
Supplementary Information - A Hierarchical 3D-motion Learning Framework for Animal Spontaneous Behavior Mapping  

Supplementary Information Page 1 

Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 1 | The workflow of the hierarchical 3D-motion learning framework. a Four 

main steps for a single experimental session: 1) Calibration (related to Supplementary Methods “The 

calibration of 3D motion capture system”). Using the auto-calibration module to quickly prepare 70 

groups of checkerboard images from various angles and positions for calibration and using the 

MATLAB StereoCameraCalibrator GUI to calculate the calibration parameters of the three pairs of 

cameras. This step is necessary only when the calibration parameters are unknown, or the cameras have 

been moved. 2) Data collection (related to Supplementary Methods Animals, behavioral experiments 

and behavioral data collection). Setting up the behavioral apparatus and preparing the animal and then 

using the multi-view video capture device to collect the synchronous behavioral videos. 3) 3D 

reconstruction (related to Supplementary Methods 3D pose reconstruction). Using the DLC pre-trained 
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1) Prepare the 70 groups of 
checkerboard photos by using the 
auto-calibration module;
2) Use MATLAB StereoCameraCalibrator 
GUI to calibrate three pairs of cameras. 

Differential behavioral 
phenotypes identification

Kinematics analysis

Behavioral modules annotation 
for supervised behavior recognition 

Use the multi-view video capture device to 
conduct the behavioral experiments and 
colllect four synchronized video streams.

1) Use the DLC to separately tracking the body 
features of four videos;
2) Perform the 3D skeleton reconstruction with 
2D coordinates of four views.  

Decompose NMs with the two-stage 
algorithm and obtain the behavior segment 
kernel matrix. 

Merge and dimensionality reduction Unsupervised clustering Downstream analysis

1) Calculate the overall segment kernel matrix of all 
involved behavior segments. Black boxes mark the 
matrix of every single session on the diagonal;
2) Perform the dimensionality reduction of the 
group segment kernel matrix and obtain the 2D 
feature space of NMs. 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1) Include the locomotion dimension and expand the 
behavior feature space to three dimensions to construct 
the behavioral map;
2) Perform the unsupervised hierarchical clustering to 
categorize the movement types;
3) Extract the ethograms of each behavioral experimental 
session. 

Behavior sequences timing 
pattern analysis......

Supplementary Fig. 1 | The workflow of the hierarchical 3D-motion learning framework. a Four main steps 
for a single experimental session: 1) Calibration (related to Supplementary Methods “The calibration of 3D 
motion capture system”). Using the auto-calibration module to quickly prepare 70 groups of checkerboard 
images from various angles and positions for calibration and using the MATLAB StereoCameraCalibrator GUI 
to calculate the calibration parameters of the three pairs of cameras. This step is necessary only when the calibra-
tion parameters are unknown, or the cameras have been moved. 2) Data collection (related to Supplementary 
Methods Animals, behavioral experiments and behavioral data collection). Setting up the behavioral apparatus 
and preparing the animal and then using the multi-view video capture device to collect the synchronous behav-
ioral videos. 3) 3D reconstruction (related to Supplementary Methods 3D pose reconstruction). Using the DLC 
pre-trained model to predict the animal’s 16 body-part 2D coordinates from the four separate videos, then 
performing the 3D skeleton reconstruction with the 2D coordinates from four views to obtain the animal’s 
postural time-series. 4) Behavior decomposition (related to Supplementary Methods Behavior decomposition). 
Performing the two-stage behavior decomposition on the pre-processed postural time-series. This step discovers 
the behavioral modules based on the optimal movement segmentation. Finally, these behavioral segments are 
aligned using the DTAK metric to construct the segment kernel matrix representing their similarity. b Group 
analysis based on specific biological questions. 1) Merge and dimensionality reduction (related to Supplementa-
ry Methods: Group segment kernel matrix and low dimensional embedding). According to experimental group-
ing, single session segment kernel matrices are merged into a group segment kernel matrix. To visualize the 
informative structure of the behavioral modules involved, we used dimensionality reduction to transform the 

a

b

group segment kernel matrix into a 2D space. 2) Unsupervised clustering (related to Supplementary Methods: 
Unsupervised clustering). Constructing the behavioral map by combining the NM space with the locomotion 
dimension, then using the unsupervised clustering algorithm to categorize the movement sequence into distinct 
types. After clustering, ethograms can be constructed by associating the behavioral labels with their original 
segments. 3) Downstream analysis. After obtaining each session's ethogram, the downstream quantitative analy-
sis can be conducted according to experimental grouping, recording stage, and other conditions to answer 
biological questions from behavioral aspects.
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model to predict the animal’s 16 body-part 2D coordinates from the four separate videos, then 

performing the 3D skeleton reconstruction with the 2D coordinates from four views to obtain the 

animal’s postural time-series. 4) Behavior decomposition (related to Supplementary Methods Behavior 

decomposition). Performing the two-stage behavior decomposition on the pre-processed postural time-

series. This step discovers the behavioral modules based on the optimal movement segmentation. 

Finally, these behavioral segments are aligned using the DTAK metric to construct the segment kernel 

matrix representing their similarity. b Group analysis based on specific biological questions. 1) Merge 

and dimensionality reduction (related to Supplementary Methods: Group segment kernel matrix and 

low dimensional embedding). According to experimental grouping, single session segment kernel 

matrices are merged into a group segment kernel matrix. To visualize the informative structure of the 

behavioral modules involved, we used dimensionality reduction to transform the group segment kernel 

matrix into a 2D space. 2) Unsupervised clustering (related to Supplementary Methods: Unsupervised 

clustering). Constructing the behavioral map by combining the NM space with the locomotion 

dimension, then using the unsupervised clustering algorithm to categorize the movement sequence into 

distinct types. After clustering, ethograms can be constructed by associating the behavioral labels with 

their original segments. 3) Downstream analysis. After obtaining each session's ethogram, the 

downstream quantitative analysis can be conducted according to experimental grouping, recording stage, 

and other conditions to answer biological questions from behavioral aspects. 
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Supplementary Fig. 2 | Illustration of the multi-view video capture device and the workflow of 

the auto-calibration module. a Schematic of the multi-view video capture device. The support 

framework is a 90 × 90 × 75 cm3 movable stainless steel shelf, on which cameras, behavioral apparatus, 

calibration modules, and background lighting are mounted. A shielding curtain can be added per 

experimental requirements. b The auto-calibration module is designed for efficient camera calibration 

in 3D and is composed of an LCD screen for displaying the checkerboard and a control unit used to tilt 

the screen. To collect images of the checkerboard pattern at different orientations relative to the cameras, 

the calibration program controls the screen to rotate and translate the checkerboard pattern at different 

tilt angles. With this auto-calibration module, the checkerboard images can be captured in one minute. 

c The multi-view video acquisition module. Four video streams, one per camera, are input to the PCI-

E USB-3.0 data acquisition card (expanded bandwidth). The acquisition program then uses multi-thread 

acquisition to ensure frame synchronization. d The two-part workflow of the auto-calibration program. 

The first part, shown on the left, automatically collects a variety of checkerboard patterns for each 

camera (70). Right, the calibration process, which is based on the MATLAB StereoCameraCalibrator 

GUI. 

  

a d

Supplementary Fig. 2 | Illustration of the multi-view video capture device and the workflow of auto-cali-
bration module. a The schematic diagram of multi-view video capture device. The support framework of the 
device is a 90 × 90 × 75 cm3 movable stainless steel shelf, which is used to mount cameras, place behavioral 
apparatus, calibration modules and background light source; According to the actual experimental requirements, 
consider whether to add a shielding curtain. b The auto-calibration module is designed for efficient 3D camera 
calibration, which is composed of an LCD screen used to display the checkerboard and a rudder unit used to tilt 
the screen. To collect images of checkerboard patterns at different orientations relative to the cameras, the 
calibration program controls the screen to rotate and translate the checkerboard pattern at different tilt angles. 
With this auto-calibration module, the checkerboard images can be captured in one minute. c The multi-view 
video acquisition module. Four digital cameras collected video streams are input to the PCI-E USB-3.0 data 
acquisition card (expand the bandwidth), and then the acquisition program uses multi-threaded acquisition to 
ensure frame synchronization. d The two parts workflow of auto-calibration program.  The first part shows on 
the left is to automatically collect a variety of (70) checkerboard patterns for each camera. The right part shows 
calibration process based on MATLAB StereoCameraCalibrator GUI. 

Multi-vew high-speed video 
acquisition engine and multi-thread 

synchronous collection module

Auto-calibration module

Run auto-calibration

Servos initialization

Refresh and capture 
calibration checkerboard

Tilt screen

Calculate calibration 
parameters

Detect features of calibration 
checkerboard

Run camera calibration

 Captured 140 
checkerboard images X4

X3
b

c



Supplementary Information - A Hierarchical 3D-motion Learning Framework for Animal Spontaneous Behavior Mapping  

Supplementary Information Page 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 3 | Calibration of cameras results. a-d one of 70 checkerboard images of each 

camera in four different placements. All of the checkerboards are fully captured in four different 

cameras placements with dark light. We use a 10-inch tablet to display checkerboard to calibrate four 

cameras, which could freely adjust the brightness and get appropriate brightness easily to keep the 

checkerboard clear enough. e-h the result of grid detection with MATLAB's StereoCameraCalibrator 

GUI corresponding to a-c and d images. The corner recognition of the checkerboard is located on the 

corner of the black squares. i-k mean reprojection of error per image (MREI). MREI gives the 

quantization level of calibration error between cameras and checkerboards, where the mean error in 

pixels (MEP) represents the pixel errors in each camera-checkerboard pair and overall mean error (OME) 

gives a whole estimation of pixel errors. l-n extrinsic parameters visualization (EPV) of the cameras. 

EPV shows the relative positions of two cameras and checkerboards in 3D space. If EPV is different 

from real relative positions, we should calibrate two cameras again until they are coincident. 
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Supplementary Fig. 3 | Calibration of cameras results. a-d one of 70 checkerboard images of each camera in 
four different placements. All of the checkerboards are fully captured in four different cameras placements with 
dark light. We use a 10-inch tablet to display checkerboard to calibrate four cameras, which could freely adjust 
the brightness and get appropriate brightness easily to keep the checkerboard clear enough. e-h the result of grid 
detection with MATLAB's StereoCameraCalibrator GUI corresponding to a-c and d images. The corner recogni-
tion of the checkerboard is located on the corner of the black squares. i-k mean reprojection of error per image 
(MREI). MREI gives the quantization level of calibration error between cameras and checkerboards, where the 
mean error in pixels (MEP) represents the pixel errors in each camera-checkerboard pair and overall mean error 
(OME) gives a whole estimation of pixel errors. l-n extrinsic parameters visualization (EPV) of the cameras. 
EPV shows the relative positions of two cameras and checkerboards in 3D space. If EPV is different from real 
relative positions, we should calibrate two cameras again until they are coincident.
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Supplementary Fig. 4 | Evaluation of 3D Reconstruction Quality with Different Camera Settings. 

a The likelihoods of the DLC pose estimations of four camera positions. P1, primary camera 1, S1, 

secondary camera 1, S2, secondary camera 2, S3, secondary camera 3. Each point on the boxplot 

represents the mean likelihood of each test recording, which is calculated by firstly averaging the 

likelihoods of all the body parts per frame then averaging them across all frames. The likelihoods show 

no significant differences among these cameras (One-sided Kruskal-Wallis test followed by Dunn's 

multiple comparisons test, p = 0.1339, n = 16). b The likelihoods of the 3D reconstructions of different 

camera groupings. 2C180, two cameras are placed in opposite directions. 2C90, two cameras are 

positioned in orthogonal directions. 3C, three cameras. 4C, four cameras. In the camera groupings 

2C180 and 2C90, each point on the boxplot is calculated by firstly specifically averaging the likelihoods 

of two paired body parts for calibration, then averaging all 16 paired averaged likelihoods per frame 

and finally averaging them across all frames. In the camera groupings of 3C and 4C, each point on the 

boxplot is calculated by firstly specifically averaging the first two maximum likelihoods of paired body 

parts for calibration from all the three or four points, then averaging all 16 paired averaged maximum 

likelihoods per frame, and finally averaging them across all frames. (One-way ANOVA followed by 

Tukey's multiple comparisons test, ****P < 0.0001, q = 10.62, DF = 60; n = 16). c The variances of the 

behavioral trajectories captured by different camera groupings. Each point on the plot is calculated by 

firstly computing the variances of each body part's trajectory in the X, Y, Z axis, then averaging them 

across X, Y, Z axis, and finally averaging them across 16 body parts. (One-way ANOVA followed by 

Tukey's multiple comparisons test, ****2C180 V.S. 2C90, P < 0.0001, q = 15.15, DF = 60; ****2C90 

V.S. 3C, P < 0.0001, q = 13.14, DF = 60; n = 16). d The variances of each body part in X, Y, Z 

coordinates of varying camera groupings, shown by body parts separately and presented as mean ± 

standard deviation (SD). The variances of each body part are calculated by firstly computing the 

variances of each body part's trajectory in X, Y, Z axis then averaging them across X, Y, Z axis. In box 

plots, the lower and upper edges of the box are the 25th and 75th percentiles of the values, the central 

marks indicate the median, the lower and upper whiskers are the minima, maxima values.   
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Supplementary Fig. 4 | Evaluation of 3D Reconstruction Quality with Different Camera Settings. a The 
likelihoods of the DLC pose estimations of four camera positions. P1, primary camera 1, S1, secondary camera 
1, S2, secondary camera 2, S3, secondary camera 3. Each point on the boxplot represents the mean likelihood of 
each test recording, which is calculated by firstly averaging the likelihoods of all the body parts per frame then 
averaging them across all frames. The likelihoods show no significant differences among these cameras 
(One-sided Kruskal-Wallis test followed by Dunn's multiple comparisons test, p = 0.1339, n = 16). b The likeli-
hoods of the 3D reconstructions of different camera groupings. 2C180, two cameras are placed in opposite direc-
tions. 2C90, two cameras are positioned in orthogonal directions. 3C, three cameras. 4C, four cameras. In the 
camera groupings 2C180 and 2C90, each point on the boxplot is calculated by firstly specifically averaging the 
likelihoods of two paired body parts for calibration, then averaging all 16 paired averaged likelihoods per frame 
and finally averaging them across all frames. In the camera groupings of 3C and 4C, each point on the boxplot 
is calculated by firstly specifically averaging the first two maximum likelihoods of paired body parts for calibra-
tion from all the three or four points, then averaging all 16 paired averaged maximum likelihoods per frame, and 
finally averaging them across all frames. (One-way ANOVA followed by Tukey's multiple comparisons test, 
****P < 0.0001, q = 10.62, DF = 60; n = 16). c The variances of the behavioral trajectories captured by different 
camera groupings. Each point on the plot is calculated by firstly computing the variances of each body part's 
trajectory in the X, Y, Z axis, then averaging them across X, Y, Z axis, and finally averaging them across 16 body 
parts. (One-way ANOVA followed by Tukey's multiple comparisons test, ****2C180 V.S. 2C90, P < 0.0001, q 
= 15.15, DF = 60; ****2C90 V.S. 3C, P < 0.0001, q = 13.14, DF = 60; n = 16). d The variances of each body part 
in X, Y, Z coordinates of varying camera groupings, shown by body parts separately and presented as mean ± 
standard deviation (SD). The variances of each body part are calculated by firstly computing the variances of 
each body part's trajectory in X, Y, Z axis then averaging them across X, Y, Z axis. In box plots, the lower and 
upper edges of the box are the 25th and 75th percentiles of the values, the central marks indicate the median, the 
lower and upper whiskers are the minima, maxima values. 
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Supplementary Fig. 5 | 3D reconstruction process and reliability evaluation of the occluded body 

parts. a The workflow of 3D reconstruction of a single body part: 1) estimate the two-dimensional 

coordinates of the animal's body part from four cameras; 2) select the cameras to be used for 

reconstruction by thresholding the likelihood of the estimated body part; 3) determine whether the 

number of cameras available meets the reconstruction requirements (2 or more); and 4) if 2 or more, 

reconstruct the 3D coordinate of the body part. Otherwise, the 3D reconstruction fails due to the 

occlusion. P1, primary camera. S1, first secondary camera. S2, second secondary camera. S3, third 

secondary camera. b The errors in 2D body-part estimations versus ground truth. The error rates are 

shown for each body part separately in the boxplot and averaged 0.534 ± 0.005%. In box plots, the 

lower and upper edges of the box are the 25th and 75th percentiles of the error rates, the central marks 

indicate the median, the whiskers extend to the most extreme data points not considered outliers, and 

the outliers are plotted individually using the dot symbol. c The proportional number of available 

cameras by body part. The average proportions are: no cameras, 0.004%; 1 camera, 0.015%; 2 cameras, 

0.038%; 3 cameras, 1.048%; 4 cameras, 98.895%. Abbreviation: n_cam. number of cameras, NaN. Not 

a Number. 
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Supplementary Fig. 5 | 3D reconstruction process and reliability evaluation of the occluded body parts. a 
The workflow of 3D reconstruction of a single body part: 1) estimate the two-dimensional coordinates of the 
animal's body part from four cameras; 2) select the cameras to be used for reconstruction by thresholding the 
likelihood of the estimated body part; 3) determine whether the number of cameras available meets the recon-
struction requirements (2 or more); and 4) if 2 or more, reconstruct the 3D coordinate of the body part. Other-
wise, the 3D reconstruction fails due to the occlusion. P1, primary camera. S1, first secondary camera. S2, 
second secondary camera. S3, third secondary camera. b The errors in 2D body-part estimations versus ground 
truth. The error rates are shown for each body part separately in the boxplot and averaged 0.534 ± 0.005%. In 
box plots, the lower and upper edges of the box are the 25th and 75th percentiles of the error rates, the central 
marks indicate the median, the whiskers extend to the most extreme data points not considered outliers, and the 
outliers are plotted individually using the dot symbol. c The proportional number of available cameras by body 
part. The average proportions are: no cameras, 0.004%; 1 camera, 0.015%; 2 cameras, 0.038%; 3 cameras, 
1.048%; 4 cameras, 98.895%. Abbreviation: n_cam. number of cameras, NaN. Not a Number.
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Supplementary Fig. 6 | Evaluation of the 3D reconstruction in cases of view-point–specific 

disappearances of body parts. a, d 2D pose tracking and 3D skeleton reconstruction of representative 

view-point disappearance frames from two different test apparatuses. a First test: square open field test. 

The behavior chamber is out of the field of view, and blind areas may occur when the animal enters the 

four corners; d Second test: circular open-field with a sociability cage. The mouse can easily be 

occluded by the cage, thus blind areas may exist in one or more perspectives. Top: selected frames with 

one or more views in which body parts disappear. Middle: magnification to show the disappearance 

details. Bottom: successfully reconstructed 3D skeletons shown in approximately the same views as the 

corresponding recordings. b, e The proportional number of cameras available for 3D reconstruction for 

each body part. In the first test, an average of 99.398 ± 0.149% of all frames showing the body part can 

meet the reconstruction requirements; In the second test, the average reconstruction rate of all body 

parts is 99.776 ± 0.150%. c, f The distribution of the number of available cameras for 3D reconstruction. 

a

Supplementary Fig. 6 | Evaluation of the 3D reconstruction in the view-point disappearance. a, d 2D pose 
tracking and 3D skeleton reconstruction of representative view-point disappearance frames from two different 
test apparatus (a First test: square open field test. The behavior chamber is out of the field of view, there may be 
blind areas when the animal enters the four corners; d Second test: circular open-field with a sociability cage. 
The mouse can be easily occluded by the sociability cage, thus the blind areas may exist in one or more perspec-
tives). Top: the selected frames with one or more views with body parts disappear. Middle: magnification of the 
mouse body to show the disappearance details. Bottom: the successfully reconstructed 3D skeletons showed in 
approximate the same views as the corresponding recording camera. b, e The proportion of number of available 
cameras for each body part 3D reconstruction. The data shows that in the first test, 99.398 ± 0.149% of all body 
parts’ frames can meet the reconstruction requirements on average; In the second test, the average reconstruction 
rate of all body parts is 99.776 ± 0.150%. c, f The distribution of the number of available cameras for 3D recon-
struction. The color-coded dots indicate how many cameras are used for reconstruction at that location. The 
positions of all the points are determined according to the x and y coordinates of the nose, and for visualization 
purposes, the samples are down-sampled to 10%. The proportion of the number of cameras used to reconstruct 
the 3D nose is shown on the left legend. 
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The color-coded dots indicate how many cameras are used for reconstruction at the indicated location. 

The positions of all the points are the x and y coordinates of the nose. For visualization purposes, the 

data are down-sampled to 10%. The proportional number of cameras used to reconstruct the nose in 3D 

is indicated in the key on the left. 
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Supplementary Fig. 7 | The procedure of data preprocessing. a The procedure of data quality control 

contains two main parts, a noise suppression sequence part ordered by five filtering modules and the 

SNR detection part. b The selected multi-dimensional time series of mouse skeleton are preprocessed 

by a data quality control procedure. The red arrows indicate that the apparent noises are suppressed, 

and the whole series doesn't miss too much rapidly changing details. c Eight skeleton frames are 

randomly selected for a demo of mice alignment. The results of center orientation alignment are 

demonstrated on the top view and side view. d The multi-dimensional time-series data quality of 12 

involved test mice are described, whose SNRs are more than 0.996, representing that there are averaged 

only four noise points in a thousand data points needed to be eliminated. Abbreviation: SNR. Signal-

to-noise ratio. 
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Supplementary Fig. 7 | The procedure of data preprocessing. a The procedure of data quality control contains 
two main parts, a noise suppression sequence part ordered by five filtering modules and the SNR detection part. 
b The selected multi-dimensional time series of mouse skeleton are preprocessed by a data quality control proce-
dure. The red arrows indicate that the apparent noises are suppressed, and the whole series doesn't miss too much 
rapidly changing details. c Eight skeleton frames are randomly selected for a demo of mice alignment. The 
results of center orientation alignment are demonstrated on the top view and side view. d The multi-dimensional 
time-series data quality of 12 involved test mice are described, whose SNRs are more than 0.996, representing 
that there are averaged only four noise points in a thousand data points needed to be eliminated. Abbreviation: 
SNR. Signal-to-noise ratio. 
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Supplementary Fig. 8 | Comparison of three algorithms of dimensionality reduction for the 

representation of the NM feature space structure. a Segment kernel matrix of a representative single-

session behavioral experiment recording. The matrix pixels represent the normalized similarity value 

of 937 pairs of decomposed movement segments. b-d Dimensionality reduction with the three most-

used algorithms: UMAP, tSNE (t-distributed stochastic neighbor embedding), and PCA (principal 

component analysis). For visualization purposes, the segment kernel matrix is reduced to two 

dimensions. e Quantification of local structure preservation by evaluation of the silhouette criterion 

values of the dimensionality reduction result of each algorithm. The silhouette criterion values are 

calculated by enumerating the clusters from two to twenty. The average silhouette criterion values are: 

UMAP, 0.557 ± 0.011; tSNE, 0.619 ± 0.021; PCA, 0.240 ± 0.039. f Quantification of global structure 

preservation by evaluation of the Spearman correlation coefficients between the original segment kernel 

matrix and the dimensionality-reducted result of each algorithm. For each algorithm, we first randomly 

subsampled 70% of the kernel matrix 20 times. Each time, the Spearman correlation coefficients are 

calculated between the selected segment kernel sub-matrix and the paired-wise distances of the 

dimensionality-reduced data. The average coefficients are: UMAP, 0.817 ± 0.001; tSNE, 0.326 ± 0.001; 

PCA, 0.913 ± 0.002. Statistics: ****UMAP V.S. tSNE, P < 0.0001, q = 309.3, DF = 57; ****UMAP 

V.S. PCA, P < 0.0001, q = 1568, DF = 57; ****tSNE V.S. PCA, P < 0.0001, q = 466.1, DF = 57 by 

one-way ANOVA followed by Tukey's multiple comparisons test. In box plots, the lower and upper 

edges of the box are the 25th and 75th percentiles of the values, the central marks indicate the median, 

the lower and upper whiskers are the minima, maxima values.  

  

  

Supplementary Fig. 8 | Comparison of three algorithms of dimensionality reduction for the representation 
of the NM feature space structure. a Segment kernel matrix of a representative single-session behavioral 
experiment recording. The matrix pixels represent the normalized similarity value of 937 pairs of decomposed 
movement segments. b-d Dimensionality reduction with the three most-used algorithms: UMAP, tSNE (t-dis-
tributed stochastic neighbor embedding), and PCA (principal component analysis). For visualization purposes, 
the segment kernel matrix is reduced to two dimensions. e Quantification of local structure preservation by 
evaluation of the silhouette criterion values of the dimensionality reduction result of each algorithm. The silhou-
ette criterion values are calculated by enumerating the clusters from two to twenty. The average silhouette criteri-
on values are: UMAP, 0.557 ± 0.011; tSNE, 0.619 ± 0.021; PCA, 0.240 ± 0.039. f Quantification of global struc-
ture preservation by evaluation of the Spearman correlation coefficients between the original segment kernel 
matrix and the dimensionality-reducted result of each algorithm. For each algorithm, we first randomly subsam-
pled 70% of the kernel matrix 20 times. Each time, the Spearman correlation coefficients are calculated between 
the selected segment kernel sub-matrix and the paired-wise distances of the dimensionality-reduced data. The 
average coefficients are: UMAP, 0.817 ± 0.001; tSNE, 0.326 ± 0.001; PCA, 0.913 ± 0.002. Statistics: ****UMAP 
V.S. tSNE, P < 0.0001, q = 309.3, DF = 57; ****UMAP V.S. PCA, P < 0.0001, q = 1568, DF = 57; ****tSNE 
V.S. PCA, P < 0.0001, q = 466.1, DF = 57 by one-way ANOVA followed by Tukey's multiple comparisons test. 
In box plots, the lower and upper edges of the box are the 25th and 75th percentiles of the values, the central 
marks indicate the median, the lower and upper whiskers are the minima, maxima values. 
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Supplementary Fig. 9 | Genotyping for Shank3 mice. a-h Full scans of PCR genotyping for the mice 

used in behavioral experiments. i Retested result for 95th sample due to unclear result in the first test. j 

PCR genotyping showing the Shank3B+/+(WT), Shank3B-/- (Shank3B KO), and Shank3B+/- (Shank3B 

HET) mice. k Working strategy for Shank3B mutant mice. Abbreviation: SH3. Src-homology domain 

3; PDZ. Postsynaptic density 95, PSD-85; Discs large, Dlg; Zonula occludens-1, ZO-1; Neo. neo 

cassette; SAM. The sterile alpha motif domain. 
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Supplementary Fig. 9 | Genotyping for Shank3 mice. a-h Full scans of PCR genotyping for the mice used in 
behavioral experiments. i Retested result for 95th sample due to unclear result in the first test. j PCR genotyping 
showing the Shank3B+/+(WT), Shank3B-/- (Shank3B KO), and Shank3B+/- (Shank3B HET) mice. k Working strat-
egy for Shank3B-mutant mice. Abbreviation: SH3. Src-homology domain 3; PDZ. Postsynaptic density 95, 
PSD-85; Discs large, Dlg; Zonula occludens-1, ZO-1; Neo. neo cassette; SAM. The sterile alpha motif domain.
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Supplementary Fig. 10 | Clustering quality evaluation and the number of clusters determination. 

a the fractions of movement bouts number (total number: 16607), the color-coded bars indicate the 

clustered movement types (totally 41 types). b the intra-CC (color-coded), and inter-CC (grey dots) of 

each movement group. The dots on each violin plot represents their intra-CC or inter-CC, and dots 

number in a pair of violin plot in each group are the same. c the cumulative distribution function of CQI 

of the movement clusters. The clusters represented by the curves on the right side have better clustering 

qualities, and their corresponding movements are more stereotyped. d the BIC of single-session 

experiment shows (related to Fig. 4) the most appropriate number of clusters in movement clustering 

could be chosen in the range of 10 to 20. e the BIC of all the mice's movements (related to Fig. 6) in 

movement space shows when the number of clusters is beyond about 20, the BIC of all the movements 

is tending to be steady, and the maximum BIC is in the range of 35 to 45.  Abbreviation: CC. Correlation 

Coefficient, CDF. Cumulative Distribution Function, CQI. Clustering Quality Index, BIC. Bayesian 

Information Criterion. 
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Supplementary Fig. 10 | Clustering quality evaluation and the number of clusters determination. a The 
fractions of movement bouts number (total number: 16607), the color-coded bars indicate the clustered move-
ment types (totally 41 types). b The intra-CC (color-coded), and inter-CC (grey dots) of each movement group. 
The dots on each violin plot represents their intra-CC or inter-CC, and dots number in a pair of violin plot in each 
group are the same. c The cumulative distribution function of CQI of the movement clusters. The clusters repre-
sented by the curves on the right side have better clustering qualities, and their corresponding movements are 
more stereotyped. d The BIC of single-session experiment shows (related to Fig. 4) the most appropriate number 
of clusters in movement clustering could be chosen in the range of 10 to 20. e The BIC of all the mice's move-
ments (related to Fig. 6) in movement space shows when the number of clusters is beyond about 20, the BIC of 
all the movements is tending to be steady, and the maximum BIC is in the range of 35 to 45. Abbreviation: CC. 
Correlation Coefficient, CDF. Cumulative Distribution Function, CQI. Clustering Quality Index, BIC. Bayesian 
Information Criterion.
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Supplementary Fig. 11 | The velocity-trajectory heatmaps of all the 10 Shank3B-/- (KO) mice and 

10 Shank3B+/+ (WT) mice. Compare the velocity-trajectory heatmaps between the two groups, KO 

mice have lower activity levels than WT mice. 
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Supplementary Fig. 11 | The velocity-trajectory heatmaps of all the 10 Shank3B-/- (KO) mice and 10 
Shank3B+/+ (WT) mice. Compare the velocity-trajectory heatmaps between the two groups, KO mice have 
lower activity levels than WT mice.
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Supplementary Fig. 12 | Group comparison of Shank3B KO mice under different conditions. a 

The movement fraction matrix of mice in ten different groups. The color-bars shown in the left indicate 

the group conditions for the corresponding rows of the matrix (see Supplementary Methods for further 

details). Each row in the fraction matrix represents the tested mouse, and each column corresponds to 

the behavioral module types arranged with the dendrogram in the bottom. For visualization and 

comparison purpose, the values of movement fraction matrix are normalized with z-score by rows. In 

each group, the row orders are determined by placing the sample with largest variance of the movement 

fraction, and then the other samples are ranked according to the decreasing correlation with the first 

row. b The cross-correlation coefficients matrix (CCCM) of the movement fractions among all ten 

groups samples. c The group comparisons of behavioral correlations between the selected conditions, 

KO1. KO-Male-5-6W-White-Circular n = 10
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Supplementary Fig. 12 | Group comparison of Shank3B KO mice under different conditions. a The move-
ment fraction matrix of mice in ten different groups. The color-bars shown in the left indicate the group condi-
tions for the corresponding rows of the matrix (see Supplementary Methods for further details). Each row in the 
fraction matrix represents the tested mouse, and each column corresponds to the behavioral module types 
arranged with the dendrogram in the bottom. For visualization and comparison purpose, the values of movement 
fraction matrix are normalized with z-score by rows. In each group, the row orders are determined by placing the 
sample with largest variance of the movement fraction, and then the other samples are ranked according to the 
decreasing correlation with the first row. b The cross-correlation coefficients matrix (CCCM) of the movement 
fractions among all ten groups samples. c The group comparisons of behavioral correlations between the select-
ed conditions, which are shown with twelve submatrices of b. d The behavioral statistics between ten groups. 
The comparison metric is determined by calculating the principal component (PC) of the CCCM, then using the 
first PC (PC1) to evaluate the overall behavioral differences across ten groups (One-sided Kruskal-Wallis test 
followed by Dunn's multiple comparisons test, ****KO1 V.S. WT1, P < 0.0001; ***KO2 V.S. WT2, P < 0.0006; 
**KO3 V.S. WT3, P = 0.002, *** KO4 V.S. WT4, P = 0.0005). In box plots, the lower and upper edges of the 
box are the 25th and 75th percentiles of the values, the central marks indicate the median, the lower and upper 
whiskers are the minima, maxima values. 
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which are shown with twelve submatrices of b. d The behavioral statistics between ten groups. The 

comparison metric is determined by calculating the principal component (PC) of the CCCM, then using 

the first PC (PC1) to evaluate the overall behavioral differences across ten groups (One-sided Kruskal-

Wallis test followed by Dunn's multiple comparisons test, ****KO1 V.S. WT1, P < 0.0001; ***KO2 

V.S. WT2, P < 0.0006; **KO3 V.S. WT3, P = 0.002, *** KO4 V.S. WT4, P = 0.0005). In box plots, 

the lower and upper edges of the box are the 25th and 75th percentiles of the values, the central marks 

indicate the median, the lower and upper whiskers are the minima, maxima values. 
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Supplementary Fig. 13 | Continuous long-term monitoring and analysis of mouse behavior. a The 

timeline of the behavioral recording period over 24 hours. b The normalized velocity of the mouse 

across 24 hours aligned to the timeline. c The decomposed behavioral modules shown with color-coded 

labels. d Three magnified representative behavioral modules and selected, single corresponding frames. 

Left, running on the litter; Middle, eating; Right, prolonged immobility resembling resting. e, f State 

transitions of the movement modules in night and day phases. g Differences in the state transitions 

between night and day. The color of the dots in e, f, and g correspond to the behavioral modules shown 

in c. The size of the dots represents the rank of the module probabilities over 24 hours. The color of the 

connections in e and f represents the direction from the previous state to the current state, and its color 

is the same as that of the previous state. The width of the connections in e and f represents the 

normalized two-state transition probability. The color and width of the connections in g represent the 

normalized difference between e and f. 
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Supplementary Fig. 13 | Continuous long-term monitoring and analysis of mouse behavior. a The timeline 
of the behavioral recording period over 24 hours. b The normalized velocity of the mouse across 24 hours 
aligned to the timeline. c The decomposed behavioral modules shown with color-coded labels. d Three magni-
fied representative behavioral modules and selected, single corresponding frames. Left, running on the litter; 
Middle, eating; Right, prolonged immobility resembling resting. e, f State transitions of the movement modules 
in night and day phases. g Differences in the state transitions between night and day. The color of the dots in e, 
f, and g correspond to the behavioral modules shown in c. The size of the dots represents the rank of the module 
probabilities over 24 hours. The color of the connections in e and f represents the direction from the previous 
state to the current state, and its color is the same as that of the previous state. The width of the connections in e 
and f represents the normalized two-state transition probability. The color and width of the connections in g 
represent the normalized difference between e and f.
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Supplementary Notes  

Calibration of the 3D motion capture system  

We used MATLAB's StereoCameraCalibrator GUI to calibrate the cameras’ 3D motion capture 

system. The GUI uses the basic principles of Zhang's calibration method 1. Furthermore, we prepared 

checkerboard pictures to obtain calibration parameters.  

First, we used the custom written Python code based on OpenCV to control the four cameras to 

capture checkerboard pictures synchronously. We used two different checkerboard display schemes in 

all our behavioral experiments. The old version uses a 10-inch tablet to display the checkerboard. The 

experimenter needs to control the synchronous image capturing of the four cameras by a keyboard 

shortcut, then move the checkerboard to different positions until each camera captures 70 images of the 

checkerboard (Supplementary Fig. 3a-d). To improve the efficiency of the checkerboard capturing step, 

we updated the 3D motion capture system. Thus, the new version uses a 32-inch displayer to show the 

checkerboards. Compared with the old version, the new version integrates the code of the checkerboard 

display, checkerboard moving, and four-camera checkerboard capturing, by using the 3D motion 

capture system to automatically capture the checkerboard images, thus not requiring manual operation 

(see Supplementary Fig. 2).  

After capturing the checkerboard images, we estimated the camera parameters using the following 

equation, assuming that X, Y, and Z were the 3D coordinate points of the stereo cameras: 

( )
0

00
1 0 0 1

1

X
u u

Y
P v v

Z

 


 
     
     =             

 

R t                                                             (1), 

where P  is a scaling constant, u  and v  are the pixel coordinates of the checkerboard image,   is 

the focal length divided by the length of the picture,   is the focal length divided by the width of the 

picture,   is the radial distortion parameter, 0u  and 0v  are midpoints in pixel coordinates of the image, 

R  is a rotation matrix, and t  is the translation vector. Zhang's calibration method can obtain ,  ,  , 

R , t , and P . Each camera acquired 70 calibration photos, summing to a total of 280 calibration 

photos by the four cameras (Supplementary Fig. 3). Moreover, we measured and recorded the grid's 

checkerboard size. We set one of the cameras as the primary camera and the remaining three cameras 

as sub-cameras. The cameras were divided into three groups, each containing a secondary camera and 

the primary camera (see Supplementary Fig. 4). In each group, we used StereoCameraCalibrator GUI 

to calibrate the two cameras and obtain three calibrated files.  

Mouse pose estimation 
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The DeepLabCut (DLC) toolbox2 was used to track the animal's 2D body features from the four 

separately recorded videos. We manually labeled about 3000 images as a training set to improve the 

environment adaptation of the DLC pose estimation model. The maximum number of iterations was 

1,200,000, and the final cross-entropy loss was 0.017. The training step took 20 hours on the NVIDIA 

GTX 2080Ti GPU. We used the trained network model to track a new video and obtain 16 feature 

points at each video frame, including the nose, neck, left front limb, right front limb, left hind limb, 

right hind limb, left front claw, right front claw, left hind claw, right hind claw, back, root tail, middle 

tail, and tip tail. Each video produced one feature file, and we obtained four feature files per 

experimental trial.  

3D pose reconstruction 

We used pose3d toolbox in MATLAB to perform the 3D reconstruction of the animal skeleton. 

This toolbox uses the triangulation algorithm to obtain 3D data, according to the following equation: 

i i=x P X                                                                             (2), 

where  , ,1 T
i i im n=x ,  = , , ,1 TI J KX , and  ,i i i i=P A R t . ix  is the coordinate of the 

matching point in the i  camera image; X  is a vector of 3D point; I , J , K  are the 3D points of X ; 

iP  is the projection matrix; iA  is the internal reference of the i th camera; iR  is the rotation matrix of 

the i th camera; and it  is the i th translation vector of the i th camera. In order to obtain X , we used the 

solution of the least square method, obtained by singular value decomposition 3. Specifically, three 

calibrated files and four feature files were used as input to the system of pose3d, and the system 

produced one 3D feature file as output. After this step, we rotated and translated the 3D coordinates to 

a horizontal direction for visualization and subsequent processing. To show the 3D reconstruction effect, 

we used the Delaunay triangulation 4 to fill the skeleton.  

Data pre-processing 

Data quality control  

Data quality control (Supplementary Fig. 7a) was performed to ensure the precision of follow-up 

algorithms. It included two steps: data noise suppression and data quality assessment.  

Data noise suppression: We built a suppression algorithm sequence of data noise, including a 

likelihood method, morphological noise detection, median filter 5, local median filter, and adaptive 

median filter. These algorithms were ordered as needed. The likelihood method involved a noise 

detection step. The likelihood of raw data in DLC was assessed, and a threshold was set to distinguish 

the noise and non-noise level likelihoods. We set the threshold to 95%; when the likelihood was smaller 

than 95%, the noise data points were detected. Morphological noise detection was used to identify a 

leap of body points at the physical morphological level. The most precise pose estimation frame was 
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selected automatically by the maximum likelihood frame as a template. The maximum body points 

distance of the template multiplied by a coefficient was set as a threshold to detect morphological 

saltation of animal skeletons by comparing the current maximum body points distance with the 

threshold. Next, the distance between two points, higher than the threshold, was marked as noise. The 

median filter is a widely used method for impulse noise. It replaces the impulse noise points by median 

values in a time window, which can effectively eliminate the impulse noise while keeping the high-

frequency details of data. Most noise data points in pose estimation can be seen as impulse noise; thus, 

the median filter was suitable to suppress them. The local median filter was used as an interpolation 

algorithm in our framework. We placed the median filter window across the noise data points detected 

by the likelihood method and morphological filter, and then replaced the noise data points by median 

data in the filter window. Since this filter only focuses on noise location, it does not influence the 

qualified data. The adaptive median filter is designed to substitute the median filter. The median filter 

has a fixed window width, thus treating all data at the same time scale. The adaptive median filter adopts 

a variable window width; thus, the impulse noise in different time scales can be disposed of more 

properly. We provide a default parameter of noise suppression algorithms sequence for preprocessing 

our 3D animal pose estimation data (likelihood method, morphological noise detection, and median 

filter with 1-s time window).  

Data quality assessment (Supplementary Fig. 7d): We calculated the multi-dimensional time series 

total energy of raw data, preprocessed data, and noise defined as the absolute value of the subtraction 

of raw data and preprocessed data. Next, we used these energies to assign a signal-to-noise ratio (SNR). 

The division of preprocessed data was used to calculate the SNR's total energy to the raw data total 

energy. 

Mouse alignment  

Mouse alignment included four steps (Supplementary Fig. 7c), and all alignments were carried out 

in a 3D Cartesian coordinate system: { , , }=Θ X Y Z .  

Step 1-Center alignment: We considered the back point as a center point and subtracted this value 

from the value of each body part in plane { , }X Y , so that each frame of mouse skeleton would have 

the same center coordinate value (0, 0) after center alignment.  

Step 2-Orientation alignment: We considered the vector from the back point to the tail root point 

as the orientation vector of each mouse. Thus, aligning the orientation of mice was similar to aligning 

the orientation of the orientation vector. We then computed rotation matrices from the orientation vector; 

the positive direction of the X  axis of each frame rotated the mouse skeleton to the same orientation 

by the rotation matrices in plane { , }X Y . The data points in Z  were not changed, thereby retaining the 

height information of the mouse skeleton.  
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Step 3-Size normalization: We determined that the size of mice could introduce bias in the 

decomposition of poses and movements because the weight of the body size is always larger than that 

of body movement in different mice. Considering that the length of the orientation vector could 

represent the size of the mouse skeleton, we calculated the distribution of orientation vector lengths of 

each mouse and chose the median value as the length pattern. Next, we set a standard length (practical 

value based on our tests on the range of the orientation vector acquired by our apparatus, which was set 

to 25) and calculated a list of size normalization factors by dividing the median value of orientation 

vector length with the standard length. All frames of skeletons were multiplied by the factors in different 

mice to correct the mouse size to a standard size. 

Following the mice alignment procedure, there were some dimensions of time series that could be 

reduced. The center point series in plane { , }X Y  and the endpoint of orientation vectors in the Y  axis 

were all zeros and would therefore only influence the time consumption but not the decomposition 

precision. Moreover, we focused on the body movements of mice. Previous reports have suggested that 

tail movements are relatively independent from those of the rest of the body6. Considering that rodents 

also emit other specific signals corresponding to other body parts (with the exception of the torso) 

through tail movements, the following motion quantification did not involve the motion features of the 

two parts of the tail. As our framework measured the inherent dynamic similarity of the time-series, the 

choice of features depended on the behavior of interest. Therefore, we removed nine dimensions from 

the 48 dimensions of the mouse time series and used 39 dimensions for the decomposition of poses and 

movements. 

Behavioral decomposition 

Behavioral decomposition was applied to non-locomotor movements (NM). First, we set 

1 2 39{ , ,..., }T=X x x x  as the 39-dimension (not including 3 points of the tail) time series after alignment, 

where each time series 1 2( , ,..., )N T
i i i ix x x=x  contains 1 N  ordered real values. X  represented the 

reduced spatial dimensions, from 39 to 2 dimensions, by uniform manifold approximation and 

projection (UMAP) 7, which could keep the global and local structures of data at the same time. We 

then set 1 2{ , }T=Z z z  as the dimension reducing time series and UMAPf  as the mapping of X  to Z  to 

obtain the following equation: 

( )UMAPf=Z X                                                                      (3), 

where ( )UMAPf   includes the parameters n_neighbors, set to 80, and min_dist, set to 0.3. 

Second, we used temporal reduction to decompose poses from Z . The temporal reduction 

involved density clustering in the time dimension to cluster Z  into posesk  clusters. The time dimension 

was represented by the distribution in which different centers of density can be seen as different poses 
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in A . We used default parameters of the density clustering method in UMAP to obtain the results of 

pose decomposition. We set 1 2{ , }T=U u u  as the poses decomposition time series, 1 2{ , ,.., }T
Nl l l=l  

as the clusters label, and DCf  as the density clustering mapping of Z  to U , to obtain the following 

equation:  

( )DCf=U Z                                                                              (4), 

where 2 MU IR , with M  being the number of poses, calculated by the temporal reduction length 

Lr  and continuous pose frames [ , ]pp p L+Z . In the latter, [1, ]p M , and L  is the number of continuous 

pose frames. Each [ , ]pp p L+Z  was decomposed into 
[ , ]j

pp p l+
Z  by Lr , and l  could be calculated as 

follows: 

, ceil( )
=

rem( , ), ceil( )

p
L

Lj
p

p
p L

L

L
r j

r
l

L
L r j

r






 =

                                                                (5), 

where ceil( )  is rounded up to an integer and rem( )  is the remainder. Next, we obtained a mapping 

list of 
[ , ]j

p
pp p l+

→Z U . The Lr  was set to 5.  

Third, we calculated the distance kernel matrix as ( ) ( )T m m  = K U U IR , where 

1 2{ , ,..., }T
M=K k k k  and 1 2( , ,..., )M T

i i i i  =k  were calculated from U . j
i  defines the similarity 

between iU  and jU , where we used the Gaussian kernel 8, as follows: 

2

( )( )
exp

2

T
i j i jj

i 
 − −

= − 
  

U U U U
. We fixed   to 30 to keep each U  from different videos having 

the same Gaussian kernel and mapping to the same high-dimensional space.  

Fourth, NMs were decomposed via aligned cluster analysis (ACA) 9,10 according to K . ACA 

involved two steps: initialization and optimization. We used spectral clustering (SC) 11 for initialization. 

We set 
11 1

1

=
P

P PP

 
 
 
  

D D
K

D D
 as the SC initialization distance kernel matrix, where each 

1 2{ , ,..., }T
p=D d d d  is the initial NM matrix and 1 2( , ,..., )p T

i i id d d=d . We set the cluster number mk  of 

SC to 30. Then, dynamic time alignment kernel (DTAK) was used as a metric to optimize ACA. C  was 

the cumulative kernel matrix of D  and was defined as 1 2{ , ,..., }T
p=C c c c , where c  is defined as 
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1 2( , ,..., )p T
i i ic c c=c . The DTAK uses C  and dynamic programming to calculate the similarity of two 

time series as follows: 

1
1

1
1

( , ) , max 2

j j
i i

p j j j
i j i i i

x y j j
i i

c d
c c d

p p
c d


−
−
−
−

 +
= = ++  +

C
c c                                                       (6) 

Then, the energy function of ACA was written as follows:  

1

2

[ , ) min 1 max
1 1

( , ) ( ) ( )
m

j j

k P
i

aca ij s s i j j
i j

J g n s s n 
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= −  − G s V z ，                                (7) 
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+

= =

− − + V z                                    (8), 

where {0,1} mk PG  is a cluster indicator matrix, s  is a vector containing the start and end of each 

NM, ijg  is the element of G  if V  belongs to cluster i  ( =1ijg ), otherwise, =0ijg ; ( )   is the 

mapping of the sequence into a feature space; V  is an NM series optimized until the optimal time 

duration; and z  is the center NM series of cluster i . 
1

2

[ , )( ) ( )
j j

i
s s i 

+
−V z  represents the distance 

between two NM time series V  and z , which is calculated as (6), where   is the DTAK of V  and 

z . In equation (5), +1[ , ]j js s  requires a specific range, which means that the temporal scale of each NM 

is restricted. We set minn  to 100 ms and maxn  to 2000 ms as the temporal scale range of NMs. After 

determining all the parameters, the acaJ  could be optimized as follows: 

1

2

[ , )
, , 1 1

, arg min ( , ) arg min ( ) ( )
m

j j

k P
i

aca ij s s i
i j

J g  
+

= =

= = −
G s G s

G s G s V z                             (9), 

which can be converted to a recursive form: 

[ , ]
1 ,

( ) min ( 1) min ( , )
i

acai
J J i J





 

 
= − + 

 G s V
G s                                              (10) 

To optimize G  and s  faster, the DPSearch tool was used to reduce the computational cost of 

ACA (introduced in detail in 9,10).  

Group segment kernel matrix and low dimensional embedding 

Following the optimization of ACA, the optimal G  and s  were confirmed. We set

1 2 39{ , ,..., }T=X x x x  as the NM time series and 1 2( , ,..., )N T
i i i ix x x=x  as the data points of NMs after 
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alignment, spatial reduction, and temporal reduction. The optimal DTAK (Supplementary Fig. 7) 

distance matrix T  could be calculated as follows: 

1 1 1

1

( , ) ( , )

( , ) ( , )

P

P P P

s s s s

s s s s

tdist tdist

tdist tdist

 
 

=  
 
 

X X X X

T
X X X X

                                                  (11), 

where 
2

( , ) ( ) ( )
i j i js s s stdist  = −X X X X  is the DTAK distance between two NMs dynamic 

isX  

and 
jsX .  

Next, T  was reduced from P dimensions to 2 dimensions by UMAP, which enabled large amounts 

of data to be more widely distributed. We set 1 2{ , }T=Y y y  as the two-dimension UMAP embedding 

of NMs, where each dimension 1 2( , ,..., )P T
i i i iy y y=y  contains the position of NMs in embedding. 

Thereafter, the velocity of each NM segment was added to the embedding as the third dimension. The 

velocity dimension represented the locomotion of animals. We set 1 2( , ,..., )T
Pv v v=v  as the velocity 

dimension and 1 2 3{ , , }T=C c c c  as the centroid of mice, to calculate the mean velocity of each segment 

as follows: 

2

ii s
i

Fsv
m

= C                                                                      (12), 

where =30Fs  is the framerate of each video, m  is the duration of the centroid segment sC , and sC  

is the difference of sC . The velocity dimension was added as an orthogonal dimension to Y ; thus, we 

obtained 3D embedding as 1 2{ , , }T=E y y v . The 3D embedding represented the patterns of NM and 

locomotion, built as a whole mouse movement space. To compare the three dimensions in the same 

unit, we removed the unit using the Z-score in each dimension of E . 1 2 3{ , , }T
z =E z z z  denoted the 

normalized embedding of E  after Z-scoring 12. 

Unsupervised clustering  

Hierarchical clustering 13,14 was used to cluster 3D embedding. The pairwise distance matrix D  

between zE  was calculated using a standardized Euclidean distance 15. Next, we used the inner squared 

distance 16 to obtain the linkage of D . The number of clusters was set to 11 and 41 in single- and multi-

videos embedding clustering, respectively, which was used to cut the hierarchical cluster tree. Hence, 

we obtained the 3D embedding label and the movement space for the further analysis of mouse 

movements.   

Clustering quality index (CQI) 
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To quantify the quality of clustering, we defined CQI (Supplementary Fig. 10). Setting the DTAK 

distance matrix as 1 2[ , ,..., ]T
N=T t t t , the movements features of the same cluster were 

1 2[ , ,..., ]m mN N T
m m m m=T t t t , where mN  is the number of m  movements. We first calculated the cross-

correlation coefficient of intra and inter of clusters: 

1 2

1 3

intra

inter

( , )

( , )

m m

m m

N N
m m

N N
m

xcorr

xcorr

 =


=

c T T

c T T
                                                             (13), 

where intra [ 1,1] −c  is the intra cross-correlation coefficient column vector of m  movements, 

inter [ 1,1] −c  is the inter cross-correlation coefficient column vector of m  movements, mN
mT  is 

randomly divided into 
1
mN

mT  and 
2
mN

mT  in equal and 1 2
m m mN N N+ =  , 

3
mN

mT  is randomly selected from a 

complementary set of mN
mT , and 

1
mN

mT  has the same number of 
3
mN

mT . intrac  represents the similarity in a 

cluster of movements, and interc  represents the similarity between a cluster of movements and other 

clusters of movements. Next, we used intrac  and interc  to build a cartesian coordinate system, as follows: 

inter intra{ , }=Θ c c . The better the quality of clustering, the closer to 1 is the value of intrac , and closer to 

–1 is the value of interc . Thus, we mapped Θ  to a new one-dimensional linear space, as follows: 

intra inter[ , ]T= Φ A c c                                                                 (14), 

where 2 2[ , ]
2 2

= −A  is the projection matrix from Θ  to Φ . In Θ , Φ  could be regarded as 

a linear function intra inter+ =0c c , effectively representing the relationships between intrac  and interc . 

Lastly, we normalized Φ  to [0,1]  by a sigmoid function to reduce the dynamic range of Φ  and 

calculated the CQI as follows: CQI=sigmoid( )Φ .   

Clustering quality correlation analysis 

 To compare the clustering similarity of inter and intra movement phenotype clusters 

simultaneously, we applied a correlation analysis with a linear regression 17. The feature vector of each 

behavioral module ( 1 n  vector) in the DTAK distance matrix ( n n ) represented the distance 

between each behavioral module, such that all dimensions of the feature vector would have the same 

unit to be compared. If two behavioral modules show a higher similarity, the correlation of their feature 

vector should also be similar. As such, we chose one behavioral module’s feature vector as the reference 

and randomly selected the feature vector of other behavioral modules as the targets for comparison. 

Each target with the reference formed a 2 n  list, which was plotted on the two-dimensional space for 
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linear regression and correlation analysis. The higher the R  value of the linear regression, the higher 

the correlation of the two behavioral modules.  

For inter clustering, we sequentially chose the behavioral module as reference and randomly 

selected three other behavioral modules’ feature vectors in the same cluster as targets to plot in the two-

dimensional space until all references were plotted with targets. Next, we performed linear regression. 

For intra clustering, we sequentially chose the behavioral module as reference and randomly selected 

three other behavioral modules’ feature vector out of the reference’s cluster. We then plotted them in 

the two-dimensional space in gray points until all references were plotted with targets. Similarly, we 

performed linear regression. Notably, only the regression lines of the inter clusters are plotted in the 

figure 5b. 

Mapping of new behavioral data to UMAP template 

To compare the behavioral patterns of Shank3B mutant mice under different conditions, the 84 sets 

of behavior data were mapped into the same feature space. Processing such big data is often limited by 

computing resources. Therefore, we used the existing UMAP space that was constructed using the 

behavioral modules of 6 Shank3B+/+ and 6 Shank3B-/- mice (data collected in an earlier experiment) as 

a template, and then used the UMAP toolbox in MATLAB and applied the default parameters to map 

the 84 behavioral datasets to the template 7,18. Following the mapping, the categories of new behavioral 

modules were determined using K-Nearest-Neighbor to assign categories for new behavioral modules 

in low-dimensional embedding.  

Moving intensity (MI) 

To quantify the movement of each body part, we defined the MI. We considered each body part 

as a particle, which means that its moving intensity was correlated to velocity and accumulated over 

time. Further, the intensity of each movement segment was the summation across time, similar to the 

concept of energy. Therefore, we defined MI similar to kinetic energy in physics, which is the energy 

possessed by an object during its motion, as follows: 

21
2kE mv=                                                                            (15), 

where kE  is the kinetic energy, m  is the mass of an object, and v  is the velocity of an object. 

Considering that the body parts have unit mass and simplifying the calculation, we defined 
1
2pm m=  

as the mass of body parts, with the value of pm  being 1. Next, the kinetic energy was transformed to 

MI, and the MI of a movement in different coordinates was calculated as follows: 
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                                                      (16), 

where xyE  is the mean MI in the XY coordinates plane, yzE  is the mean MI in the YZ coordinates 

plane, allE  is the mean MI in the XYZ coordinates space, N  is the dimension of movements, V  is the 

velocity matrix of different movements, and T  is the temporal length of V .  

After each MI of a body part in XY (horizontal) and YZ (vertical) plane coordinates was calculated, 

it was visualized in Fig. 5. We visualized the MI in specific top (XY) and side views (YZ). First, we 

averaged the positions of each body part across time to plot the average pose skeleton of each movement 

category, as shown in solid lines. Second, we meshed the plane of the average pose skeleton to create 

grids to visualize the MI. Each position of the skeleton had a corresponding MI parameter which was 

plotted on the grids. The MIs in the same grids were averaged to obtain the mean MI. Third, we 

calculated the frequency of representation of each body part in a grid cell to calculate the weighted MI. 

This step aimed to assess the position-correlated MI of the body parts describable by the MI value. 

Finally, the weighted MIs were plotted as a heat map to observe the movement areas of each body part 

and depict the movement intensity in specific positions.   

Traditional behavioral analysis 

To quantify mouse behaviors in the circular open field test, we first plotted the velocity-trajectory 

maps for behavioral visualization and then calculated the mean velocity, maximum velocity, locomotion 

velocity 19, and mean anxiety index 20 of Shank3B-/- and Shank3B+/+ mice (Supplementary Fig. 11). We 

extracted the back of each mouse in plane { , }X Y  as the centroid of the mouse and applied a backward 

difference of centroids to calculate the instantaneous velocities of each frame. Next, the instantaneous 

velocities of each frame were normalized to [0,1]  and plotted at the positions of mouse centroids of 

each frame in the same canvas, corresponding to the velocity-trajectory map after drawing all the points.  

The mean velocity mV  represented the mean activity of mice and was calculated as follows:  

( ) ( )2 21 1

2

N
i i i i

m c c c c
i

FsV x x y y
N

− −

=

= − + −                                                   (17), 
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where =30Fs  is the framerate of each video, N  is the number of frames in each video, and ( , )i i
c yx x  

is the mouse centroid of each frame in plane { , }X Y . The maximum velocity maxV  was calculated 

based on the instantaneous velocity ( ) ( )2 21 1i i i i
i c c c cV Fs x x y y− −= − + −  , as follows: 

max max( )V = V                                                                       (18), 

where  2 3, ,..., T
iV V V=V  is the velocity vector.  

The locomotion velocity lV  was calculated as follows: 

2

1 ,
M

l i i
i

V V V V
M =

=  thres                                                              (19), 

where Vthres  is the threshold of iV  to select the locomotion velocity from iV  set as 190, and M  is the 

number of selected iV .  

The mean anxiety index represented the anxious degree of mice and was calculated as follows: 

( )
2

,m tc tc R

m
m

x y
A


  

   
   =





T S

T
                                                         (20), 

where mT  is the trajectory map of each mouse,  is the 2D impulse function with the same size of 

mT , ( , )tc tcx y  is the center of mT  that makes the impulse of   locate to the center of mT , R  is the 

radius of the circular open field, 
2
RS  is a disk structural element with the half radius of the circular open 

field, and ( )
2

,tc tc Rx y S  is the 2D convolution of   and 
2
RS  that sets the disk structural element at 

the center of mT . ( )
2

,m tc tc Rx y
 

  
 

T S  represents the extraction of the mT  of the central circular 

region in the range of 
2
RS  by AND operation, and ( )  sums over the values of the matrix elements.   

State transitions analysis  

For the behavioral analysis of continuous long-term monitoring, we applied a state transition 

analysis for the behavioral modules (Supplementary Fig. 13 e, f, g) 21–23. The 31 behavioral modules 

were considered as states in the probabilistic graphical model. The probabilities of states were calculated 

approximately based on the fraction of the number of behavioral modules. The state transition 
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probabilities were calculated approximately based on the transition proportion of the number of 

previous behavioral modules to the current behavioral modules. The difference in the values of the 

transition probabilities between Night and Daytime were calculated approximately based on the 

difference between the behavioral modules’ proportion of Daytime from Night-time.    
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Supplementary Tables 

Supplementary Table 1 Definition of the behaviors (ethogram) for manual labeling 

Behavior Definition 

Running The mouse locomotes with relatively high speed. 

Trotting The mouse locomotes at a slow and intermittent pace. 

Stepping The mouse takes a step forward with a short distance locomotion.  

Diving The mouse bends down its body from standing state then stretches forward.  

Sniffing The mouse investigates environment with the nose held in the air or contacts the environment with 

nose closely.  

Rising The mouse rises from four legs on the ground to steadily stand on its hind legs. 

Right turning The mouse bends its body to right or turns body to right while walking. 

Up stretching The mouse stands on its hind legs while the front part of body stretches back and forth.  

Falling The mouse takes its croup as pivot and gets down with straight back from standing on its hind legs. 

Left turning The mouse bends its body to left or turns body to left while walking. 

Walking The mouse locomotes with relatively low speed. 

Rearing The mouse stands on its hind legs, and the back is straight. 

Hunching The mouse stands on its hind legs while the back is bent. 

Self-grooming The mouse licks its fur, grooms with the forepaws, or scratches with any limb. 
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Supplementary Table 2 The SHANK3 mice used in group comparison 
Experiments 

index 
Date 

Start 

time 

Mice index 

(genotyping result) 
Genotypes 

Ages 

(weeks) 
Sexes Environments 

Light 

conditions 

1 20201224 13:41 1030 (Fig. S9a) Shank3B-/- 5-6 Male Circular open field White light 

2 20201224 15:33 1038 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field White light 

3 20201224 16:27 1042 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field White light 

4 20201224 17:20 1051 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field White light 

5 20201225 12:05 765 (Fig. S9d) Shank3B+/+ 11-13 Male Circular open field White light 

6 20201225 12:33 771 (Fig. S9d) Shank3B-/- 11-13 Male Circular open field White light 

7 20201225 13:00 742 (Fig. S9d) Shank3B-/- 11-13 Male Circular open field White light 

8 20201225 13:27 789 (Fig. S9d) Shank3B-/- 11-13 Male Circular open field White light 

9 20201225 13:54 810 (Fig. S9d) Shank3B+/+ 11-13 Male Circular open field White light 

10 20201225 14:22 812 (Fig. S9d) Shank3B+/+ 11-13 Male Circular open field White light 

11 20201225 14:49 814 (Fig. S9d) Shank3B-/- 11-13 Male Circular open field White light 

12 20201225 15:16 818 (Fig. S9d) Shank3B+/+ 11-13 Male Circular open field White light 

13 20201225 16:12 753 (Fig. S9d) Shank3B-/- 11-13 Male Circular open field White light 

14 20201225 17:08 1053 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field White light 

15 20201226 12:25 754 (Fig. S9d) Shank3B+/+ 11-13 Male Circular open field White light 

16 20201226 13:49 829 (Fig. S9d) Shank3B-/- 11-13 Male Circular open field White light 

17 20201226 14:17 985 (Fig. S9e) Shank3B+/+ 11-13 Male Circular open field White light 

18 20201226 14:46 986 (Fig. S9e) Shank3B-/- 11-13 Male Circular open field White light 

19 20201226 15:13 982 (Fig. S9e) Shank3B+/+ 11-13 Male Circular open field White light 

20 20201226 15:41 767 (Fig. S9d) Shank3B+/+ 11-13 Male Circular open field White light 

21 20201226 16:36 773 (Fig. S9d) Shank3B-/- 11-13 Male Circular open field White light 

22 20201227 12:08 1032 (Fig. S9a) Shank3B+/+ 5-6 Female Circular open field White light 

23 20201227 12:36 1036 (Fig. S9a) Shank3B+/+ 5-6 Female Circular open field White light 

24 20201227 13:32 1050 (Fig. S9a) Shank3B-/- 5-6 Female Circular open field White light 

25 20201227 14:00 1068 (Fig. S9f) Shank3B-/- 5-6 Female Circular open field White light 

26 20201227 14:26 1061 (Fig. S9b) Shank3B+/+ 5-6 Female Circular open field White light 

27 20201227 14:53 1062 (Fig. S9b) Shank3B+/+ 5-6 Female Circular open field White light 

28 20201227 15:21 1063 (Fig. S9b) Shank3B-/- 5-6 Female Circular open field White light 

29 20201227 16:16 1065 (Fig. S9b) Shank3B+/+ 5-6 Female Circular open field White light 

30 20201228 11:57 1029 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

31 20201228 12:26 1030 (Fig. S9a) Shank3B-/- 5-6 Male Square open field White light 

32 20201228 12:53 1031 (Fig. S9a) Shank3B-/- 5-6 Male Square open field White light 

33 20201228 13:21 1033 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

34 20201228 13:49 1035 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

35 20201228 14:18 1038 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

36 20201228 14:46 1040 (Fig. S9a) Shank3B-/- 5-6 Male Square open field White light 

37 20201228 15:14 1042 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

38 20201228 15:41 1046 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

39 20201228 16:08 1051 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

40 20201228 17:02 1053 (Fig. S9a) Shank3B+/+ 5-6 Male Square open field White light 

41 20201229 14:04 1029 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 

42 20201229 14:31 1030 (Fig. S9a) Shank3B-/- 5-6 Male Circular open field Infrared 

43 20201229 14:59 1031 (Fig. S9a) Shank3B-/- 5-6 Male Circular open field Infrared 

44 20201229 15:26 1033 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 

45 20201229 15:54 1051 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 

46 20201229 16:48 1053 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 

47 20201229 17:15 1035 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 
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48 20201229 15:42 1038 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 

49 20201229 18:10 1040 (Fig. S9a) Shank3B-/- 5-6 Male Circular open field Infrared 

50 20201229 18:38 1042 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 

51 20201229 19:03 1046 (Fig. S9a) Shank3B+/+ 5-6 Male Circular open field Infrared 

52 20201230 11:47 69 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field White light 

53 20201230 12:44 65 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field White light 

54 20201230 13:12 12 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field White light 

55 20201230 14:36 58 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field White light 

56 20201230 15:07 69 (Fig. S9g) Shank3B-/- 5-6 Male Square open field White light 

57 20201231 11:43 65 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field Infrared 

58 20201231 12:11 12 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field Infrared 

59 20201231 13:04 57 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field Infrared 

60 20201231 13:32 58 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field Infrared 

61 20201231 14:47 12 (Fig. S9g) Shank3B-/- 5-6 Male Square open field White light 

62 20201231 15:41 57 (Fig. S9g) Shank3B-/- 5-6 Male Square open field White light 

63 20201231 16:09 58 (Fig. S9g) Shank3B-/- 5-6 Male Square open field White light 

64 20201231 16:40 69 (Fig. S9g) Shank3B-/- 5-6 Male Circular open field Infrared 

65 20210101 12:20 22 (Fig. S9g) Shank3B-/- 5-6 Female Circular open field White light 

66 20210101 12:48 24 (Fig. S9g) Shank3B+/+ 5-6 Female Circular open field White light 

67 20210101 13:15 25 (Fig. S9g) Shank3B+/+ 5-6 Female Circular open field White light 

68 20210101 13:41 19 (Fig. S9g) Shank3B-/- 5-6 Female Circular open field White light 

69 20210101 14:36 40 (Fig. S9g) Shank3B-/- 5-6 Female Circular open field White light 

70 20210101 15:08 33 (Fig. S9g) Shank3B-/- 5-6 Female Circular open field White light 

71 20210101 15:35 41 (Fig. S9g) Shank3B-/- 5-6 Female Circular open field White light 

72 20210101 14:02 45 (Fig. S9g) Shank3B+/+ 5-6 Female Circular open field White light 

73 20210107 20:20 H1 C57BL/6J 13 Male Circular home-cage 

Infrared 

cameras (12 

hours white 

light and 12 

hours dark) 

74 20200615 10:11 48 (Fig. S9h) Shank3B+/+ 5-6 Male Circular open field White light 

75 20200615 10:39 72 (Fig. S9h) Shank3B+/+ 5-6 Male Circular open field White light 

76 20200615 11:06 49 (Fig. S9h) Shank3B-/- 5-6 Male Circular open field White light 

77 20200615 11:33 58 (Fig. S9h) Shank3B-/- 5-6 Male Circular open field White light 

78 20200615 12:00 98 (Fig. S9h) Shank3B+/+ 5-6 Male Circular open field White light 

79 20200615 12:33 95 (Fig. S9i) Shank3B+/+ 5-6 Male Circular open field White light 

80 20200615 14:06 100 (Fig. S9h) Shank3B-/- 5-6 Male Circular open field White light 

81 20200615 14:33 84 (Fig. S9h) Shank3B-/- 5-6 Male Circular open field White light 

82 20200615 15:00 41 (Fig. S9h) Shank3B-/- 5-6 Male Circular open field White light 

83 20200615 15:27 44 (Fig. S9h) Shank3B+/+ 5-6 Male Circular open field White light 

84 20200615 15:54 39 (Fig. S9h) Shank3B-/- 5-6 Male Circular open field White light 

85 20200615 16:21 36 (Fig. S9h) Shank3B+/+ 5-6 Male Circular open field White light 
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Supplementary Table 3 The individual level comparison between Shank3B+/+ and Shank3B-/- mice 

 KO1 KO2 KO3 KO4 KO5 KO6 KO7 KO8 KO9 KO10 Group 

Difference 

▲ 

WT1 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▽ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0  

M14: 2 

M21: 0 

M22: 0 

M38: 10 

M39: 9 

M40: 10 

M41: 10 

WT2 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0 

M14: 0 

M21: 0 

M22: 1 

M38: 8 

M39: 10 

M40: 10 

M41: 10 

WT3 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▲ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▽ 

M40▲ 

M41▽ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0 

M14: 0 

M21: 1 

M22: 0 

M38: 8 

M39: 9 

M40: 10 

M41: 9 

WT4 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0 

M14: 1 

M21: 0 

M22: 3 

M38: 10 

M39: 10 

M40: 10 

M41: 10 

WT5 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▲ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▲ 

M22▲ 

M38▲ 

M39▽ 

M40▽ 

M41▽ 

M5▽ 

M14▽ 

M21▲ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▲ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▲ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0 

M14: 0 

M21: 5 

M22: 3 

M38: 10 

M39: 9 

M40: 9 

M41: 9 
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WT6 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▲ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▲ 

M21▲ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▽ 

M41▽ 

M5▽ 

M14▲ 

M21▲ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▽ 

M5▲ 

M14▽ 

M21▲ 

M22▽ 

M38▲ 

M39▲ 

M40▽ 

M41▲ 

M5▽ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 2 

M14: 4 

M21: 3 

M22: 1 

M38: 10 

M39: 10 

M40: 8 

M41: 8 

WT7 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▲ 

M21▲ 

M22▽ 

M38▽ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▽ 

M40▽ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0 

M14: 2 

M21: 1 

M22: 0 

M38: 8 

M39: 9 

M40: 9 

M41: 10 

WT8 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▲ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▲ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▲ 

M14▲ 

M21▲ 

M22▲ 

M38▽ 

M39▽ 

M40▲ 

M41▲ 

M5▲ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▽ 

M40▽ 

M41▲ 

M5▽ 

M14▲ 

M21▽ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▲ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▲ 

M40▲ 

M41▲ 

M5▲ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 6 

M14: 4 

M21: 1 

M22: 3 

M38: 7 

M39: 8 

M40: 9 

M41: 10 

WT9 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▲ 

M22▲ 

M38▽ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▲ 

M38▽ 

M39▽ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▲ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▲ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0 

M14: 1 

M21: 1 

M22: 3 

M38: 7 

M39: 9 

M40: 10 

M41: 10 

WT10 M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▲ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▽ 

M39▲ 

M40▽ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5▽ 

M14▽ 

M21▽ 

M22▽ 

M38▲ 

M39▲ 

M40▲ 

M41▲ 

M5: 0 

M14: 0 

M21: 1 

M22: 0 

M38: 9 

M39: 10 

M40: 9 

M41: 10 

All Group 

Difference▲ 

M5: 8, M14: 14, M21: 13, M22: 14, M38: 87, M39: 93, M40: 94, M41: 96 

 
MX: X the index of behavioral module; 

▲: KO individual shows higher fraction of X behavioral module than WT; 

▽: KO individual shows lower fraction of X behavioral module than WT;  

Group Difference ▲(MX: n): The number of KO individuals with higher X behavior modulus fractions than WT 

is n; 
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All Group Difference ▲(MX: m): In all the 100 times paired-wise comparisons, the number of times that KO 

individuals with higher X behavior modulus fractions than WT is m. 
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