMOFF(r).

We applied the folding potential, Ufold(r), to stabilize both the tertiary contacts found
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in both chromoshadow and chromo domains, and the contacts found at the interface of the

two chromoshadow domains. Contacts were determined by a shadow contact map of the

heavy atom structure, with a cutoff distance of 6 Å.S24 The strength εfold was determined

by fitting to the root mean squared fluctuation (RMSF) of the all atom simulations of the

protein dimer, as discussed further below. In all-atom simulations, the two chromoshadow

domains (residues 116-175) were solvated with water molecules. Monovalent ions were added

to neutralize charges of the protein with a concentration of 150mM salt. Simulations were set

up with CHARMM-GUIS25 and ran in the CHARMM36m force fieldS26 with the GROMACS

simulation package.S27 Periodic boundaries were enforced with 1 nm between the protein and

the nearest side of the simulation box (7.1nm× 7.1nm× 7.1nm). After energy minimization,

simulations of 10 ns in NVT and 20 ns in NPT were performed for equilibration. We then

carried out the NVT production simulations for 100 ns to compute the RMSF of each amino

acid. For comparison, we performed five coarse-grained simulations with εmemory at 2, 4, 6,

8, and 10 kJ mol−1 to compute the corresponding RMSF. The dimer was not stable at 2 and

4 kJ mol−1, and we chose εmemory = 6 kJ mol−1 as the final value as it minimized the

χ2 =
∑
N

(RMSFAA
i − RMSFMOFF

i )2

N
. (S21)

N is the number of residues in the chromoshadow domain. RMSFAA
i is the average RMSF

of residue i from all-atom simulation and RMSFMOFF
i is the average RMSF of residue i from

MOFF simulation with the given strength of pair potential (see Figure S18).

HP1 Slab Simulation Details

Slab simulations were used to determine the critical temperature for HP1 phase separa-

tion following the same procedure as Mittal and coworkers.S28,S29 We began by placing 100

HP1 dimers in a large simulation box (75nm× 75nm× 75nm). Previous studies found that

this system size was sufficient to prevent finite size effects.S28 After steepest decent energy
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minimization, we performed an NPT simulation for 0.1 µs at 150 K and 1 bar, using a

Parrinello-rahman isotropic bariostat and time coupling constant of 1 ps. This NPT sim-

ulation results in a dense phase of HP1 dimers in a smaller simulation box (approximately

25nm × 25nm × 25nm). We then expanded the z-coordinate of the simulation box by ap-

proximately a factor of 20, to 500 nm. This created a dense phase of protein, with dilute

phases on either side. Next, a 0.1 µs NVT simulation was conducted to linearly raise the

temperature from 150 K to the desired temperature, with a time coupling constant of 100

ps. Finally, 2 µs of production simulations were conducted in the NVT ensemble. The first

1 µs was discarded for equilibration, and the remainder was used for analysis. For HP1α,

simulations were conducted at 150 K, 200 K, 250 K, 267 K, 284 K, 300 K, 317 K, 334 K, 350

K, and 400 K. For HP1β, simulations were conducted at 150 K, 200 K, 217 K, 234 K, 250 K,

267 K, 284 K, 300 K, 350 K, and 400 K. For HP1γ, simulations were conducted at 150 K, 200

K, 234 K, 250 K, 267 K, 284 K, 300 K, 317 K, 350 K, and 400 K. These temperatures were

chosen to achieve good sampling around the phase separation temperature for each protein.

In MJ and MOFF-IDP, fitting was done based on simulations at 150 K, 200 K, 250 K, 300

K, and 400 K.

We then used the following procedure to monitor the collective behavior of HP1 dimers

and and determine the critical temperature, TC . We first computed a center of mass contact

matrix between pairs of HP1 dimers with a distance cutoff of 8 nm. Then, using a depth first

search algorithm,S30 we identified the size of the largest cluster of HP1 dimers. The distance

to the center of mass of the largest cluster along the z-axis, δz, was used to identify high

(δZ < 5nm) and low density (δZ > 50nm) region. The corresponding density is denoted as

ρH and ρL, respectively. The critical temperature, TC , was determined by fitting the density

at different temperatures (T ) to the following expression

ρH − ρL = A(TC − T )β, (S22)
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with β = 0.325 is the critical exponent. A and TC are determined by fitting. The minimum

temperature is selected so that ρL is non-zero. Fitting was performed over a range of tem-

peratures. As Eq. S22 is only valid below the critical temperature, the goodness of the fit

deteriorates as density values at temperature higher than TC were included (Figure S13).

We determined the final values for HP1α, HP1β, and HP1γ using densities below and equal

to 300 K, 250 K, and 267 K respectively.
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Figure S1: The dielectric constant used in this study is a function of distance (Eq. S15)
and continuously switches from the value in a protein environment (εprotein, yellow) to the
dielectric constant of water (εwater, red).
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Figure S2: The MJ potential was scaled by a factor of 0.4 to initialize the contact energy
(Eq. S16) for force field optimization. (A) The percent error defined in Eq. 4 of the main
text as a function of the scaling factor. The error quantifies the difference between simulated
and experimental radius of gyration (Rg) for proteins in the training set. It is evident that
u = 0.4 gives the smallest error. (B) Comparison between simulated and experimental Rg

for proteins included in the training set. Results obtained from simulations with the original
MJ potential (MJ(1.0)) and the one scaled by a factor of 0.4 (MJ(0.4)) are both shown.
Error bars represent the standard deviations after block averaging.
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Figure S3: Data from optimization of the MOFF force field. (A) Percent error (Eq. 4 of the
main text) as a function of optimization iteration for both the training set and validation
set. Optimization is terminated when the following two iterations do not improve the fit to
the validation set (yellow box). (B) The strength of the γ parameter was gradually increased
along the iteration to relax the energy gap constraint defined in Eq. S7.
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Figure S4: Probability distribution of the root mean squared displacement (RMSD) relative
to the PDB structure for ordered proteins in the training set. They were calculated using
replica-exchange simulations performed at iteration 15, i.e., with the converged MOFF force
field. As explained in Section: Simulation Details on Force Field Optimization, these simu-
lations were initialized from the PDB structure, but were given time for equilibration before
taking data. We only used the configurations collected for 300 K to compute the probability
distributions.
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Figure S5: Simulated annealing carried out with MOFF outperforms those with MOFF-IDP
in structure prediction. MOFF-IDP is a force field designed for IDPs using the maximum
entropy optimization algorithm.S1 To focus on the impact of non-bonded interactions on
structural prediction, we kept the first three terms in Eq. S8 unchanged between MOFF
and MOFF-IDP. The two force fields differ in the amino acid contact energy, i.e., εIJ in
Eq. S16. Initial structures of the annealing simulations were generated from simulations of
4 × 107 steps at 1000 K. Then, we performed 8 × 107 steps of annealing simulations where
the temperature was linearly lowered from 1000 to 100 K. Protein RMSD was collected
over the second half of the simulation, and the lowest value was recorded. These annealing
simulations were performed 10 times for each protein and force field combination.
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Figure S6: Contact energy matrix for MJ(0.4) (A) and MOFF-IDP (B), to compare with
MOFF in Figure 4A of the main text.
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Figure S7: Fitting Tθ with the frequency of amino acids by cluster with the least absolute
shrinkage and selection operator (LASSO). (A) The dependence of linear fitting coefficient
for each amino acid cluster (ci in Eq. 5 of the main text) as a function of the regularization
parameter (λ). The coloring scheme is the same as that in Figure 4A of the main text
(1-red, 2-brown, 3-green, 4-orange, 5-cyan, 6-blue). The dashed line represents the optimal
regression value calculated by cross validation. (B) Mean-squared error (MSE) of cross
validation fit as a function of λ. Optimal value of λ was chosen to minimize the MSE (black,
dashed line).
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Figure S8: Theta temperature (Tθ) calculations for proteins in the test set. (A) Polymer
scaling exponent (ν) as a function of T for ordered (blue) and disordered (orange) protein
sequences. (B) Tθ for proteins in the test set. The 300K mark is highlighted as a guide for
the eye (dashed, black).
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Figure S9: Clustering results for HP1 dimers. (A) Number of structures per cluster for HP1α
(blue) and HP1β (red). (B) Fraction of structures assigned to a cluster for HP1α (blue) and
HP1β (red). (C) Representative structures from the 20 most populated clusters. The top
20 clusters represent over 50% of the overall ensemble for both proteins.
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Figure S10: Simulation results for HP1γ. (A) Cartoon diagrams for HP1γ, with the dis-
ordered regions shown in yellow and ordered regions in blue and green. The red numbers
indicate sequence identity to HP1α for various protein regions.S31 (B) Probability distribu-
tions of the radius of gyration (Rg) for HP1α (blue), HP1β (orange), and HP1γ (yellow).
Dashed lines show mean values of each distribution. (C) Contact maps of HP1α (top right)
and HP1γ (bottom left), with cross-dimer interactions shown in the diagonal quadrants. (D)
Representative structure of HP1γ selected by clustering. (E) Probability distributions of the
radius of gyration (Rg) for HP1γ. (F) Representative structures from the 20 most populated
clusters.
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Figure S11: Probability distributions of the radius of gyration (Rg) for HP1α (A) and HP1β
(B) at different temperatures. Experimental values at room temperature are shown as dashed
lines.
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Figure S12: Size of the largest cluster formed by HP1 dimers as a function of time for HP1α
(A), HP1β (B), and HP1γ (C) simulations performed at different temperatures.
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Figure S13: Determining the TC of HP1 dimers through slab simulations. (A) Concentration
as a function of temperature for both the high density (ρH) and low density (ρL) phases.
This data was used to fit Eq. S22. (B) Mean squared error from the fit of Eq. S22 using
data below or equal to the temperature T. The best fit was determined as the temperature
value before the error increases sharply as indicated by square boxes.
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Figure S14: Comparison of inter-dimer and intra-dimer contacts in HP1α. (A) Example
configuration of HP1α cluster from slab simulations performed at 300 K, below TC . (B)
Contact map for pairs of amino acids from different dimers (bottom left) and from the same
dimer (top right) determined from slab simulations at 300 K. Axis is colored by the sequence
diagram in Figure 6A. The disordered NTE interacting with the opposite NTE, CD, or hinge
is highlighted in red, and the CTE interacting with the opposite CTE or CSD is highlighted
in green.
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Figure S15: Comparison of inter-dimer and intra-dimer contacts in HP1β. (A) Example
configuration of HP1β cluster from slab simulations performed at 250 K, below TC . (B)
Contact map for pairs of amino acids from different dimers (bottom left) and from the
same dimer (top right) determined from slab simulations at 250 K. Axis is colored by the
sequence diagram in Figure 6A. The disordered NTE interacting with the opposite NTE,
CD, or hinge is highlighted in red, and the CTE interacting with the opposite CTE or CSD
is highlighted in green. (C) Sample structure of a small cluster of HP1β at 300 K, above the
phase separation temperature.
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Figure S16: Comparison of inter-dimer and intra-dimer contacts in HP1γ. (A) Example
configuration of HP1γ cluster from slab simulations performed at 267 K, below TC . (B)
Contact map for pairs of amino acids from different dimers (bottom left) and from the same
dimer (top right) determined from slab simulations at 267 K. Axis is colored by the sequence
diagram in Figure S10. The disordered NTE interacting with the opposite NTE, CD, or
hinge is highlighted in red, and the CTE interacting with the opposite CTE or CSD is
highlighted in green. (C) Sample structure of a small cluster of HP1γ at 300 K, above the
phase separation temperature.
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Figure S17: Illustration of Vnb(rij, ε
new
IJ ) after normalization for ε′IJ < 0 (A) and ε′IJ > 0 (B).
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Figure S18: Determining the strength of the memory potential from all-atom simulations.
(A) Structure of the CSD dimer used in all-atom and coarse-grained simulations. (B) The
RMSF as a function of CSD residue is plotted for a variety of contact strengths, and compared
to the RMSF from all atom simulations. (C) The χ2, defined in Eq. S21, is plotted for each
of the contact strengths, revealing 6 kJ mol−1 is the optimal value.
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Table S1: Amino acid masses, charges, and sizes (σ) used in simulation.

Amino Acid Mass (amu) Charge σ (nm)

ALA 71.08 0 0.504
ARG 156.20 1 0.656
ASN 114.10 0 0.568
ASP 115.10 -1 0.558
CYS 103.10 0 0.548
GLN 128.10 0 0.602
GLU 129.10 -1 0.592
GLY 57.05 0 0.450
HIS 137.10 0.25 0.608
ILE 113.20 0 0.618
LEU 113.20 0 0.618
LYS 128.20 1 0.636
MET 131.20 0 0.618
PHE 147.20 0 0.636
PRO 97.12 0 0.556
SER 87.08 0 0.518
THR 101.10 0 0.562
TRP 186.20 0 0.678
TYR 163.20 0 0.646
VAL 99.07 0 0.586

S-33



Table S2: Description of proteins in the training set.

Protein sequence length ionic strength (mM) Rg (nm) Secondary Structure (SS)

1soyS32 106 157 1.530 α/β
1ubqS33 76 184 1.311 α/β
1wlaS33 153 162 1.650 α
3mzqS34 124 162 1.610 α/β
5tvzS35 103 155 1.824 β
6eezS36 186 166 1.884 α/β
6h8mS37 107 119 1.535 α/β
ACTRS38 71 199 2.51
An16S39 185 0 4.44

α-synucleinS40 140 185 3.31
ERM TADnS41 122 239 3.96
hNHE1cdtS38 131 199 3.63

IBBS42 97 162 3.20
N49S42 36 162 1.59
N98S42 151 162 2.86
NLSS42 44 161 2.40
NSPS42 176 162 4.10
NULS42 112 162 3.00
NUSS42 80 162 2.49
P53S43 93 208 2.87

ProTαS44,S45 111 155 3.79
SH4-UDS46 85 217 2.90

SicS47 92 162 3.21

Table S3: Description of proteins in the validation set.

Protein sequence length ionic strength (mM) Rg (nm) Secondary Structure (SS)

1fu1S48 117 150 1.359 α/β
1ljpS49 98 150 1.253 α/β
2ea9S50 103 150 1.267 α/β
4cpvS51 108 150 1.258 α
Ash1S52 83 150 2.85
K18S53 130 163 3.8
K25S53 185 163 4.4

rOPNS54 163 433 3.98
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Table S4: The radius of gyration of HP1 homologs. We find MOFF-IDP underestimates
the differences between HP1α and HP1β and predicts both are overly collapsed, while MJ
drastically underestimates the Rg of both HP1α and HP1β. Errors represent standard
deviations from five independent replica exchange simulations.

Protein SAXS Rg (nm) MOFF Rg (nm) MOFF-IDP Rg (nm) MJ Rg (nm)

HP1α 3.59S55 3.24± 0.08 3.07± 0.06 2.61± 0.01
HP1β 4.7S56 4.26± 0.08 3.42± 0.08 2.60± 0.02
HP1γ Not Available 3.75± 0.09 3.50± 0.05 2.57± 0.06

Table S5: TC of HP1 homologs in various models. We note that the MJ potential fails to
distinguish the phase separation of HP1 homologs. Meanwhile, MOFF-IDP gets the expected
trend, but underestimates the stability of the condensed phase.

Protein MOFF TC (K) MOFF-IDP TC (K) MJ TC (K)

HP1α 306.7 267.1 402.1
HP1β 252.9 205.8 401.5
HP1γ 268.0 200.6 411.9

Table S6: In practice, we highlight the energies ε′CPDB using folded structures obtained from
steepest decent energy minimization of the PDB structures. This minimization is necessary
to resolve steric clashes resulted from imperfect coarse-graining. As indicated by RMSD
values from the PDB structures, the changes caused by minimization is small.

Protein RMSD (nm)

1soy 0.148
1ubq 0.132
1wla 0.105
3mzq 0.143
5tvz 0.196
6eez 0.159
6h8m 0.127
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Training Sequences

1soy

MNDSEFHRLADQLWLTIEERLDDWDGDSDIDCEINGGVLTITFENGSKIIINRQEPLHQV

WLATKQGGYHFDLKGDEWICDRSGETFWDLLEQAATQQAGETVSFR

1ubq

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYN

IQKESTLHLVLRLRGG

1wla

GLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASED

LKKHGTVVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSKHP

GDFGADAQGAMTKALELFRNDIAAKYKELGFQG

3mzq

KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCSQ

KNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTTQANKHIIVACEGNPYVPVHF

DASV

5tvz

RVKPSASLKLHHDLKLCLGDHSSVPVALKGQGPFTLTYDIIETFSSKRKTFEIKEIKTNE

YVIKTPVFTTGGDYILSLVSIKDSTGCVVGLSQPDAKIQVRRD
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6eez

SNAARDNVTKSKISQYKDQIFDLTYPYSGNENSSVIAVGFLDYSCGHCKAIKNDIKQLIN

DGKIKYIFRDAPILGNASLKAAKSALAVYFLDKEKYFDFHHAALSHKGEFSDESILDIVK

NIGIDEDDFNDSIKDNADKIEQMINNSRLLVRDLGVGGTPFLIIGDSLFVGATDLNVLRK

KVDELS

6h8m

GFPIRLVDGENKKEGRVEVFVNGQWGTICDDGWTDKHAAVICRQLGYKGPARARTMAYFG

EGKGPIHMDNVKCTGNEKALADCVKQDIGRHNCRHSEDAGVICDYLE

ACTR

GTQNRPLLRNSLDDLVGPPSNLEGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELV

NQGQALEPKQD

An16

MHHHHHHPGAPAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTPS

SQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGA

PAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTPSSQYGAPAQTP

SSQYV

α-synuclein

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTK

EQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDP

DNEAYEMPSEEGYQDYEPEA
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ERM TADn

MDGFYDQQVPFMVPGKSRSEECRGRPVIDRKRKFLDTDLAHDSEELFQDLSQLQEAWLAE

AQVPDDEQFVPDFQSDNLVLHAPPPTKIKRELHSPSSELSSCSHEQALGANYGEKCLYNY

CA

hNHE1cdt

MVPAHKLDSPTMSRARIGSDPLAYEPKEDLPVITIDPASPQSPESVDLVNEELKGKVLGL

SRDPAKVAEEDEDDDGGIMMRSKETSSPGTDDVFTPAPSDSPSSQRIQRCLSDPGPHPEP

GEGEPFFPKGQ

IBB

GCTNENANTPAARLHRFKNKGKDSTEMRRRRIEVNVELRKAKKDDQMLKRRNVSSFPDDA

TSPLQENRNNQGTVNWSVDDIVKGINSSNVENQLQAT

N49

GCQTSRGLFGNNNTNNINNSSSGMNNASAGLFGSKP

N98

GCFNKSFGTPFGGGTGGFGTTSTFGQNTGFGTTSGGAFGTSAFGSSNNTGGLFGNSQTKP

GGLFGTSSFSQPATSTSTGFGFGTSTGTANTLFGTASTGTSLFSSQNNAFAQNKPTGFGN

FGTSTSSGGLFGTTNTTSNPFGSTSGSLFGP

NLS

ACETNKRKREQISTDNEAKMQIQEEKSPKKKRKKRSSKANKPPE

S-40



NSP

GCNFNTPQQNKTPFSFGTANNNSNTTNQNSSTGAGAFGTGQSTFGFNNSAPNNTNNANSS

ITPAFGSNNTGNTAFGNSNPTSNVFGSNNSTTNTFGSNSAGTSLFGSSSAQQTKSNGTAG

GNTFGSSSLFNNSTNSNTTKPAFGGLNFGGGNNTTPSSTGNANTSNNLFGATANAN

NUL

GCGFKGFDTSSSSSNSAASSSFKFGVSSSSSGPSQTLTSTGNFKFGDQGGFKIGVSSDSG

SINPMSEGFKFSKPIGDFKFGVSSESKPEEVKKDSKNDNFKFGLSSGLSNPV

NUS

GCPSASPAFGANQTPTFGQSQGASQPNPPGFGSISSSTALFPTGSQPAPPTFGTVSSSSQ

PPVFGQQPSQSAFGSGTTPN

P53

MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP

DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPL

ProTα

MSDAAVDTSSEITTKDLKEKKEVVEEAENGRDAPANGNAENEENGEQEADNEVDEEEEEG

GEEEEEEEEGDGEEEDGDEDEEAESATGKRAAEDDEDDDVDTKKQKTDEDD

SH4-UD

MGSNKSKPKDASQRRRSLEPAENVHGAGGGAFPASQTPSKPASADGHRGPSAAFAPAAAE

PKLFGGFNSSDTVTSPQRAGPLAGG
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Sic

GSMTPSTPPRSRGTRYLAQPSGNTSSSALMQGQKTPQKPSQNLVPVTPSTTKSFKNAPLLAP

PNSNMGMTSPFNGLTSPQRSPFPKSSVKRT

Validation Sequences

1fu1

MERKISRIHLVSEPSITHFLQVSWEKTLESGFVITLTDGHSAWTGTVSESEISQEADDMA

MEKGKYVGELRKALLSGAGPADVYTFNFSKESCYFFFEKNLKDVSFRLGSFNLEKVE

1ljp

TACTATQQTAAYKTLVSILSESSFSQCSKDSGYSMLTATALPTNAQYKLMCASTACNTMI

KKIVALNPPDCDLTVPTSGLVLDVYTYANGFSSKCASL

2ea9

MSNTTWGLQRDITPRLGARLVQEGNQLHYLADRASITGKFSDAECPKLDVVFPHFISQIE

SMLTTGELNPRHAQCVTLYHNGFTCEADTLGSCGYVYIAVYPT

4cpv

AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAIIDQDKSGFIEE

DELKLFLQNFKADARALTDGETKTFLKAGDSDGDGKIGVDEFTALVKA

Ash1

GASASSSPSPSTPTKSGKMRSRSSSPVRPKAYTPSPRSPNYHRFALDSPPQSPRRSSNSS

ITKKGSRRSSGSSPTRHTTRVCV

S-42



K18

MQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKVQIINKKLDLSNVQSKCGSKDNIKHVPG

GGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITH

VPGGGNKKIE

K25

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKAEEAGIGDTPSLEDEA

AGHVTQARMVSKSKDGTGSDDKKAKGADGKTKIATPRGAAPPGQKGQANATRIPAKTPPA

PKTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSS

AKSRL

rOPN

MPVKQADSGSSEQKQLYNKYPDAVATWLNPDPSQKQNLLAPQNAVSSSDDDDFKQETLPS

KSNESHDHMDDMDDEDDDDHVDSQDSIDSNDSDDVDDTDDSHQSDESHHSDESDELVTDF

PTDLPATEVFTPVVPTVDTYDGRGDSVVYGLRSKSKKHHHHHH

HP1 Sequences

HP1α

MGKKTKRTADSSSSEDEEEYVVEKVLDRRVVKGQVEYLLKWKGFSEEHNTWEPEKNLDCP

ELISEFMKKYKKMKEGENNKPREKSESNKRKSNFSNSADDIKSKKKREQSNDIARGFERG

LEPEKIIGATDSCGDLMFLMKWKDTDEADLVLAKEANVKCPQIVIAFYEERLTWHAYPED

AENKEKETAKS

S-43



HP1β

MGKKQNKKKVEEVLEEEEEEYVVEKVLDRRVVKGKVEYLLKWKGFSDEDNTWEPEENLDC

PDLIAEFLQSQKTAHETDKSEGGKRKADSDSEDKGEESKPKKKKEESEKPRGFARGLEPE

RIIGATDSSGELMFLMKWKNSDEADLVPAKEANVKCPQVVISFYEERLTWHSYPSEDDDK

KDDKN

HP1γ

MASNKTTLQKMGKKQNGKSKKVEEAEPEEFVVEKVLDRRVVNGKVEYFLKWKGFTDADNT

WEPEENLDCPELIEAFLNSQKAGKEKDGTKRKSLSDSESDDSKSKKKRDAADKPRGFARG

LDPERIIGATDSSGELMFLMKWKDSDEADLVLAKEANMKCPQIVIAFYEERLTWHSCPED

EAQ

S-44
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