
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This paper presents a parallel, multi-layered framework to learn the hierarchical dynamics and 

generate an objective metric to map the behaviour of a mouse into the feature space. 

Furthermore, 3D kinematics with the low-cost multi-view motion capture system have been 

analysed and discussed in this paper. The authors also demonstrated that the proposed technology 

can identify the animal behaviours and transgenic animal disease models from the behaviour 

monitoring. 

 

The major weakness of this paper is the lack of novel contribution. The proposed system mainly 

consists of a number of standard components developed by other researchers in the community. 

In addition, the bio-markers identified in this research lack convincing supportive evidence. The 

reviewer will further comment on these aspects in the following discussion. 

 

1. Novelty of the research: 

The authors stated that "most recent end-to-end machine learning based behaviour analysis 

methods focused on recognizing behavioural identities in a static way or based on limited 

observations". The statement was based on limited survey on the related topics. In fact, a number 

of research projects have addressed dynamical and continuous activities of mice, e.g. 

(1) https://www.sciencedirect.com/science/article/pii/S0165027017301139, (2) 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220751. 

 

(1.1) 3D motion capture: 

The 3D motion capture system is based on the standard apparatus, camera calibration, pose 

estimation (Ref 17), and 3D skeletal reconstruction (Ref 41). It is reasonable to include the state 

of art technologies at this stage. However, the issues are, the stages of pose estimation/3D 

skeletal reconstruction miss the investigation on body occlusion and view-point disappearance. 

 

(1.2) Non-locomotor movements with dynamic time alignment Kernel: 

Center alignment and rotation transformation have been applied in the pre-processing stage. This 

process is tedious indeed. Afterwards, a temporal reduction algorithm is used to merge the 

adjacent similar poses, which group wrong poses into individual pose categories. The standard 

DTAK method is also used to measure the similarity between sequences. However, it is not clear 

why not use the standard DTW method in this case. 

 

(1.3) Mapping mouse movements with low-dim embeddings and unsupervised clustering: 

A standard UMAP method is used to preserve both the local and global structure of the dataset. 

However, it is not clear to the reader why this method must be used - lacks supporting evidence. 

BIC is used to model the structure but how? 

 

(1.4) Kinematic validation of mouse behavioural phenotypes: 

MI components have been constructed to describe the postural difference but 'why and how' are 

not explained. 

 

2. Identification of behavioural signatures of mouse disease models: 

Two groups of mice have been used to investigate possible bio-markers. 6 KO and 6 WT mice may 

suggest something but more substantial experiments must be conducted before the conclusive 

statement can be made. For example, it is required to evaluate the mouse movement monitoring 

in different times, different grouping, and different environments/lighting. 

 

Finally, I shall comment on the supplementary documents. The technical description in the supple-

files is confusing with poor reasoning. The figures and equations shown in the document are not 

clearly illustrated. 



 

 

 

Reviewer #3: 

Remarks to the Author: 

I the manuscript “A Hierarchical 3D-motion Learning Framework for Animal Spontaneous Behavior 

Mapping” Huang et al., present a novel framework to study mouse behaviour by 3D visualization 

with multiple cameras. The authors used a combination of computational approaches to 

decompose small kinematics, learn about the dynamics and then provide a metric for mapping 

behaviours according to the features extracted. 

The work is very well constructed, implemented and described in the manuscript. I have no doubt 

that it represents an advance in the field. It is outside my background a full understanding of 

specific details of this work. However, I have appreciated the potential and some of the limits. 

Here below a few comments that I hope will help to improve this work. 

 

One of the problems we have in extracting behavioural features from visual-based systems is the 

quality of the picture, the contract of lights and the occlusions. This is particular relevant when 

multiple animals are present in the same cage. These issues are not addressed in this work, and 

all 4 cameras acquire good quality images. I wonder whether the authors have considered to test 

the limit of their approach reducing the number of cameras (from the analyses). 

 

The spatial structure of Figure 1c can be very useful in understanding mouse behaviour. I wonder 

to which extend this spatial structure is similar, or variable, across mice with the same 

background, whether the same mouse across temporal distant recording reproduces the same 

pattern and whether one can imagine pattern that are periodic, for example during the 24 hours. 

 

The authors stated very clearly in different points of the manuscript that they based their study on 

a conceptual framework, which is that “behaviour adheres to a bottom-up hierarchical 

architecture”. Regardless some convenience, for example they report a two-stage decomposition, 

and in there one can appreciate some computational efficiency advantage, for example associated 

to redundancy in behaviours. However, I haven’t understood how a bottom-up approach in this 

sense should provide a best match with neuronal codes. Are the authors suggesting that it will be 

possible, next step, to link fast neuronal activities to this temporal distinct behavioural 

architecture? If so, it seems to go against a parallel representation of the behaviour within the 

brain, do the authors want to comment on that? 

 

Fig 4 and 6, the map of the behavioural phenotypes. How is the “fractions” defined? The authors 

seem to present a very detailed metric for dissecting behavioural feature from, for example, 

different genotypes. I wonder how much this is a group effect and whether the same feature is 

present in all individuals of the same group? Are there any other combinatorial behaviours that 

present different clusters within the same group? 

 

I believe that one of the strength of this work is the decomposition of behaviour, which can then 

be tracked in time and used to predict modules of behaviour. I think that should this be applied 

extensively to behavioural studies will provide more convincing information about the validity. At 

the current state a longer monitoring in time, across days of individual animals would have 

provided, perhaps, a strongest validation of this framework. 

 

One more last thing, although it is outside of the scope of this study, are the authors planning to 

extend this framework to mouse social interaction? As I said, this won’t change what they have 

nicely achieved in this study, it is just a curiosity and an interest that involve everyone in the 

community. 
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Responses to the Review Comments (NCOMMS-20-43913) 
 

We wish to thank two reviewers for their thoughtful and detailed reviews of our previous submission. These inputs prompted us to 

undertake the revision of our manuscript. This document provides a point-by-point response to the comments raised by the review 

panel. We believe the revised paper is better positioned, more focused, and makes a stronger contribution to the literature. We 

sincerely hope that you will find that this revised manuscript has improved substantially and is heading in the right direction. As the 

team shares several common comments, you may find some of our response repeated in the responses document. We feel that this 

approach makes it easier for each reviewer to read our response to his or her comment directly without jumping back and forth to 

different parts of our response document. Except for the language improvements, all other changes made to the Manuscript, 

Supplementary Methods and Figure Legends are highlighted in yellow. 
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Reviewer #1 (R#1) 

COMME

NT No. 
REVIEW COMMENTS AUTHORS’ RESPONSES 

R#1 (1) This paper presents a parallel, multi-layered 

framework to learn the hierarchical dynamics and 

generate an objective metric to map the behaviour 

of a mouse into the feature space. Furthermore, 3D 

kinematics with the low-cost multi-view motion 

capture system have been analysed and discussed in 

this paper. The authors also demonstrated that the 

proposed technology can identify the animal 

behaviours and transgenic animal disease models 

from the behaviour monitoring. 

The major weakness of this paper is the lack of 

novel contribution. The proposed system mainly 

consists of a number of standard components 

developed by other researchers in the community. 

In addition, the bio-markers identified in this 

research lack convincing supportive evidence. The 

reviewer will further comment on these aspects in 

the following discussion.     

 

We thank the reviewer for the summary of our work and also very 

much appreciate the reviewer's comments on the manuscript. Based 

on these suggestions, we have added new experiments, new data, and 

further analysis and validation. We address the reviewer's concerns 

point-by-point in the following text. We hope that these responses 

satisfy the reviewer's concerns. The revised manuscript has been 

improved based on the reviewer's suggestions. 

We have better presented the novelty of 3D motion capture system.  

1) Highlighted our novelties by presenting the easy-to-use and robust 

solution for 3D animal behavior capture device. We extended the 

description of the fast calibration, synchronized multi-view video 

acquisition hardware. (related to Supplementary Fig. 2);  

2) Proved that our system is a flexible and low-cost solution through 

the systematic validations for 3D animal behavior collection. 

These validations include: tested the limit of the system by 

reducing the number of cameras (related to Supplementary Fig. 

4); validated the performance of 3D motion capture system in 

cases of body-part occlusion and viewpoint disappearance (related 

to Supplementary Fig. 5-6);  

R#1 (2) 1. Novelty of the research: Thank you for the insightful comments. We agree that such a 

description in the abstract may cause confusion. This sentence was 

intended to reflect one of the major contributions of our work: we are 
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The authors stated that "most recent end-to-end 

machine learning based behaviour analysis methods 

focused on recognizing behavioural identities in a 

static way or based on limited observations". The 

statement was based on limited survey on the 

related topics. In fact, a number of research projects 

have addressed dynamical and continuous activities 

of mice, e.g. 

(1)https://www.sciencedirect.com/science/article/pii

/ S0165027017301139, (2) 

(2 )https://journals.plos.org/plosone/article?id=10.1

371/ journal.pone.0220751.  

 

the first to propose a learning framework for motion dynamics 

inspired by the structure of natural behavior. Issues we address are the 

high-dimension of postural features, the large variability in the 

temporal scale, and the irregularity in the periodicity of the behavior 

primitives (movements) that increase the complexity of mammalian 

behavior. Therefore, we should first study the dynamic and 

hierarchical characteristics to decompose and discover the behavioral 

motifs, instead of just recognizing a given behavior feature sequence 

or using a static, fixed time window to segment behavior. 

 

According to your suggestion, we have rewritten a sentence to make 

this clear: 

- In Manuscript page 1, lines 19-21 (Abstract) 

However, the recent end-to-end machine-learning-based methods for 

behavior analysis mostly focus on recognizing behavioral identities 

on a static timescale or based on limited observations. 

 

We have carefully studied the two papers you referred. The 

continuous and long-term behavior recordings conducted in these 

papers has inspired us to conduct a continuous 24-hour recording 

experiment. The preliminary data reflects the circadian rhythm, 

proving that our framework has the potential for long-term 

monitoring and analysis. Moreover, our framework uses 3D multiple 

body-part posture tracking, which provides a more comprehensive 

and accurate representation of behavior and goes beyond the 

techniques used in these papers. The dynamic sub-second behavior 

decomposition of our method also has a higher time resolution for 

behavior identification than do the 20-sec moving windows used in 

one of the papers. 

https://www.sciencedirect.com/science/article/pii/
https://www.sciencedirect.com/science/article/pii/
https://journals.plos.org/plosone/article?id=10.1371/
https://journals.plos.org/plosone/article?id=10.1371/
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As suggested, we added these papers as references and added the new 

of 24-hour recording data: 

- In Manuscript page 10, lines 322-327 (Discussion) 

For example, to study animal circadian rhythms, previous researchers 

have used electrophysiological and behavioral recording approaches 

to characterize different brain states 1,2. We used our framework to 

perform a continuous 24-hour behavioral recording, and the 

preliminary analysis proved that our framework could provide more 

comprehensive behavioral parameters and detailed quantification of 

behavior states (Supplementary Fig. 13).  

 

- In Supplementary Methods page 16, lines 337-366 

(Supplementary Fig. 13 and figure legend) 

Supplementary Fig. 13 | Continuous long-term monitoring and 

analysis of mouse behavior. a The timeline of the behavioral 

recording period over 24 hours. b The normalized velocity of the 

mouse across 24 hours aligned to the timeline. c The decomposed 

behavioral modules shown with color-coded labels. d Three 

magnified representative behavioral modules and selected, single 

corresponding frames. Left, running on the litter; Middle, eating; 

Right, prolonged immobility resembling resting. e, f State transitions 

of the movement modules in night and day phases. g Differences in 

the state transitions between night and day. The color of the dots in e, 

f, and g correspond to the behavioral modules shown in c. The size of 

the dots represents the rank of the module probabilities over 24 hours. 

The color of the connections in e and f represents the direction from 

the previous state to the current state, and its color is the same as that 

of the previous state. The width of the connections in e and f 
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represents the normalized two-state transition probability. The color 

and width of the connections in g represent the normalized difference 

between e and f. 

 

R#1 (3) (1.1) 3D motion capture: 

The 3D motion capture system is based on the 

standard apparatus, camera calibration, pose 

estimation (Ref 17), and 3D skeletal reconstruction 

(Ref 41). It is reasonable to include the state of art 

technologies at this stage. However, the issues are, 

the stages of pose estimation/3D skeletal 

reconstruction miss the investigation on body 

occlusion and view-point disappearance.  

 

Thank you for the suggestion. In our framework, accurate behavioral 

data acquisition is necessary. Recently, many new approaches have 

emerged in animal behavioral tracking. We appreciate that the 

existing excellent techniques and tools provide us with the 

opportunity to attempt a dynamic and hierarchical behavior 

decomposition as implemented in our framework. Although these 

technologies of pose estimation and 3D reconstruction have the 

potential for obtaining 3D postural time-series, there has been until 

now a lack of practical and accessible software and hardware 

solutions for the issues of fast calibration, synchronized video 

acquisition, and accuracy verification. 

 

During the development of our framework, we invested much effort 

in identifying, verifying, and improving various discrete hardware 

and software modules. We hope to provide experimenters with a 

complete, easy-to-use, and robust solution to make 3D behavior 

collection less labor-intensive. Therefore, we extended the description 

of the novelty and validation of the 3D motion capture system as 

follows:  

- In Manuscript page 4, lines 111-119 (Results) 

To efficiently and comprehensively characterize the kinematics of 

free-moving animals, we developed a 3D multi-view motion capture 

system (Fig. 2a, b) based on recent advances in techniques for pose 

estimation and 3D skeletal reconstruction. The most critical issues in 

3D animal motion capture are efficient camera calibration, body 
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occlusion, and viewpoint disappearance, which have not been 

optimized or verified. To address these issues, we developed a multi-

view video capture device (Supplementary Fig. 2a). This device 

integrates the behavioral apparatus, an auto-calibration module 

(Supplementary Fig. 2b, d), and synchronous acquisition of multi-

view video streams (Supplementary Fig. 2c). While the conventional 

manual method requires half an hour to produce the required 

checkerboard for calibration, the auto-calibration module can be 

completed in one minute.  

 

- In Supplementary Methods page 3, lines 51-73 (Supplementary 

Fig. 2 and figure legend) 

Supplementary Fig. 2 | Illustration of the multi-view video 

capture device and the workflow of the auto-calibration module. 

a Schematic of the multi-view video capture device. The support 

framework is a 90 × 90 × 75 cm3 movable stainless steel shelf, on 

which cameras, behavioral apparatus, calibration modules, and 

background lighting are mounted. A shielding curtain can be added 

per experimental requirements. b The auto-calibration module is 

designed for efficient camera calibration in 3D and is composed of an 

LCD screen for displaying the checkerboard and a control unit used to 

tilt the screen. To collect images of the checkerboard pattern at 

different orientations relative to the cameras, the calibration program 

controls the screen to rotate and translate the checkerboard pattern at 

different tilt angles. With this auto-calibration module, the 

checkerboard images can be captured in one minute. c The multi-view 

video acquisition module. Four video streams, one per camera, are 

input to the PCI-E USB-3.0 data acquisition card (expanded 

bandwidth). The acquisition program then uses multi-thread 
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acquisition to ensure frame synchronization. d The two-part workflow 

of the auto-calibration program. The first part, shown on the left, 

automatically collects a variety of checkerboard patterns for each 

camera (70). Right, the calibration process, which is based on the 

MATLAB StereoCameraCalibrator GUI. 

 

Regarding the critical issues of body occlusion and viewpoint 

disappearance that you mention, our approach avoids these issues in 

three ways:  

1) When constructing the DLC training set and when body parts 

were invisible, we guessed and labeled their location in each 

single view. Therefore, the model can predict invisible body parts 

and output a confidence score as a likelihood to help us identify 

whether the predicted body parts in the current frame are reliable;  

2) Before 3D reconstruction, for each body part, we specify a 

likelihood threshold to help determine how many cameras are 

needed to reliably obtain the 2D coordinates of the body part;  

3) In theory, 3D reconstruction can be achieved as long as any two 

cameras can obtain the 2D coordinates of the same point in 3D 

space from different views. Since we acquire the animal’s 

behavior images with four complementary views, this guarantees 

that any body part can be captured by at least two cameras with 

high probability. 

 

To demonstrate that our system can reliably track occluded and 

viewpoint-disappeared 3D body parts, we have added data and 

extended the verification of these two points as follows: 

- In Manuscript page 4-5, lines 126-140 (Results) 
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We next investigated whether the 3D motion capture system could 

reliably track the animal in cases of body-part occlusion and 

viewpoint disappearance. We checked the DeepLabCut (DLC) 

tracking likelihood in the collated videos (0.9807 ± 0.1224, 

Supplementary Fig. 4a) and evaluated the error between the estimated 

2D body parts of every training set frame and the ground truth (0.534 

± 0.005%, Supplementary Fig. 5b). These results indicated that in 

most cases, four cameras were available for 2D pose tracking. Since 

3D reconstruction can be achieved as long as any two cameras obtain 

the 2D coordinates of the same point in 3D space from different 

views, the reconstruction failure rate caused by body occlusion and 

viewpoint disappearances is determined by the number of available 

cameras. Therefore, we evaluated the average proportion of available 

cameras in situations of body part occlusion and viewpoint 

disappearance. The validation results for body-part occlusion show an 

average reconstruction failure rate of only 0.042% due to body 

occlusion or inaccurate body-part estimation (Supplementary Fig. 5c). 

While for viewpoint disappearances, both tests (Supplementary Fig. 

6, and Supplementary Video 4, 5) proved that our system has a high 

reconstruction rate for animal body parts. Moreover, the artifact 

detection and correction features can recover the body parts that 

failed to be reconstructed.  

 

Body occlusion:  

- In Supplementary Methods page 6, lines 136-156 (Supplementary 

Fig. 5 and figure legend) 

Supplementary Fig. 5 | 3D reconstruction process and reliability 

evaluation of the occluded body parts. a The workflow of 3D 

reconstruction of a single body part: 1) estimate the two-dimensional 
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coordinates of the animal's body part from four cameras; 2) select the 

cameras to be used for reconstruction by thresholding the likelihood 

of the estimated body part; 3) determine whether the number of 

cameras available meets the reconstruction requirements (2 or more); 

and 4) if 2 or more, reconstruct the 3D coordinate of the body part. 

Otherwise, the 3D reconstruction fails due to the occlusion. P1, 

primary camera. S1, first secondary camera. S2, second secondary 

camera. S3, third secondary camera. b The errors in 2D body-part 

estimations versus ground truth. The error rates are shown for each 

body part separately in the boxplot and averaged 0.534 ± 0.005%. c 

The proportional number of available cameras by body part. The 

average proportions are: no cameras, 0.004%; 1 camera, 0.015%; 2 

cameras, 0.038%; 3 cameras, 1.048%; 4 cameras, 98.895%. 

 

View-point disappearance:  

- In Supplementary Methods page 7-8, lines 159-193 

(Supplementary Fig. 6, figure legend, and Supplementary Video 

4, 5) 

Supplementary Fig. 6 | Evaluation of the 3D reconstruction in 

cases of view-point–specific disappearances of body parts. a, d 2D 

pose tracking and 3D skeleton reconstruction of representative view-

point disappearance frames from two different test apparatuses. a 

First test: square open field test. The behavior chamber is out of the 

field of view, and blind areas may occur when the animal enters the 

four corners; d Second test: circular open-field with a sociability 

cage. The mouse can easily be occluded by the cage, thus blind areas 

may exist in one or more perspectives. Top: selected frames with one 

or more views in which body parts disappear. Middle: magnification 

to show the disappearance details. Bottom: successfully reconstructed 
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3D skeletons shown in approximately the same views as the 

corresponding recordings. b, e The proportional number of cameras 

available for 3D reconstruction for each body part. In the first test, an 

average of 99.398 ± 0.149% of all frames showing the body part can 

meet the reconstruction requirements; In the second test, the average 

reconstruction rate of all body parts is 99.776 ± 0.150%. c, f The 

distribution of the number of available cameras for 3D reconstruction. 

The color-coded dots indicate how many cameras are used for 

reconstruction at the indicated location. The positions of all the points 

are the x and y coordinates of the nose. For visualization purposes, 

the data are down-sampled to 10%. The proportional number of 

cameras used to reconstruct the nose in 3D is indicated in the key on 

the left. 

 

R#1 (4) (1.2) Non-locomotor movements with dynamic time 

alignment Kernel: 

Center alignment and rotation transformation have 

been applied in the pre-processing stage. This 

process is tedious indeed. Afterwards, a temporal 

reduction algorithm is used to merge the adjacent 

similar poses, which group wrong poses into 

individual pose categories. The standard DTAK 

method is also used to measure the similarity 

between sequences. However, it is not clear why not 

use the standard DTW method in this case. 

 

Thank you for the comments. We agree that the center alignment and 

rotation transformation are tedious and are just necessary pre-

processing. 

 

Temporal reduction in poses: 

Regarding pose decomposition:  

 

First, most previous reviews 3,4 and studies 5 believe that the basic 

element of animal behavior is the pose. The pose is a static snapshot 

of a movement sequence at any moment, and the movements are 

stereotyped spatial-temporal patterns encoded by a certain number of 

posture sequences. In nature, animal movement is continuous, and 

due to the high dimensionality of the mammalian skeleton, the 

number of behavioral posture variables is potentially infinite 6. On the 

other hand, adjacent poses are usually highly correlated and 
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redundant for purposes of behavior quantification and analysis 7. This 

is particularly evident in the 24-hour recording: when the mouse was 

resting, it maintained a constant posture for a long time. In such cases, 

the overall behavioral state can be represented by a single pose and its 

duration. 

 

Second, the behavior decomposition part of our framework is 

required to search for and align potential movement clusters 

dynamically. For computational efficiency (the computational 

complexity of behavioral decomposition is O(n2)), the algorithm 

allocates more computing resources to rapidly changing, dynamic 

information than it does to static information. This temporal reduction 

greatly improved the efficiency of our supplementary analysis of the 

24-hour long-term recording (Supplementary Fig. 13). 

 

Third, although the movement decomposition is based on temporally 

reduced postural sequences, the clustering quality evaluation (Fig. 

4D) is based on the original postural time-series generated segment 

kernel matrices. The result reflects a higher intra-cluster homogeneity 

and the inter-cluster heterogeneity.  

 

We modified the paper as follows: 

- In Manuscript page 5, lines 149-152 (Results) 

Animal movement is continuous, and due to the high dimensionality 

of the mammalian skeleton, the behaviorally relevant posture 

variables are potentially infinite in number. However, adjacent poses 

are usually highly correlated and redundant for behavior 

quantification and analysis, which is particularly evident in long-term 

recording.  
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Why not use the standard DTW? 

Thank you for the question. An appropriate distance metric is critical 

for achieving optimal segmentation of a continuous postural time-

varying series. Initially, we used DTW directly because it has been 

successfully applied to aligning series data such as speech, ECG, and 

gene sequences 8. However, as pointed out in the literature, DTW 

does not satisfy the triangle inequality, limiting its application to that 

of a distance metric for calculating similarity between samples. The 

DTAK proposed later satisfies the Cauchy-Schwartz inequality and is 

used as the kernel of the SVM to recognize speech 9. Hence, we 

adopted DTAK into our framework for measuring the similarity 

between the behavioral segments. 

 

We added and cited references to explain this point: 

- In Manuscript page 5, lines 163-168 (Results) 

An appropriate distance metric is critical for modeling the temporal 

variability and optimizing the NM segmentation of a continuous 

postural time-varying series. Although dynamic time warping (DTW) 

has commonly been applied in aligning time-series data, it does not 

satisfy the triangle inequality. Thus, we used the improved DTAK 

method to measure the similarity between time sequences and 

construct an energy equation (objective function) for optimization. 

 

R#1 (5) (1.3) Mapping mouse movements with low-dim 

embeddings and unsupervised clustering: 

A standard UMAP method is used to preserve both 

the local and global structure of the dataset. 

However, it is not clear to the reader why this 

Thank you again for the reminder.  

 

Evidence to support UMAP preservation of both local and global 

structure: 
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method must be used - lacks supporting evidence. 

BIC is used to model the structure but how? 

 

Following the two-stage behavior decomposition, we use DTAK to 

construct the structural representation (n-by-n distance matrix) of 

relationships among the movement sequences, a high-dimensional 

space in which humans have difficulty imagining and understanding 

the similarities or differences. Therefore, performing dimensionality 

reduction on the distance matrix can provide an informative 

visualization of this structure in a low-dimensional (low-D) space. 

We evaluate the results of dimensionality reduction by 2 criteria 10,11:  

1) It should be able to represent the local structure to facilitate 

subsequent clustering, which means similar movement sequence 

can be grouped together as neighbors;  

2) It should be able to preserve the global structure, which can be 

reflected in the correlation between the low-D representation and 

the original distance matrix. Generally, the low-D representation 

should preserve the intra-cluster homogeneity and the inter-

cluster heterogeneity after dimensionality reduction. 

 

To this end, we added the results of evaluation of the three commonly 

used dimensionality reduction algorithms (UMAP, PCA, and tSNE) 

from these two aspects. 

- In Manuscript page 6, lines 197-206 (Results) 

However, since the 936-D matrix cannot provide an informative 

visualization of behavioral structure, it is necessary to perform DR on 

this data. Various DR algorithms have been designed either to 

preserve the global representation of the original data or to focus on 

local neighborhoods for recognition or clustering. Thus, in animal 

behavior quantification, we face a trade-off between discretizing 

behavior to provide a more quantitative analysis, and maintaining a 

global representation of behavior to characterize the neural-behavioral 
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relationship's potential manifolds. Therefore, we first evaluated the 

commonly used DR algorithms from the standpoints of preserving 

either the global or the local structure. The evaluation results show 

that UMAP can balance both aspects for our data (Supplementary Fig. 

8) and provide 2D embeddings of these NM segments. 

 

- In Supplementary Methods page 10, lines 218-244 

(Supplementary Fig. 8 and figure legend) 

Supplementary Fig. 8 | Comparison of three algorithms of 

dimensionality reduction for the representation of the NM feature 

space structure. a Segment kernel matrix of a representative single-

session behavioral experiment recording. The matrix pixels represent 

the normalized similarity value of 937 pairs of decomposed 

movement segments. b-d Dimensionality reduction with the three 

most-used algorithms: UMAP, tSNE (t-distributed stochastic 

neighbor embedding), and PCA (principal component analysis). For 

visualization purposes, the segment kernel matrix is reduced to two 

dimensions. e Quantification of local structure preservation by 

evaluation of the silhouette criterion values of the dimensionality 

reduction result of each algorithm. The silhouette criterion values are 

calculated by enumerating the clusters from two to twenty. The 

average silhouette criterion values are: UMAP, 0.557 ± 0.011; tSNE, 

0.619 ± 0.021; PCA, 0.240 ± 0.039. f Quantification of global 

structure preservation by evaluation of the Spearman correlation 

coefficients between the original segment kernel matrix and the 

dimensionality-reducted result of each algorithm. For each algorithm, 

we first randomly subsampled 70% of the kernel matrix 20 times. 

Each time, the Spearman correlation coefficients are calculated 

between the selected segment kernel sub-matrix and the paired-wise 
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distances of the dimensionality-reduced data. The average 

coefficients are: UMAP, 0.817 ± 0.001; tSNE, 0.326 ± 0.001; PCA, 

0.913 ± 0.002. ****, P < 0001 by two-way ANOVA with a Holm–

Sidak post-hoc test. 

 

Response to comment re BIC:  

We are sorry for the confusion. In our manuscript, use of the BIC was 

intended to determine the number of clusters into which the 

decomposed movement sequences should be partitioned. Our 

framework adopts an unsupervised strategy, and we most 

unsupervised clustering requires a pre-specified cluster number. This 

issue has been highlighted in many behavioral studies and reviews 12. 

The solution to this problem can be data-driven 13 or refer to the 

context of the practical biological problem. Here, we chose the data-

driven approach. We assumed that the constructed behavior feature 

space consists of a finite number of Gaussian mixture states, and our 

task was to estimate the optimal number of mixture states. 

Specifically, we adopted the clustering analysis function mclust from 

the R package 14, and we used 14 models with it for our data 

estimation. The BIC of each model is calculated based on a given 

number of states, and is then obtained for all models for all numbers 

of states. Finally, we chose as the optimal number of clusters the 

number of states that allows the largest number of models to achieve 

the largest BIC.  

We have rewritten the sentence to make this clear: 

 

- In Manuscript page 7, lines 209-214 (Results) 

We used an unsupervised clustering algorithm to investigate the 

behavior’s spatio-temporal representation and identify the movement 
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phenotypes. Most unsupervised clustering require a pre-specified 

number of clusters, and the number chosen can be data-driven or refer 

to the context of the practical biological problem. In the single 

experimental data shown in Figure 4a, the data-driven Bayesian 

Information Criterion in the R package mclust was adopted to 

determine that the optimal cluster number was 11 (Supplementary 

Fig. 10). 

 

R#1 (6) (1.4) Kinematic validation of mouse behavioural 

phenotypes: 

MI components have been constructed to describe 

the postural difference but 'why and how' are not 

explained. 

 

Thank you for the comment. To verify whether our framework can 

categorize behaviors accurately, we provided further validation from 

the kinematics aspect, in addition to the intra/inter-cluster correlation 

coefficient evaluations (Fig. 4 c-e) based on the segment kernel 

matrix. These further validations include: 

1) Manual inspection of the segmented video clips; 

2) Visualizing the average-skeleton (common poses) of each 

category; 

3) Quantifying the main kinematic parameters.   

In Fig. 5a, we first visualized the average skeleton and the overlaid 

heatmap of the distribution and movement intensity (MI), showing 

homogeneous patterns of the identified behavioral phenotypes. Then, 

we used MI as a metric to compare the kinematic characteristics of 

each body part in each behavioral phenotype. MI is related to 

velocity, and contains both horizontal and vertical components. 

Generally, locomotion (e.g., walking, trotting, and running) has a 

larger horizontal MI, while rinsing, rearing, and stretching have 

higher vertical MIs. Moreover, the MI can also reflect the fact that 

that some body parts have greater freedom of motion, such as the 

nose and front paws (Fig.). These results indicate that MI can 
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effectively represent the same visual information as in the validations 

of steps 1) and 2). 

 

We realized that the rationale and calculation process of MI should be 

clearly described, so we added an explanation and description of this 

part: 

- In Manuscript page 7, lines 236-239 (Results) 

To provide a kinematic validation of the identified behavioral 

phenotypes from the perspectives of visualization and quantification, 

we first visualized the average skeleton, which was averaged over all 

frames in each movement cluster (Fig. 5a).  

 

- In Manuscript page 7-8, lines 241-245 (Results) 

The detailed kinematic parameters, especially the velocity of each 

body part, could provide greater sensitive differences than the unclear 

visually-based assessments. Therefore, we defined movement 

intensity (MI) as a metric for characterizing the kinematics of each 

body part in each behavioral phenotype (see Supplementary Methods 

for further details). MI is related to velocity, and it contains both 

horizontal and vertical components.  

 

- In Manuscript page 23, lines 744-749 (Fig. 5 figure legend) 

c The comparison of MI between different movement phenotypes. 

Each movement segment has two MI components (red boxes, 

horizontal; blue boxes, vertical). The boxes’ values for each group 

contain the MIs of n behavioral modules (n is the number of 

behavioral modules of each group). d, e Horizontal and vertical MI of 

each body part in different movement phenotypes. The values on each 

line are the MIs of all behavior modules corresponding to the 
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phenotype, shown by body parts separately and presented as mean ± 

standard deviation (SD). 

 

R#1 (7) 2. Identification of behavioural signatures of mouse 

disease models: 

Two groups of mice have been used to investigate 

possible bio-markers. 6 KO and 6 WT mice may 

suggest something but more substantial experiments 

must be conducted before the conclusive statement 

can be made. For example, it is required to evaluate 

the mouse movement monitoring in different times, 

different grouping, and different 

environments/lighting. 

 

Thank you for the comment. According to your suggestion, we have 

added 72 behavioral data in total, which include: new data on 5-6 

week old, male mice in white light in the circular open-field test, thus 

4 samples in each group (KO and WT); We added new groups 

according to different experimental apparatus, lighting conditions, 

ages, and sexes, 8 KO and 8 WT mice for each condition. Therefore, 

the behavioral dataset has been updated with ten groups of 84 cases 

(Supplementary Table 2). 

 

Updated data on 5-6 week, male mice in white light, circular open 

field 

We updated the analysis to account for the new data, with the result 

that:  

1) The hunching behavior of the KO mice was still significantly 

higher than that of WT, and the comparison of the kinematic 

parameters of hunching and rearing was also consistent with the 

previous data (Fig. 6g, and j-n). 

2) Three subtypes (M39, M40, and M41 in Fig. 6g) of self-grooming 

behavior were identified. We manually checked the videos 

corresponding to these subtypes and found their poses had slight 

differences (e.g., head orientations are different). Although our 

unsupervised framework unbiasedly categorized them into distinct 

behavior modules, they are well-sorted on the dendrogram 

according to their similarity (Fig. 6g), which helped us to merge 

and annotate them easily. 
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3) With greater numbers of samples, behavioral differences that were 

not previously significant became so. We found that the Shank3B 

KO mice showed an increase engagement in hunching and self-

grooming stereotyped behaviors, accompanied by deficiencies in 

other behaviors, stepping (M5), walking (M14), and two (M21 

and M22) subtypes of rising behaviors. 

 

This result indicates that locomotion and vertical movement in KO 

mice are less than in WT mice (consistent with the average velocity 

comparison shown in Fig. 6b). 

 

- In Manuscript page 8, lines 272-275 (Results) 

By manually reviewing the video clips of these four types, we 

annotated the 38th movement (M38 in Fig. 6g) as hunching; we also 

found that three of the movements were very similar (closely 

arranged on the behavioral dendrogram, Fig. 6g). Therefore, we 

grouped them and annotated them as self-grooming.  

 

- In Manuscript page 9, lines 285-289 (Results) 

Besides the four phenotypes that KO mice preferred more than the 

WT mice did, the KO mice also showed four additional deficit 

behavioral phenotypes, namely stepping (M5), walking (M14), and 

two types of rising (M21 and M22). This result indicates that the 

locomotion intensity and vertical movement of KO mice were lower 

than those of WT mice. 

 

Group comparison of Shank3B mice under different conditions： 

We performed 3D reconstruction, behavioral decomposition, and re-

clustering on all collected samples to convert the continuous 
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behavioral recording data of each sample into a fractional prevalence 

of each behavioral phenotype. These 84 samples constitute a 

movement fraction matrix. Due to the large number of added 

conditions and samples, we performed a preliminary analysis based 

on the movement fraction matrix at the group level. By calculating 

the cross-correlation coefficients and extracting the principal 

components (Supplementary Fig. 12), we found that: 

1) For male mice of the same genotype, changing only a single 

experimental condition caused no significant differences in group 

behavior patterns; Although there was no significant difference in 

group behavior patterns between male and female Shank3B KO 

mice under the same experimental conditions, females showed a 

weak autism-like behavioral tendency (Supplementary Fig. 12d). 

2) With all other conditions the same, we found that when 

comparing the behavioral patterns of the different genotypes KO 

and WT, only the female group showed no significant difference, 

while significant differences were found between KO and WT 

mice under all other conditions. 

 

We showed that these results are consistent with previous reports 15 

that Shank3B KO male mice display more severe impairments in 

motor coordination than do females.  

 

- In Manuscript page 10-11, lines 340-356 (Discussion) 

Moreover, we further investigated the differences in the behavior 

patterns of Shank3B KO and WT mice at the group level. In addition 

to the data that had already been analyzed (collected under the 

condition: male mice, 5–6 weeks, white light, and circular open-

field), we extended the group behavioral pattern analysis to include 
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data collected under different conditions (i.e., different experimental 

apparatus, lighting, age, and gender; Supplementary Table 2). We 

calculated the cross-correlation coefficient matrix (CCCM) of all 

samples based on the movement fractions and used principal 

component analysis to extract the main variance factors of the CCCM 

(Supplementary Fig. 12 a, b). We found that when only a single 

condition was changed for male mice, there was no significant 

difference in population behavior patterns in mice with the same 

genotype (Supplementary Fig. 12 c). We also found that although 

some female KO mice had a weak tendency for autistic-like behavior, 

there was no significant difference between 5–6 week male and 

female KO mice at the group level when tested under the white-light 

circular open field condition (Supplementary Fig. 12 c, d). Finally, we 

compared the behavior patterns when all conditions were the same 

except for the genotypes. The results showed that only the female 

group showed no significant difference between KO and WT 

genotypes, while significant differences in behavioral patterns were 

found between KO and WT mice under all other conditions. These 

findings are consistent with previous reports that Shank3B KO male 

mice display more severe impairments than females do in motor 

coordination. 

 

- In Supplementary Methods page 14-15, lines 302-335 

(Supplementary Fig. 12 and figure legend) 

Supplementary Fig. 12 | Group comparison of Shank3B KO mice 

under different conditions. a The movement fraction matrix of mice 

in ten different groups. The color-bars shown in the left indicate the 

group conditions for the corresponding rows of the matrix (see 

Supplementary Methods for further details). Each row in the fraction 
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matrix represents the tested mouse, and each column corresponds to 

the behavioral module types arranged with the dendrogram in the 

bottom. For visualization and comparison purpose, the values of 

movement fraction matrix are normalized with z-score by rows. In 

each group, the row orders are determined by placing the sample with 

largest variance of the movement fraction, and then the other samples 

are ranked according to the decreasing correlation with the first row. 

b The cross-correlation coefficients matrix (CCCM) of the movement 

fractions among all ten groups samples. c The group comparisons of 

behavioral correlations between the selected conditions, which are 

shown with twelve submatrices of b. d The behavioral statistics 

between ten groups. The comparison metric is determined by 

calculating the principal component (PC) of the CCCM, then using 

the first PC (PC1) to evaluate the overall behavioral differences 

across ten groups (Kruskal-Wallis test, **, p<0.01, ***, p<0.001)).  

R#1 (8) Finally, I shall comment on the supplementary 

documents. The technical description in the supple-

files is confusing with poor reasoning. The figures 

and equations shown in the document are not clearly 

illustrated. 

 

We have followed your suggestions and made many improvements to 

the supplementary materials for clarity. These improvements include: 

1) Adding a new figure to illustrate our framework's general 

workflow (Supplementary Fig. 1) and describing the key steps 

and their corresponding descriptions in the remainder of the 

Supplementary Methods in the Figure Legend. Through this 

figure, we tried to clearly show the roles in our framework and the 

inputs/outputs of the steps described in Supplementary Methods.   

2) Merging the figures in the preprocessing section to make it more 

concise and clear. 

3) Emphasizing the purposes of those methods to better show the 

reasoning. 

 

We have highlighted these modifications in the supplementary files. 
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- In Supplementary Methods page 1-2, lines 1-48 (Supplementary 

Fig. 1) 

Supplementary Fig. 1 | The workflow of the hierarchical 3D-

motion learning framework. a Four main steps for a single 

experimental session: 1) Calibration (related to Supplementary 

Methods “The calibration of 3D motion capture system”). Using the 

auto-calibration module to quickly prepare 70 groups of checkerboard 

images from various angles and positions for calibration and using the 

MATLAB StereoCameraCalibrator GUI to calculate the calibration 

parameters of the three pairs of cameras. This step is necessary only 

when the calibration parameters are unknown, or the cameras have 

been moved. 2) Data collection (related to Supplementary Methods 

Animals, behavioral experiments and behavioral data collection). 

Setting up the behavioral apparatus and preparing the animal and then 

using the multi-view video capture device to collect the synchronous 

behavioral videos. 3) 3D reconstruction (related to Supplementary 

Methods 3D pose reconstruction). Using the DLC pre-trained model 

to predict the animal’s 16 body-part 2D coordinates from the four 

separate videos, then performing the 3D skeleton reconstruction with 

the 2D coordinates from four views to obtain the animal’s postural 

time-series. 4) Behavior decomposition (related to Supplementary 

Methods Behavior decomposition). Performing the two-stage 

behavior decomposition on the pre-processed postural time-series. 

This step discovers the behavioral modules based on the optimal 

movement segmentation. Finally, these behavioral segments are 

aligned using the DTAK metric to construct the segment kernel 

matrix representing their similarity. b Group analysis based on 

specific biological questions. 1) Merge and dimensionality reduction 
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(related to Supplementary Methods: Group segment kernel matrix and 

low dimensional embedding). According to experimental grouping, 

single session segment kernel matrices are merged into a group 

segment kernel matrix. To visualize the informative structure of the 

behavioral modules involved, we used dimensionality reduction to 

transform the group segment kernel matrix into a 2D space. 2) 

Unsupervised clustering (related to Supplementary Methods: 

Unsupervised clustering). Constructing the behavioral map by 

combining the NM space with the locomotion dimension, then using 

the unsupervised clustering algorithm to categorize the movement 

sequence into distinct types. After clustering, ethograms can be 

constructed by associating the behavioral labels with their original 

segments. 3) Downstream analysis. After obtaining each session's 

ethogram, the downstream quantitative analysis can be conducted 

according to experimental grouping, recording stage, and other 

conditions to answer biological questions from behavioral aspects. 
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Reviewer #3 (R#3) 

R#3 (1) I the manuscript “A Hierarchical 3D-motion 

Learning Framework for Animal Spontaneous 

Behavior Mapping” Huang et al., present a novel 

framework to study mouse behaviour by 3D 

visualization with multiple cameras. The authors 

used a combination of computational approaches to 

decompose small kinematics, learn about the 

dynamics and then provide a metric for mapping 

behaviours according to the features extracted. 

 

The work is very well constructed, implemented 

and described in the manuscript. I have no doubt 

that it represents an advance in the field. It is 

outside my background a full understanding of 

specific details of this work. However, I have 

appreciated the potential and some of the limits. 

Here below a few comments that I hope will help to 

improve this work. 

 

Thank you for your appreciation and valuable suggestions for our 

manuscript, which were very helpful in improving our framework to 

promote the understanding of behavior. We have added experiments, 

further analysis, and further validations to address the points you 

raise. We trust that these responses fully satisfy the reviewer's 

concerns. The manuscript has been improved because of the 

reviewer's suggestions. 

 

 

 

R#3 (2) 

One of the problems we have in extracting 

behavioural features from visual-based systems is 

the quality of the picture, the contract of lights and 

the occlusions. This is particular relevant when 

multiple animals are present in the same cage. 

These issues are not addressed in this work, and all 

4 cameras acquire good quality images. I wonder 

whether the authors have considered to test the limit 

Thank you for the comment. The main purpose of the multi-view 

behavior capture system is to collect high-quality behavior pictures, 

as a single fixed view may easily be limited by animal body occlusion 

and blind areas. Regarding the contrast of lights, due to the strong 

adaptability of the pose estimation toolbox (DLC) we used, animal 

tracking can be achieved only by labeling training set under different 

contrast conditions. For occlusions, the advantage of multiple views is 

to provide complementary information, thereby improving the 
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of their approach reducing the number of cameras 

(from the analyses). 

 

robustness of animal pose tracking. As shown in Supplementary Fig. 

5a, 3D reconstruction of a single body part requires at least two 

cameras with different views to simultaneously obtain its 2D 

coordinates. However, for multiple body-part 3D reconstruction, or in 

the complex experimental scenes shown in Supplementary Fig. 6, we 

find that some views of the four cameras have blind areas or the body 

is occluded by objects in the arena. In these cases, there are only two 

views available for 3D reconstruction, and in some locations, only 

one camera can achieve reliable tracking, causing failure of 3D 

reconstruction. Therefore, in actual experiments, the number of 

cameras is a tradeoff between the complexity of the experimental 

environment and the hardware accessibility. 

 

According to your suggestion, we have further verified the influence 

of reducing the number of cameras on the 3D reconstruction. 

 

- In Manuscript page 9-10, lines 312-316 (Discussion) 

The multi-view motion capture system can avoid animal body 

occlusion and view-angle bias and estimate the pose optimally by 

flexibly selecting the view to use according to the tracking 

reliabilities of the different views. We also confirmed the necessity of 

using multi-view cameras in complex experimental scenes, whereas 

in the simple experimental scenes, only three or even two cameras 

were needed (Supplementary Fig. 4). 

 

- In Supplementary Methods page 5, lines 106-133 (Supplementary 

Fig. 4 and figure legend) 

Supplementary Fig. 4 | Evaluation of 3D Reconstruction Quality 

with Different Camera Settings. a The likelihoods of the DLC pose 
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estimations of four camera positions. P1, primary camera 1, S1, 

secondary camera 1, S2, secondary camera 2, S3, secondary camera 

3. Each point on the boxplot represents the mean likelihood of each 

test recording, which is calculated by firstly averaging the likelihoods 

of all the body parts per frame then averaging them across all frames. 

The likelihoods show no significant differences among these cameras 

(Kruskal-Wallis test, p = 0.1339, n = 16). b The likelihoods of the 3D 

reconstructions of different camera groupings. 2C180, two cameras 

are placed in opposite directions. 2C90, two cameras are positioned in 

orthogonal directions. 3C, three cameras. 4C, four cameras. In the 

camera groupings 2C180 and 2C90, each point on the boxplot is 

calculated by firstly specifically averaging the likelihoods of two 

paired body parts for calibration, then averaging all 16 paired 

averaged likelihoods per frame and finally averaging them across all 

frames. In the camera groupings of 3C and 4C, each point on the 

boxplot is calculated by firstly specifically averaging the first two 

maximum likelihoods of paired body parts for calibration from all the 

three or four points, then averaging all 16 paired averaged maximum 

likelihoods per frame, and finally averaging them across all frames. c 

The variances of the behavioral trajectories captured by different 

camera groupings. Each point on the plot is calculated by firstly 

computing the variances of each body part's trajectory in the X, Y, Z 

axis, then averaging them across X, Y, Z axis, and finally averaging 

them across 16 body parts. (Kruskal-Wallis test, ****p < 0.0001, n = 

16). d The variances of each body part in X, Y, Z coordinates of 

varying camera groupings. The variances of each body part are 

calculated by firstly computing the variances of each body part's 

trajectory in X, Y, Z axis then averaging them across X, Y, Z axis. 

 



29 | R e v i s i o n  N o t e s  ( N C O M M S - 2 0 - 4 3 9 1 3 )  

 

 

R#3 (3) The authors stated very clearly in different points of 

the manuscript that they based their study on a 

conceptual framework, which is that “behaviour 

adheres to a bottom-up hierarchical architecture”. 

Regardless some convenience, for example they 

report a two-stage decomposition, and in there one 

can appreciate some computational efficiency 

advantage, for example associated to redundancy in 

behaviours. However, I haven’t understood how a 

bottom-up approach in this sense should provide a 

best match with neuronal codes. Are the authors 

suggesting that it will be possible, next step, to link 

fast neuronal activities to this temporal distinct 

behavioural architecture? If so, it seems to go 

against a parallel representation of the behaviour 

within the brain, do the authors want to comment on 

that? 

 

 

Thank you for your insightful comment. One of our motivations for 

developing this framework was to better understand the relationship 

between neural activity and behavior, as you mention. We designed 

the behavior decomposition framework according to a bottom-up 

architecture since we were mainly considering the convenience of the 

concept description as well as the implementation and performance of 

the computation. Owing to the complexity of mammalian naturalistic 

behavior and the lack of well-annotated behavioral databases, our 

framework’s strategy is to automatically discover potentially 

meaningful spatio-temporal patterns (namely behavioral 

modules/primitives/motifs) from the recorded continuous postural 

time-series instead of detecting behaviors based on predefined rules. 

Therefore, the feasible solution is to process the low-level postural 

features first and then reveal the behavioral structure as a self-

organized behavioral feature space. 

 

In terms of the relationship between behavior and neural activity, it 

remains an open question. According to our literature research, the 

neural-behavioral relationship can be interpreted from the two aspects 

of behavior control (specifically motor behavior) and neural 

representation. From the behavior controlling perspective, the 

hierarchical theory holds that neural activity controls behavior top-

down. The higher-level units, such as the motor cortex, control lower-

level motor units (e.g., spinal cord or brainstem) by initializing and 

sending motion commands to coordinate posture and balance to 

perform the movement 16. Under this theory, neural activity can 

generate parallel behavioral patterns (e.g., walking and chewing gum 

at the same time 4). While from the neural representation perspective, 
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behavior generation and representation may not share the same 

structure and neural activity 17,18. Moreover, the behavior may not be 

represented by a single neuron or independent neural activity but by a 

manifold that represents a few latent variables in the population. 

Therefore, parallel behaviors may be represented as the superimposed 

representation of each independent mode or as a new neural activity 

pattern. 

 

The constraints of animal behavior in the current research paradigm 

also limit the capture of neural-behavioral covariates 19. Even if 

advanced recording technology allows us to record large population 

activities with higher temporal-spatial resolution, this may not lead to 

new insights. Thus, only by combining large population activities 

with the accurate measurement and identification of naturalistic, 

complex behavior can we unravel the essential rules. As you 

commented, we next step will first focus on the collected large 

sample Shank3B KO disease model, build a well-annotated behavior 

database to involve more researchers in this community. Then 

combining our framework with free-moving two-photon microscopy 

and electrophysiological recording links the neural activity patterns 

and functional connections with the cross-scale behavioral dynamics 

and timing patterns. However, I have to say that current behavioral 

quantification approaches, including our framework, are still 

evolving. There are still unsolved issues, such as defining and 

decomposing the co-occurring behavior and interpreting the neural-

behavioral relationship with new algorithms.    

 

As suggested, we have added discussion on this point. 

- In Manuscript page 11, lines 367-375 (Discussion) 
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In other words, to understand the encoding/decoding relationship 

rules of the neural activity generating behavior and behavior’s neural 

representation, synchronization of large population activities and 

accurate measurement and identification of naturalistic, complex 

behavior are required. In the future, we will focus on combining our 

framework with free-moving two-photon microscopy and 

electrophysiological recording to link the neural activity patterns and 

functional brain connections with the cross-scale behavioral dynamics 

and timing patterns. Therefore, with further technical optimization 

and the open-source of a large sample, well-annotated disease model 

behavior database open source, our framework may contribute to 

resolving the relationships between complex neural circuitry and 

behavior, as well as to revealing the mechanisms of sensorimotor 

processing. 

 

R#3 (4) Fig 4 and 6, the map of the behavioural phenotypes. 

How is the “fractions” defined? The authors seem 

to present a very detailed metric for dissecting 

behavioural feature from, for example, different 

genotypes. I wonder how much this is a group 

effect and whether the same feature is present in all 

individuals of the same group? Are there any other 

combinatorial behaviours that present different 

clusters within the same group?  

 

Thank you for the comment. 

 

How are the “fractions” defined? 

For each subject, the behavior fractions are defined as the bouts 

number of each behavioral phenotype divide by the total number of 

behavior bouts the animal produced during the experiment. For 

example, in Fig. 4c, the fraction of running is 26/935=0.0278; In Fig. 

6I, the grooming behavior of mouse KO-1 occurs 35 times, and the 

total number of behavioral modules of this mouse is 794. Therefore, 

the grooming fraction of mouse KO-1 is 0.0441.  

 

We added the definition of fractions and provided a statistical result 

based on the metric of a behavior modules’ duration: 

- In Manuscript page 22, lines 707-710 (Figure legend of Fig. 4) 
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c Behavior fractions. For each subject, the behavior fractions are 

defined as the bout number of each behavioral phenotype divided by 

the total number of behavior bouts the animal produced during the 

experiment. 

 

- In Manuscript page 23, lines 737-749 (Figure legend of Fig. 5) 

c The comparison of MI between different movement phenotypes. 

Each movement segment has two MI components (red boxes, 

horizontal; blue boxes, vertical). The boxes’ values for each group 

contain the MIs of n behavioral modules (n is the number of 

behavioral modules of each group). d, e Horizontal and vertical MI of 

each body part in different movement phenotypes. The values on each 

line are the MIs of all behavior modules corresponding to the 

phenotype, shown by body parts separately and presented as mean ± 

standard deviation (SD). 

 

- In Supplementary Methods page 29, lines 738-748 

(Supplementary Methods) 

After each MI of body parts in XY (horizontal) and YZ (vertical) 

coordinates plane were calculated, they were visualized in Fig. 5.  

We visualized them in specific top view (XY) and side view (YZ). 

Firstly, we averaged the positions of each body part across time to 

plot averaged pose skeleton of each movement category by solid line. 

Secondly, we meshed the plane of averaged pose skeleton to create 

grids for visualizing MI. Each position of skeleton has a 

corresponding MI parameter, which could be plotted on the grids. The 

MIs in the same grids are averaged to get the mean MI. Thirdly, we 

calculated the frequency of positions of each body part in grids for 

weighted MI. This step aims to make the position-correlated moving 
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intensity of body part could be described by MI. Finally, the weighted 

MIs are plotted by heat map, which is easy to observe the movement 

area of each body part and depict the moving intensity in specific 

positions. 

 

Group effect 

When we compared the behavioral differences between KO and WT 

mice, we mainly evaluated them at the group level. We used two-way 

ANOVA to characterize the difference and draw conclusions. To 

demonstrate the behavior differences among individuals, the 

corresponding data in Fig. 6g are presented in Supplementary Table 

3. We performed 100 pair-wise comparisons between 10 KO 

individuals and 10 WT individuals. We found that for hunching 

behavior, the probability in KO individuals is 87% higher than that in 

WT individuals; for the three subtypes of self-grooming behavior, the 

probability in KO individuals is higher than in WT individuals by 

93%, 94%, and 96%, respectively.  

   

Combinatorial behaviors that present different clusters within the 

same group 

Profiling the behavioral patterns of transgenic animal disease models 

has critical significance. Besides comparing the behavioral difference 

with non-transgenic animals at the group level, there may also be 

subtypes with behavioral differences within the mutant group. 

However, for Shank3B KO mice, due to the limitations of previous 

behavior quantification methods, many studies have quantified 

behavior by human observation or velocity and position-based 

analysis. Among these studies, the most reported behavior maker is 

self-grooming 20,21 , and a few studies mentioned differences in 
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rearing behavior 22. However, the subtypes of Shank3 and 

combinatorial behaviors are not reported. 

 

We have shown that our framework has the potential to discover new 

behavioral biomarkers. However, to further answer this question, we 

need to obtain a more detailed and comprehensive analysis as our 

next step. At this stage, we are focusing on demonstrating that our 

framework has the capacity for high-throughput analysis of 

behavioral data and investigation of behavioral differences. For 

example, in our newly added data (Supplementary Fig. 12 and 

Supplementary Table 2), we compared the behavioral patterns of the 

KO and WT groups under five different conditions. We found that for 

KO mice, changing the experimental apparatus, lighting conditions, 

ages, and sexes did not significantly affect the behavioral patterns; 

When the experimental conditions were the same, only the female 

groups of KO and WT had no significant difference. These findings 

are consistent with previous reports that Shank3B KO male mice 

display more severe impairments than females in motor coordination. 

 

- In Manuscript page 10-11, lines 340-356 (Discussion) 

Moreover, we further investigated the differences in the behavior 

patterns of Shank3B KO and WT mice at the group level. In addition 

to the data that had already been analyzed (collected under the 

condition: male mice, 5–6 weeks, white light, and circular open-

field), we extended the group behavioral pattern analysis to include 

data collected under different conditions (i.e., different experimental 

apparatus, lighting, age, and gender; Supplementary Table 2). We 

calculated the cross-correlation coefficient matrix (CCCM) of all 

samples based on the movement fractions and used principal 
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component analysis to extract the main variance factors of the CCCM 

(Supplementary Fig. 12 a, b). We found that when only a single 

condition was changed for male mice, there was no significant 

difference in population behavior patterns in mice with the same 

genotype (Supplementary Fig. 12 c). We also found that although 

some female KO mice had a weak tendency for autistic-like behavior, 

there was no significant difference between 5–6 week male and 

female KO mice at the group level when tested under the white-light 

circular open field condition (Supplementary Fig. 12 c, d). Finally, we 

compared the behavior patterns when all conditions were the same 

except for the genotypes. The results showed that only the female 

group showed no significant difference between KO and WT 

genotypes, while significant differences in behavioral patterns were 

found between KO and WT male mice under all other conditions. 

These findings are consistent with previous reports that Shank3B KO 

male mice display more severe impairments than females do in motor 

coordination. 

 

R#3 (5) I believe that one of the strength of this work is the 

decomposition of behaviour, which can then be 

tracked in time and used to predict modules of 

behaviour. I think that should this be applied 

extensively to behavioural studies will provide 

more convincing information about the validity. At 

the current state a longer monitoring in time, across 

days of individual animals would have provided, 

perhaps, a strongest validation of this framework. 

 

Thank you for your suggestion. Continuously tracking the animal's 

poses and automatically decomposing and categorizing spontaneous 

behavior is particularly important for experiments that require long-

term behavior observation. For example, when the timing of the 

expected behavior is hard to predict in advance, but the time window 

of the specific behavior is needed to locate it within the long-term 

recording to further analyze the correlation between the behavior and 

other measurements or for evaluating how chronic interventions such 

as drugs affect the animal's behavioral states over time. Therefore, 

according to your suggestion, we have added information on the 

continuous 24-hour recording experiment to provide further 
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validation. The result shows that the strengths of our framework 

include:  

1) Long-term accurate behavior tracking;  

2) Efficient two-stage behavioral decomposition (especially for pose 

decomposition) for high-throughput behavior monitoring;  

3) Cross-scale behavior quantification.       

 

- In Manuscript page 10, lines 322-327 (Discussion) 

For example, to study animal circadian rhythms, previous researchers 

have used electrophysiological and behavioral recording approaches 

to characterize different brain states. We used our framework to 

perform a continuous 24-hour behavioral recording, and the 

preliminary analysis proved that our framework could provide more 

comprehensive behavioral parameters and detailed quantification of 

behavior states (Supplementary Fig. 13).  

 

- In Supplementary Methods page 16, lines 337-366 

(Supplementary Fig. 13 and figure legend) 

Supplementary Fig. 13 | Continuous long-term monitoring and 

analysis of mouse behavior. a The timeline of the behavioral 

recording period over 24 hours. b The normalized velocity of the 

mouse across 24 hours aligned to the timeline. c The decomposed 

behavioral modules shown with color-coded labels. d Three 

magnified representative behavioral modules and selected, single 

corresponding frames. Left, running on the litter; Middle, eating; 

Right, prolonged immobility resembling resting. e, f State transitions 

of the movement modules in night and day phases. g Differences in 

the state transitions between night and day. The color of the dots in e, 

f, and g correspond to the behavioral modules shown in c. The size of 
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the dots represents the rank of the module probabilities over 24 hours. 

The color of the connections in e and f represents the direction from 

the previous state to the current state, and its color is the same as that 

of the previous state. The width of the connections in e and f 

represents the normalized two-state transition probability. The color 

and width of the connections in g represent the normalized difference 

between e and f. 

 

- In Supplementary Methods page 19, lines 437-4445 

(Supplementary Methods Animals, behavioral experiments and 

behavioral data collection) 

In the second behavioral experiment, we capture the mouse behavior 

for 24 hours (related to Supplementary Fig. 13). We still use circular 

open field but covered by wood chip as padding and offered water 

and regular food (the chow). The male mouse used in this experiment 

has C57BL/6J genetic background and is 13 weeks old. To change the 

light conditions and keep the circadian rhythms of mouse, we use 

infrared light as the background light and set the cameras to infrared 

model. This experiment was start at 20:20 p.m. We first closed the 

light until 7:00 a.m. next day, then we open the white light until 19:00 

p.m. At last, we closed the light until 20:20 p.m. and finished the 

behavioral capturing across 24 hours. All the detailed information of 

mice and experimental conditions are in Supplementary Table 2 

 

R#3 (6) One more last thing, although it is outside of the 

scope of this study, are the authors planning to 

extend this framework to mouse social interaction? 

As I said, this won’t change what they have nicely 

In fact, we are also very interested in both interspecies or intraspecies 

social behaviors, such as mating, social hierarchy, predation, and 

defense behaviors. Currently, extending our framework to social 

behavior analysis is limited by the problem of tracking multiple 

visually indistinguishable (marker less) animals without their 
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achieved in this study, it is just a curiosity and an 

interest that involve everyone in the community. 

 

identities being swapped. Ideally, if the poses of multiple animals can 

be accurately estimated in each frame, then based on the temporal 

context (smooth trajectories), these animals can be correctly tracked 
23. However, once the animal’s bodies are touching or even occluded, 

the inaccurate poses estimation leads to off-tracking and identity-

swap. Although recent works include the DLC for multi-animal pose 

estimation 24, SLEAP 25 and AlphaTracker 26, this issue haven’t been 

solved perfectly. Another approach for social interacting animal 

tracking is from the population aspect, which only requires the 

features unrelated to animals' identities, such as using the position 

differences between animals' body parts for recognition or clustering. 

However, this approach is limited to specific behaviors and does not 

apply to unequal status behaviors between social subjects. 

 

Our 3D multi-view motion capture system is promising method to 

solve this problem since it can effectively reduce body occlusion 

probability. We have tested the tracking of animals with different 

appearances, as well as animals with similar appearances without 

body touching. The results demonstrated that our system tracks them 

perfectly (Supplementary Video 6, 7). However, it performs poorly 

for animals with similar appearances and body touching. This is 

because when estimating multiple body parts of multiple animals in a 

single frame, the combination of the poses of these animals is more 

complex and diverse, and the identity-swap in different views may 

happen at different times. To this end, we are considering using 

computer vision technology (e.g., point cloud reconstruction) to fuse 

images from multi-views, then segment each animal's body, and 

estimate the body parts based on the reconstructed 3D animal. If these 

problems can be solved well, we will expand our framework, 
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including adding modules to analyze social behaviors, and using our 

framework to generate a large number of well-annotated behavior 

sample databases. We believe that the development of these toolboxes 

will be definitely beneficial to the community. 

 

We added the discussion of the limitations of the framework and its 

future direction: 

- In Manuscript page 11-12, lines 376-394 (Discussion) 

Lastly, we would like to discuss the limitations of our framework. 

When extending our framework to social behavior analysis, such as 

the analysis of mating, social hierarchy, predation, and defense 

behaviors, it is challenging to track multiple, visually 

indistinguishable (markerless) animals without identity-swapping 

errors (Supplementary Video 6, 7). Alternative methods mainly focus 

on tracking and identifying social behaviors at the population level, 

which only requires the identification of features unrelated to the 

animals' identities such as the positional differences between animals' 

body parts. However, this approach is limited to specific behaviors 

and does not apply to interaction behaviors between social subjects of 

unequal status. Recent cutting-edge toolboxes such as DLC for multi-

animal pose estimation, SLEAP, and AlphaTracker have addressed the 

multi-animal tracking problem, but once animals with similar 

appearances are touching or even body-occluded, the inaccurate pose 

estimation of these toolboxes leads to off-tracking and identity-

swapping errors. This is because when estimating multiple body parts 

of several animals in a single frame, the combination of the poses of 

these animals is more complex and diverse, and identity-swapping in 

different views may happen at different times. Our 3D multi-view 

motion capture system promises to solve this problem by effectively 
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reducing body-occlusion probability. As a next step, we are 

considering using computer vision technology (e.g., point cloud 

reconstruction) to fuse images from multiple views, then segment 

each animal's body, and estimate the body parts based on the 

reconstructed 3D animal. Solving these problems will extend the 

applicability of our framework to the benefit of the animal behavioral 

research community. 
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The reviewer made comments in the last round and criticize the novelty of the proposed 

framework in this paper. 

After having read the revised version, the reviewer has NOT been convinced by the novel 

contribution made in the proposed 3d motion capture system. 

The reviewer believes that the proposed motion capture system is an incremental version of 

individual standard technologies, including camera calibration, pose estimation, trajectory 

estimation, etc. 

The revision does not justify the number of mice used in the experiments. Therefore, the statistics 

generated in the current version are not convincing. 

Again, the authors fail to persuade the reader of why the existing mouse motion capture systems 

should not be used in the community. 

The created images/figures in the paper look too rush. 

Reviewer #3: 

Remarks to the Author: 

The authors answered all my questions and I appreciated the new data on social interaction! 
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Responses to the Review Comments (NCOMMS-20-43913A) 
 

We wish to thank the reviewer for their thoughtful comments of our revised submission. These inputs prompted us to improve our 

manuscript. This document provides a point-by-point response to the comments raised by the review. We believe the revised paper is 

better positioned, more focused, and makes a stronger contribution to the literature. We sincerely hope that you will find that this 

revised manuscript has improved substantially and is heading in the right direction. All other changes made to the Manuscript are 

highlighted by using the track changes. 
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Reviewer #1 (R#1) 
COMME

NT No. 
REVIEW COMMENTS AUTHORS’ RESPONSES 

R#1 (1) After having read the revised version, 

the reviewer has NOT been convinced 

by the novel contribution made in the 

proposed 3d motion capture system.    

The reviewer believes that the proposed 

motion capture system is an incremental 

version of individual standard 

technologies, including camera 

calibration, pose estimation, trajectory 

estimation, etc. 

Thank the reviewer for the comment.  

Our main contribution in this work is providing a low-cost and efficient 3D 

motion capture system solution. The closed-loop auto-calibration module 

has not been used in the literature. This approach can acquire the 

checkerboard images fast and significantly improve the success rate of 

calibration. We provide the detailed validations of body occlusion in multi-

view, and multi-body parts 3D tracking and cameras setting.  

Besides, obtaining high-quality 3D animal behavior data is only the first 

step. We also propose and implement a novel behavior natural structure-

inspired decomposition framework and use this technology to collect and 

characterize the behavior of the animal disease model. Our data proved that 

our framework could detect behavioral biomarkers that have been 

identified previously and discover potential new behavioral biomarkers. We 

will continue to develop related techniques to promote our lab and the 

potential involved users to collect and annotate the data to build the animal 

behavior dataset. 

The motivation for this work is from our previous behavioral paradigms 

and analytical tools could not answer many questions well. For example, 

our lab and other research 1,2 groups interested in visually evoked innate 

defensive behavior. We used the looming stimulus to simulate the threaten 

approaching, and the mouse will show the stereotyped defensive response. 

Due to the limitations of the behavioral measurement approaches, we can 

only use the freezing or flighting response to represent animals fear 
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emotion states (these two behaviors are easy to quantify). However, in our 

behavioral videos, we observed rich behavioral patterns after the stimulus 

releasing (for example, the animal usually shows rearing or orienting 

actions before freezing or flighting). Some reviews also proposed a similar 

conceptual timeline of events during escape behavior 3. Current available 

behavioral study tools struggle to identify these behavioral patterns, both 

the commercial solutions or open-source toolboxes.  

To this end, our primary demand is to extract biologically significant 

behavior sequence modules from continuous behavioral videos. So, we first 

proposed the two-stage dynamic temporal decomposition algorithm to 

address the high-dimensional and complex rodent behavior. For the pose 

trajectories acquiring, the original solution is DLC-based 2D pose 

estimation. Since the looming stimulus should be delivered in the upper 

filed, it’s inconvenient to capture the behavior video in the top-view. The 

side-view 2D DLC data caused heterogeneous behavioral decomposition 

since heavy body-occlusions and view-angle bias (highly similar actions 

from different view-angle were captured and identified as different actions). 

Thus, we had to find 3D solutions. The DLC and existing 3D 

reconstruction methods are well-developed (except tracking multi-animal 

with similar appearances), but they are individual technical modules. As we 

mentioned in the previous response letter, we made many efforts to 

integrate and optimize the 3D motion capture system to enable highly 

efficient and high-quality 3D behavior data collection. Besides the auto-

calibration and synchronous multi-video acquiring, the validation and pre-

processing of the 3D skeleton, including performance validation, body part 

definition, body alignment, and body scaling, is also essential for 3D 

behavior analysis 4. We believe that our practice will be helpful for many 

researchers in this field.  
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R#1 (2) The revision does not justify the number 

of mice used in the experiments. 

Therefore, the statistics generated in the 

current version are not convincing. 

  

Thank the reviewer for the comment. 

The sample sizes of behavior tests were selected by referring to the 

previous behavior studies of Shank3B mutant mice 5–8: 

- Peça, J. et al., Nature, 2011. Figure 1, n = 6-9 mice per genotype; 

- Mei Y. et al., Nature, 2016. Figure 1, nWT = 6, nKO = 7 mice; 

- Wang X. et al., Human Molecular Genetics, 2011. Figure 2-4, n = 10 

mice/genotype/sex;  

- Fourie, C. et al., Frontiers in Cellular Neuroscience, 2018. Figure 1, nWT = 8, 

nKO = 10 mice; 

Besides, the sample size selection is also verified by power analysis 9. 

 

R#1 (3) Again, the authors fail to persuade the 

reader of why the existing mouse 

motion capture systems should not be 

used in the community. 

  

Thank the reviewer for the comment.  

3D behavior monitoring is crucial for the mammal’s spontaneous behavior 

study. Datta et al. held that it is easy to understand that the animals 

naturalistically explore the world through 3D movements of their bodies 

and so express pose dynamics in 3D 10. Animals show rich kinematical 

information through their body (especially the nose, head, limbs and trunk) 

in many movements (e.g., rearing, stretching, climbing). Capturing 3D 

motion information makes it reliable when identifying these behaviors 11. In 

addition, the 3D skeletal data allows a detailed description of the behavioral 

types. In our manuscript, we compared the newly identified hunching with 

rearing movement by providing the 3D motion “portraits”. Thus, we proved 

the hunching is a unique behavior and different from rearing.  
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Currently, we are working on conducting a comprehensive comparison 

between our framework and traditional behavior analysis approach for 

evaluating the anxiety-like mouse models’ behavior (unpublished). The 

preliminary results showed that compared with the single-camera solution, 

our approach can significantly identify the behavioral differences of the 

anxiety-like mice, whereas the traditional method could not detect the 

significance.       

Finally, we would like to clarify that to replace existing behavioral capture 

systems, more development is needed for the 3D behavior collection 

system (e.g., the novel and validated 3D behavior paradigms). 

We added the discussion of this point. 

- In Manuscript page 10, lines 319-323 (Discussion): 

Currently, we are working on conducting a comprehensive comparison 

between our framework and traditional behavior analysis approach for 

evaluating the anxiety-like mouse models’ behavior. The preliminary 

results showed that compared with the single-camera solution, our 

approach can significantly identify the behavioral differences of the 

anxiety-like mice, whereas the traditional method could not detect the 

significance. 

 

R#1 (4) The created images/figures in the paper 

look too rush. 

  

In this revision, we have carefully checked our figures according to the 

editor’s instructions. We have improved the figure legends, axes labels, 

abbreviations, symbols and colors. We hope these improvements are 

heading in the right direction. 

 



6 | R e v i s i o n  N o t e s  ( N C O M M S - 2 0 - 4 3 9 1 3 A )  

 

  



7 | R e v i s i o n  N o t e s  ( N C O M M S - 2 0 - 4 3 9 1 3 A )  

 

References 
1. Wei, P. et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications 6, 6756 

(2015). 

2. Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nature 

Communications 9, 1232 (2018). 

3. Evans, D. A., Stempel, A. V., Vale, R. & Branco, T. Cognitive Control of Escape Behaviour. Trends in Cognitive Sciences 23, 

334–348 (2019). 

4. von Ziegler, L., Sturman, O. & Bohacek, J. Big behavior: challenges and opportunities in a new era of deep behavior profiling. 

Neuropsychopharmacology 46, 33–44 (2021). 

5. Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011). 

6. Mei, Y. et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530, 481–484 (2016). 

7. Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Human Molecular 

Genetics 20, 3093–3108 (2011). 

8. Fourie, C. et al. Dietary Zinc Supplementation Prevents Autism Related Behaviors and Striatal Synaptic Dysfunction in Shank3 

Exon 13–16 Mutant Mice. Frontiers in Cellular Neuroscience 12, 1–14 (2018). 

9. Rosenthal, R. Parametric measures of effect size. in The handbook of research synthesis 231–244 (1994). 

10. Datta, S. R. Q&A: Understanding the composition of behavior. BMC Biology 17, 1–7 (2019). 

11. Marshall, J. D. et al. Continuous Whole-Body 3D Kinematic Recordings across the Rodent Behavioral Repertoire. Neuron 109, 

420-437.e8 (2021). 

 

 


	Combine.pdf
	Response_NCOMMS-20-43913A



