Supplementary Material

Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of *Bacillus methanolicus* by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression by CRISPR Interference

Kerstin Schultenkämper¹, Desirée D. Gütle², Marina Gil López^{1†}, Laura B. Keller¹, Lin Zhang³ Oliver Einsle³, Jean-Pierre Jacquot² and Volker F. Wendisch^{1*}

- ¹ Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
- ² Univ Lorraine, INRAE, IAM, F-54000 Nancy, France
- ³ Institute for Biochemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany

* Correspondence:

Volker F. Wendisch volker.wendisch@uni-bielefeld.de

[†] Present address: Marina Gil López, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Supplementary tables

Strain	Relevant characteristics	Reference
Escherichia coli DH5α	General cloning host, F- <i>thi</i> -1 <i>endA</i> 1 <i>hsdR</i> 17(r ⁻ , m ⁻) <i>supE</i> 44 _ <i>lacU</i> 169 (80 <i>lacZ</i> _M15) <i>recA</i> 1 gyrA96 <i>relA</i> 1	(Hanahan, 1983)
Escherichia coli BL21 (DE3)	Protein production host, F- <i>ompT hsdSB</i> (r_B-m_B-) gal dcm (DE3)	(Studier and Moffatt, 1986)
Bacillus methanolicus MGA3	Wild type strain (ATCC 53907)	(Schendel et al., 1990)
Plasmid		
pET16b	Ap ^R ; T7 <i>lac</i> ; pBR322 origin, vector for N-terminal His tagged protein overproduction	- Novagen
pET16b- <i>fba</i> ^C	Ap ^R ; T7 <i>lac</i> ; pBR322 origin, <i>fba^C</i> sequence was inserted in <i>NdeI</i> CA^TATG cloning site	d (Stolzenberger et al., 2013a)
pET16b- <i>fba</i> ^p	Ap ^R ; T7 <i>lac</i> ; pBR322 origin, <i>fba^P</i> sequence was inserted in <i>NdeI</i> CA^TATG cloning site	d (Stolzenberger et al., 2013a)
pET16b- <i>glpX</i> ^C	Ap ^R ; T7 <i>lac</i> ; pBR322 origin, $glpX^C$ sequence from <i>B methanolicus</i> was inserted in <i>Nde</i> I CA^TATG clonin, site	e. (Stolzenberger et al., g 2013a)
pET16b- fba ^C - sdm1	pET16b derivative for the production of <i>B. methanolicus</i> His ₁₀ -tagged Fba ^C E51V mutant from <i>E. coli</i> BL21 (DE3), Ap ^R ; T7 <i>lac</i> ; pBR322 origin SDM of <i>fba</i> ^C E51V	f This study n 1
pET16b- fba ^C - sdm2	pET16b derivative for the production of <i>B. methanolicus</i> His ₁₀ -tagged Fba ^C T140R mutant from <i>E. coli</i> BL21 (DE3), Ap ^R ; T7 <i>lac</i> ; pBR322 origin, SDN of <i>fba</i> ^C T140R	f This study n 1
pET16b- fba ^C - sdm5	pET16b derivative for the production of <i>B. methanolicus</i> His ₁₀ -tagged Fba ^C E51V/T140I mutant from <i>E. coli</i> BL21 (DE3), Ap ^R ; T7 <i>lac</i> ; pBR32 origin, SDM of <i>fba</i> ^C E51V/T140R	f This study R 2
pET16b- fba ^P - sdm3	pET16b derivative for the production of <i>B. methanolicus</i> His ₁₀ -tagged Fba ^P V51E mutant from <i>E. coli</i> BL21 (DE3), Ap ^R ; T7 <i>lac</i> ; pBR322 origin, SDM of <i>fba^P</i> V51E	f This study n 1
pET16b- fba ^P - sdm4	pET16b derivative for the production of <i>B. methanolicus</i> His ₁₀ -tagged Fba ^P R140T mutant from <i>E. coli</i> BL21 (DE3), Ap ^R ; T7 <i>lac</i> ; pBR322 origin, SDM of <i>fba^P</i> R140T	f This study n 1
pET16b- fba ^P - sdm6	pET16b derivative for the production of <i>B. methanolicus</i> His ₁₀ -tagged Fba ^P V51E/R140T mutan from <i>E. coli</i> BL21 (DE3), Ap ^R ; T7 <i>lac</i> ; pBR322 origin SDM of <i>fba^P</i> V51E/R140T	f This study t
pET28a- <i>glpX</i>	pET28a derivative for the production of <i>C. glutamicum</i> His-tagged GlpX from <i>E. coli</i> BL21 (DE3), Knt ^R T7 <i>lac</i> ; pBR322 origin, <i>glpX</i> sequence from <i>C. glutamicum</i> was inserted in <i>Nde</i> I CA^TATG cloning site	n (Rittmann et al., 2003) ; g

Table S1: Bacterial strains and plasmids used in this study.

pNW33Nkan	Cm ^R , Km ^R ; pNW33N derivative in which the	(Irla et al., 2016)
	kanamycin-resistance gene was inserted	
piCas	Cm ^R , Km ^R ; pNW33N derivative, m2p controlled expression of <i>dcas9</i> , followed by terminator sequence of <i>S. pyogenes</i> . Contains another m2p promoter, which lacks 5'UTR, followed by <i>AvaI/XbaI</i> cloning site and dCas9 handle and terminator sequence of <i>S. pyogenes</i>	(Schultenkämper et al., 2019)
piCas- <i>tfba^C</i>	Cm ^R , Km ^R ; piCas derivative, 20 bp complementary to fba^{C} gene was inserted in <i>AvaI/XbaI</i> cloning site.	This study
piCas- <i>tfba^P</i>	Cm ^R , Km ^R ; piCas derivative, 20 bp complementary to fba^{P} gene was inserted in <i>AvaI/XbaI</i> cloning site.	This study
piCas- <i>ttkt^C</i>	Cm ^R , Km ^R ; piCas derivative, 20 bp complementary to tkt^{C} gene was inserted in <i>AvaI/XbaI</i> cloning site.	This study
piCas- <i>ttkt^P</i>	Cm ^R , Km ^R ; piCas derivative, 20 bp complementary to tkt^{P} gene was inserted in AvaI/XbaI cloning site.	This study

Cm^R, chloramphenicol resistance; Km^R, kanamycin resistance; Ap^R, ampicillin resistance;

Table S2:	Oligonu	cleotide	sequences	used in the	e present s	study.

Oligonucleotide	e ID Characteristic	Sequence [5'-3']
tfbaC_fwd	Fwd primer for annealing oligonucleotides and	<i>aaacgttttatgataaatat</i> aata
	synthesizing 20 bp region complementary to fba^{C} as	tctgccccagctctt
	target for CRISPRi with overlaps to piCas plasmid	
tfbaC_rev	Rev primer for annealing oligonucleotides and	tttctagctctaaaactcgaaag
	synthesizing 20 bp region complementary to fba^{c} as	agctgggggcagatatt
	target for CRISPRi with overlaps to piCas plasmid	
tfbaP_fwd	Fwd primer for annealing oligonucleotides and	aaacgttttatgataaatatccat
	synthesizing 20 bp region complementary to <i>fba</i> as	ggacagaacctaacgc
(fl D	target for CRISPRI with overlaps to piCas plasmid	
ubaP_rev	Rev primer for annealing ofigonucleotides and supposed in 20 hp region complementary to fhg^P as	togetteteteeteg
	target for CRISPRi with overlaps to piCas plasmid	lagglicigiccalgg
ttktC fwd	Fwd primer for annealing oligonucleotides and	aaacottttatoataaatatosto
ttkte_1wd	synthesizing 20 hp region complementary to tkt^{C} as	gaaagtotacotatco
	target for CRISPRi with overlaps to piCas plasmid	SumBistucSures
ttktC rev	Rev primer for annealing oligonucleotides and	<i>tttctagctctaaaactcga</i> cgat
_	synthesizing 20 bp region complementary to tkt^{C} as	acgtacactttccatc
	target for CRISPRi with overlaps to piCas plasmid	C
ttktP_fwd	Fwd primer for annealing oligonucleotides and	aaacgttttatgataaatatgatc
	synthesizing 20 bp region complementary to tkt^{P} as	aatatctattttttgt
	target for CRISPRi with overlaps to piCas plasmid	
ttktP_rev	Rev primer for annealing oligonucleotides and	aaacgttttatgataaatatgatc
	synthesizing 20 bp region complementary to tkt^{r} as	aatatctattttttgt
	target for CRISPRi with overlaps to piCas plasmid	
prol_fwd	Fwd primer for amplifying prol of Bacillus	caaggccgcttgaaaaggggga
	<i>methanolicus</i> , quality check for contaminating	aatgacaaatgaagaagcttactt
nnol mus	Boy primer for emplifying prol of Basillus	
proi_rvs	methanolicus quality check for contaminating	geggeegeggggtaccegggg
	genomic DNA in RNA samples	atectiaetgettiaetgitaetg
parA fwd	aRT-PCR fwd primer for analysis for <i>parA</i> expression	tecageetgaaggatatage
parA rev	aRT-PCR rev primer for analysis for <i>parA</i> expression	tetteggeactottgaagga
flac fred	apt DCD find gringer for analysis for the Composition	
IDaC_IWd	qKI-PCK IWD primer for analysis for <i>fba</i> ° expression	agccgttcagtctgttttc

fbaC_rev	qRT-PCR rev primer for analysis for <i>fba^C</i> expression	catececcatttateacattee
fbaP_fwd	qRT-PCR fwd primer for analysis for fba^P expression	cggtggacaagaagatgatgta g
fbaP_rev	qRT-PCR rev primer for analysis for <i>fba^P</i> expression	acgcaggtgcaaagcag
dCas9_fwd	qRT-PCR fwd primer for analysis for <i>dcas9</i> expression	cgtcgccgttatactggttg
dCas9_rev	qRT-PCR rev primer for analysis for <i>dcas9</i> expression	ctatcgccttgtccagacac
tktC_fwd	qRT-PCR fwd primer for analysis for <i>tkt^C</i> expression	gagaagacggaccaacacac
tktC_rev	qRT-PCR rev primer for analysis for <i>tkt^C</i> expression	taggagcaacgcatcaggag
tktP_fwd	qRT-PCR fwd primer for analysis for <i>tkt^P</i> expression	aaagaagcagcagagaagaag
tktP_rev	qRT-PCR rev primer for analysis for <i>tkt^P</i> expression	cgacacggtaaacaggaac
SDM1_fwd	Backbone amplification of pET16b- fba^{C} with a mutation in position 51 from E to V (SDM1), fwd primer	tcattttaggagtttctgtgggcgc cggccgctatatgg
SDM1_rev	Backbone amplification of pET16b- fba^{C} with a mutation in position 51 from E to V (SDM1), rev	catatagcggccggcgcccaca gaaactcctaaaatgac
SDM2_fwd	Backbone amplification of pET16b- fba^{C} with a mutation in position 140 from T to R (SDM2), fwd primer	aagcagagcttggacgcgttgg cggccaagag
SDM2_rev	Backbone amplification of pET16b- fba^{C} with a mutation in position 140 from T to R (SDM2), rev	tcttggccgccaacgcgtccaag ctctgcttc
SDM3_fwd	Backbone amplification of pET16b- fba^{P} with a mutation in position 51 from V to E (SDM 3), fwd primer	gttattatcggggtatctgaaggt gctgctaattacatg
SDM3_rev	Backbone amplification of pET16b- fba^{P} with a mutation in position 51 from V to E (SDM 3), rev	catgtaattagcagcaccttcaga taccccgataataac
SDM4_fwd	Backbone amplification of pET16b- <i>fba</i> ^P with a mutation in position 140 from R to T (SDM4), fwd primer	ggcagagctaggtaccatcggt ggacaag
SDM4 rev	Backbone amplification of pET16b- fba^{P} with a mutation in position 140 from R to T (SDM4), rev	cttgtccaccgatggtacctagct ctgcc
P212	Sequencing primer of pET16a plasmids (fwd)	gctaacgcagtcaggcaccgtgt a
P213	Sequencing primer of pET16a plasmids (rev)	gactcactataggggaattgtga

Overlapping regions are shown in italics; fwd: forward; rev: reverse; SDM: site directed mutagenesis.

Table 55. 5Divis characteristics.				
Name	Performed mutation(s)	Primer pair	Template	Relevant characteristics
FBA ^{C; E51V}	FBA ^C E51V	SDM1_fwd/ SDM2_rev	pET16b-fba ^C	Mutation in FBP binding site
FBA ^{C; T140R}	FBA ^C T140R	SDM2_fwd/ SDM2_rev	pET16b- <i>fba</i> ^C	Mutation in Zinc binding site
FBA ^{P; V51E}	FBA ^P V51E	SDM3_fwd/ SDM3_rev	pET16b-fba ^p	Mutation in FBP binding site

Table S3: SDMs characteristics.

FBA ^{P; R140T}	FBA ^P R140T	SDM4_fwd/ SDM4_rev	pET16b-fba ^P	Mutation in Zinc binding site
FBA ^{C; E51V,T40R}	FBA ^C E51V/T140R	SDM2_fwd/ SDM2_rev	pET16b-fba ^{C-} sdm1	Mutation in FBP and Zinc binding site (Double mutant)
FBA ^{P; V51E, R140T}	FBA ^P V51E/R140T	SDM3_fwd/ SDM3_rev	pET16b-fba ^{p-} sdm4	Mutation in FBP and Zinc binding site (Double mutant)

Table S4: Amino acid sequences of FBA^{C/P} and SDMs. Name Socretion

Name	Sequence
FBA ^C	MPLVSMTEMLNKAKAEGYAVGQFNLNNLEFTQAILLAAEEEKSPVILGVSEGAGRY
	MGGFKTVVNMVKGLMEDYKITVPVAIHLDHGSSFEKCKEVIDAGFTSVMIDASHHPF
	EENVEVTKKVVEYAHARGVSVEAELGTVGGQEDDVIADGVIYADPKECEELVKRTGI
	DCLAPALGSVHGPYKGEPNLGFKEMEEIGRITGVPLVLHGGTGIPTKDIQRAISLGTAK
	INVNTENQIASAKKVREVLAENPNMYDPRKYLGPARDAIKETVIGKMREFGSSGKA
FBA ^{C; E51V}	MPLVSMTEMLNKAKAEGYAVGQFNLNNLEFTQAILLAAEEEKSPVILGVS V GAGRY
	MGGFKTVVNMVKGLMEDYKITVPVAIHLDHGSSFEKCKEVIDAGFTSVMIDASHHPF
	EENVEVTKKVVEYAHARGVSVEAELGTVGGQEDDVIADGVIYADPKECEELVKRTGI
	DCLAPALGSVHGPYKGEPNLGFKEMEEIGRITGVPLVLHGGTGIPTKDIQRAISLGTAK
	INVNTENQIASAKKVREVLAENPNMYDPRKYLGPARDAIKETVIGKMREFGSSGKA
FBA ^{C; T140R}	MPLVSMTEMLNKAKAEGYAVGQFNLNNLEFTQAILLAAEEEKSPVILGVSEGAGRY
	MGGFKTVVNMVKGLMEDYKITVPVAIHLDHGSSFEKCKEVIDAGFTSVMIDASHHPF
	EENVEVTKKVVEYAHARGVSVEAELG R VGGQEDDVIADGVIYADPKECEELVKRTG
	IDCLAPALGSVHGPYKGEPNLGFKEMEEIGRITGVPLVLHGGTGIPTKDIQRAISLGTA
	KINVNTENQIASAKKVREVLAENPNMYDPRKYLGPARDAIKETVIGKMREFGSSGKA
FBA ^{C;}	MPLVSMTEMLNKAKAEGYAVGQFNLNNLEFTQAILLAAEEEKSPVILGVS V GAGRY
E51V,T140R	MGGFKTVVNMVKGLMEDYKITVPVAIHLDHGSSFEKCKEVIDAGFTSVMIDASHHPF
	EENVEVTKKVVEYAHARGVSVEAELG R VGGQEDDVIADGVIYADPKECEELVKRTG
	IDCLAPALGSVHGPYKGEPNLGFKEMEEIGRITGVPLVLHGGTGIPTKDIQRAISLGTA
_	KINVNTENQIASAKKVREVLAENPNMYDPRKYLGPARDAIKETVIGKMREFGSSGKA
FBA ^P	MPLVSMKDMLNHGKENGYAVGQFNINNLEFGQAILQAAEEEKSPVIIGVS V GAANY
	MGGFKLIVDMVKSSMDSYNVTVPVAIHLDHGPSLEKCVQAIHAGFTSVMIDGSHLPL
	EENIELTKRVVEIAHSVGVSVEAELG R IGGQEDDVVAESFYAIPSECEQLVRETGVDCF
	APALGSVHGPYKGEPKLGFDRMEEIMKLTGVPLVLHGGTGIPTKDIQKAISLGTAKIN
	VNTESQIAATKAVREVLNNDAKLFDPRKFLAPAREAIKETIKGKMREFGSSGKA
FBA ^{P; V51E}	MPLVSMKDMLNHGKENGYAVGQFNINNLEFGQAILQAAEEEKSPVIIGVS E GAANY
	MGGFKLIVDMVKSSMDSYNVTVPVAIHLDHGPSLEKCVQAIHAGFTSVMIDGSHLPL
	EENIELTKRVVEIAHSVGVSVEAELG R IGGQEDDVVAESFYAIPSECEQLVRETGVDCF
	APALGSVHGPYKGEPKLGFDRMEEIMKLTGVPLVLHGGTGIPTKDIQKAISLGTAKIN
D D1407	VNTESQIAATKAVREVLNNDAKLFDPRKFLAPAREAIKETIKGKMREFGSSGKA
FBA ^{P; R140T}	MPLVSMKDMLNHGKENGYAVGQFNINNLEFGQAILQAAEEEKSPVIIGVS V GAANY
	MGGFKLIVDMVKSSMDSYNVTVPVAIHLDHGPSLEKCVQAIHAGFTSVMIDGSHLPL
	EENIELTKRVVEIAHSVGVSVEAELGTIGGQEDDVVAESFYAIPSECEQLVRETGVDCF
	APALGSVHGPYKGEPKLGFDRMEEIMKLTGVPLVLHGGTGIPTKDIQKAISLGTAKIN
	VNTESQIAATKAVREVLNNDAKLFDPRKFLAPAREAIKETIKGKMREFGSSGKA
FBA ^{P; V51E,}	MPLVSMKDMLNHGKENGYAVGQFNINNLEFGQAILQAAEEEKSPVIIGVS E GAANY
R140T	MGGFKLIVDMVKSSMDSYNVTVPVAIHLDHGPSLEKCVQAIHAGFTSVMIDGSHLPL
	EENIELTKRVVEIAHSVGVSVEAELGTIGGQEDDVVAESFYAIPSECEQLVRETGVDCF
	APALGSVHGPYKGEPKLGFDRMEEIMKLTGVPLVLHGGTGIPTKDIQKAISLGTAKIN
	VNTESQIAATKAVREVLNNDAKLFDPRKFLAPAREAIKETIKGKMREFGSSGKA

Amino acid positions 51 and 140 are highlighted in red.

Table S5: X-ray data collection and refinement statistics.

Data sets	FBA ^C	FBA ^P	
PDB accession code	7NC7	7NCC	
Space group	C 2 2 2 ₁	C 2 2 2 ₁	
Cell constants $\begin{array}{c} a, b, c \ [\mathring{A}] \\ \alpha, \beta, \gamma \ [^{\circ}] \end{array}$	71.97, 98.26, 139.37 90, 90, 90	91.58, 122.12, 160.96 90, 90, 90	
Wavelength [Å]	1.54	1	
Resolution limits [Å]	27.41 - 2.20 (2.28 - 2.20)	45.79 - 2.00 (2.05 - 2.00)	
Completeness (%)	99.8 (98.0)	99.3 (99.4)	
Unique reflections	24421 (2158)	60641 (4427)	
Multiplicity (%)	4.1 (4.2)	13.4 (13.7)	
$R_{ m merge}{}^{ m a}$	0.395 (1.006)	0.156 (0.925)	
R _{p.i.m.}	0.229 (0.551)	0.044 (0.256)	
Mean I/ σ (I)	6.7 (1.7)	11.7 (3.0)	
CC _{1/2}	0.996 (0.521)	0.999 (0.661)	
Refinement statistics			
$R_{\mathrm{work}}^{\mathrm{b}}$ / R_{free}	0.192 / 0.248	0.194 / 0.258	
No. atoms	4324	4614	
Protein	4155	4288	
Ligand/ion	20	44	
Water	149	282	
B-factor [Å ²]	39.13	38.72	
Protein	39.12	38.26	
Ligand/ion	65.05	47.25	
Water	36.07	44.39	
R.m.s. deviations			
bond lengths [Å]	0.014	0.018	
bond angels [°]	1.66	2.13	
Ramachandran plot			
Favored (%)	96.81	96.63	
Allowed (%)	3.19	3.37	
Outliers (%)	0	0	

^a $R_{\text{merge}} = \sum_{hkl} \left[\left(\sum_{i} |I_{i} - \langle I \rangle \right) / \sum_{i} I_{i} \right]$ ^b $R_{\text{work}} = \sum_{hkl} ||F_{\text{obs}}| - |F_{\text{calc}}|| / \sum_{hkl} |F_{\text{obs}}|$ R_{free} is the cross-validation *R* value for a test set of 5 % of unique reflections

Supplementary figures

Fig. S1: Purification of distinct FBAs and mutants. SDS gels showing the purified FBA^C with mutants FBA^C; ^{E51V}, FBA^C; ^{T140R} and FBA^C; ^{E51V,T140R} (**A**), FBA^P with FBA^P; ^{V51E}, FBA^P; ^{R140T} and FBA^P; ^{V51E}, ^{R140T} (**B**) after His-Tag cleavage. Additionally, SeeBlueTM pre-stained protein standard (Thermo Fisher Scientific), was applied as marker (M).

Fig. S2: Growth of *B. methanolicus* MGA3 (piCas-*tfba*^{C/P}) strains. Cultivation was performed with methanol as sole carbon source (-) and additionally with mannitol for *dCas9* induction (+). Error bars indicating standard deviations (n=3)

Fig. S3: Michaelis Menten Plots to determine K_M for distinct FBAs and mutants in glycolysis (FBP cleavage). The specific activity (axis of ordinate) for FBA^C and SDMs (A) and FBA^P and SDMs (B) were applied against the FBP substrate concentration (axis of abscissa). The kinetic parameters were calculated according to Michaelis Menten kinetics (Michaelis et al., 2011).

Fig. S4: Lineweaver Burk Plots to determine K_M for distinct FBAs and mutants in gluconeogenesis (FBP synthesis) with GAP as substrate. Asymmetric intersecting initial velocity patterns for an equilibrium-ordered mechanism. The reciprocals of the specific activity (axis of ordinate) for FBA^C and SDMs (A) and FBA^P and SDMs (B) were applied against the reciprocals of the GAP substrate concentration (axis of abscissa). The kinetic parameters were calculated according to Lineweaver and Burk kinetics (Lineweaver and Burk, 1934).

6

Fig. S5: Lineweaver Burk Plots to determine K_M for distinct FBAs and mutants in gluconeogenesis (FBP synthesis) with DHAP as substrate. Asymmetric intersecting initial velocity patterns for an equilibrium-ordered mechanism. The reciprocals of the specific activity (axis of ordinate) for FBA^C and SDMs (**A**) and FBA^P and SDMs (**B**) were applied against the reciprocals of the DHAP substrate concentration (axis of abscissa). The kinetic parameters were calculated according to Lineweaver and Burk kinetics (Lineweaver and Burk, 1934).