
Supplementary Material 

Detailed treatment of models: structural properties 

ER-ESN. We first considered a directed Erdős-Rényi (ER) model (Fig. 2b-c) 1. ER 

graphs were, for example, proposed as the computational substrate of Echo State 

Networks (ESNs) 2, 3, 4, 5, 6, 7, 8, 9, 10. In these studies, single neurons were allowed to 

make both excitatory and inhibitory synapses. However, to obey the biological 

constraint of neurons establishing either excitatory or inhibitory synapses - “Dale’s law”, 

11 - we implemented ER-ESNs to comprise separate excitatory and inhibitory neuron 

populations. Connection probabilities were independent of inter-soma distance (Fig. 2b, 

cf. the next model). The reciprocity of ER networks equals the excitatory connectivity, 

       , satisfying the experimentally observed constraints (Fig. 2c). 

EXP-LSM. We next considered pairwise random but distance-dependent connectivity 

(Fig. 2b-c). Such architectures have been proposed as models for real-time 

computations without stable states (Liquid State Machines, (LSMs), 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23. To model neuronal connectivity dependent on the distance between neuronal 

cell bodies, soma positions were independent and identically uniformly distributed within 

a L4 model cube of size 300 µm (Fig. 2a). We assumed the pairwise connection 

probabilities   (  )     (      ),   (  )     (      ), to decay exponentially with 

inter-soma distance    (Fig. 2b). The decay lengths   ,    were adjusted to satisfy the 

L4 connectivity constraints (Fig. 1d). The reciprocity constraint was then found to be 

also satisfied (Fig. 2c). Notably, the distance dependence of the EXP-LSM model 

implied a reciprocity higher than in ER networks, but was still within the experimentally 

observed regime (Fig. 2c). 

LAYERED. We next investigated the hypothesis of hierarchical, layered processing in 

local cortical networks (Fig. 2d). Layered models were first proposed as the multi-layer 

perceptron 24. Many studies of early sensory processing, particularly visual processing 

made use of such models 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34. Pure multi-layer perceptrons lack 

reciprocated connections and thus violate basic circuit properties found in local cortical 



networks. When instead considering a stacked recurrent neural network, however, a 

layered model could be made comply with the observed circuit constraints. For this, 

excitatory neurons were uniquely grouped into sequentially ordered layers. Connections 

within a layer were implemented using a pairwise connection probability       . 

However, only unidirectional connections from one layer to the subsequent layer were 

allowed with pairwise connection probability      (Fig. 2d). Inhibitory neurons were not 

organized in layers but provided global inhibition (Fig. 2d). Obviously, as the number of 

layers increases, high average reciprocity and high average pairwise connectivity 

become mutually exclusive (Fig. 2e), such that the number of layers in a LAYERED 

model is limited by the connectivity and reciprocity constraints. For      to      

layers, the connectivity constraints (Fig. 2f-g) could be robustly satisfied. 

SYNFIRE. We then investigated embedded synfire chains (Fig. 2h). A variety of synfire 

chain-like models has been proposed 27, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51. 

Some of these models were defined as structurally separated neuronal pools with 

sequential activation chains 27, 35, similar to the LAYERED model introduced above, but 

for        (Fig. 2d). Most studies however considered embedded synfire chain models, 

in which synfire pools were allowed to overlap 35, 36, 37, 38, 43, 46, 49, 50. We considered 

embedded synfire chains 50. Excitatory synfire pools were uniformly drawn with 

replacement. Pools were then sequentially connected all-to-all (Fig. 2h). The neuronal 

populations belonging to a synfire pool could overlap (Fig. 2h) such that reciprocated 

connections emerged during this process (Fig. 2h). Connectivity and reciprocity were 

found to lie within the experimentally observed constraints for pool size       between 

80 and 300 and the number of pools       between 60 and 190 (Fig. 2i,j).  

FEVER. Then, the feature-vector recombination (FEVER) model 52, 53 was considered, 

which was proposed to allow sustained neuronal representations on macroscopic time 

scales (seconds; “short-term memory”) (Suppl. Fig. 2a). Here, connectivity is based on 

the neurons’ receptive fields represented by feature vectors: The postsynaptic neurons' 

feature vectors are additively and sparsely recombined to approximate the presynaptic 

neuron's own feature vector (Suppl. Fig. 2a). The FEVER model in its original 

formulation yielded lower pairwise connectivity (range 0-0.1) and higher reciprocity 



(range 0.45-0.6) than given by the barrel circuit constraints (Suppl. Fig. 2b). We 

therefore constructed an adapted FEVER model by initializing the connectivity using an 

ER model with connectivity          ,   *   +. Subsequently, connections were added 

according to the FEVER rule, which now had to incorporate the initial random 

connections, as well. As a consequence, the average FEVER rule error ‖    ‖ of a 

modified FEVER network with        and initial excitatory connectivity 0.14 was 10% 

larger than the average FEVER rule error of an unmodified FEVER network with 

       (see Suppl. Fig. 2c). In fact, a fraction of the resulting modified FEVER model 

instantiations complied with the barrel circuit constraints (Suppl. Fig. 2b). However, the 

question whether these modified models still provided the functional properties originally 

proposed for the FEVER networks had to be investigated (see below). 

API. Lastly, we investigated the anti-phase inhibition (API) model (Suppl. Fig. 2d), which 

was originally proposed to explain contrast invariant stimulus tuning in the primary 

visual cortex 54, 55, 56, 57, 58, and has been extended to the primary somatosensory cortex 

55.  In the original API model, a hidden feature vector is associated with each neuron, 

and connections between neurons are determined based on a connectivity rule that 

depended only on the correlation between the feature vectors of the pre- and 

postsynaptic neurons (Suppl. Fig. 2d). The shape of this connectivity rule determined 

the pairwise connectivity and reciprocity. For excitatory presynaptic neurons k with 

feature vector   , connections were not established with a candidate postsynaptic 

neuron l if the cosine similarity of their feature vectors was negative (    (     )    ), 

and the connection probability was set to rise steeply for positively correlated feature 

vectors (Suppl. Fig. 2d). Similarly for inhibitory neurons, connections were not 

established if the feature vector of the candidate postsynaptic neuron was positively 

correlated, but connection probability was set to rise steeply for increasingly negative 

feature vector correlations. The particular shapes of this connectivity rule as proposed in 

the original model, however, yielded too many reciprocated excitatory connections 

(Suppl. Fig. 2e-g), reciprocity range 0.8-1) since bidirectional connections between 

neurons with similar feature vectors were strongly favored. We therefore adapted the 

shape of the API connectivity rule to reduce this bias (Suppl. Fig. 2d), decreasing the 

frequency of reciprocal connections and satisfying the local cortical circuit constraints 



for excitatory connections (Suppl. Fig. 2f,g). For inhibitory connections, the constraint to 

reach connectivity beyond 50% (Fig. 1d) was not fulfillable with the original API 

connectivity rule (Suppl. Fig. 2d,e), which yielded an effective limit at 50% connectivity. 

We therefore modified the API connectivity rule for inhibitory connections to allow these 

also between neurons with negative cosine similarity of their feature vectors (Suppl. Fig. 

2d-g).  

Thus, in summary, 3 of the 7 models (ER-ESN, EXP-LSM, SYNFIRE) satisfied the 

biological circuit constraints in a barrel module as they had been originally proposed; 4 

models (LAYERED, STDP-SORN, FEVER, API) did not satisfy these constraints in their 

original formulation. These however were made comply with these circuit constraints by 

minor (LAYERED, API) or more substantial (STDP-SORN, FEVER) alterations. We had 

to investigate next whether these altered models could still perform the computations 

they had been proposed for, tested in the context of potentially relevant stimulus 

transformations in a barrel module. 

STDP-SORN. We next considered a model in which local cortical circuity is shaped 

mainly by generative local learning rules such as spike timing dependent plasticity 

(STDP) 59, 60; such rules have been used in networks labeled self-organizing recurrent 

neural networks (SORN) 51, 61, 62, 63, 64. Here, cortical circuity is formed by STDP, 

synaptic normalization, intrinsic plasticity and structural plasticity (Suppl. Fig. 2h-l). The 

original SORN formulation yielded however substantially lower excitatory reciprocity 

than found experimentally (range 0-0.0038 compared to 0.15-0.45, (Suppl. Fig. 2m) and 

we therefore introduced the following modifications to the SORN model: originally, the 

STDP rule increased the synaptic weight by an amount       whenever the presynaptic 

neuron fired one time step before the postsynaptic one and decreased it by       if the 

firing order was reversed (Suppl. Fig. 2i). We modified this rule such that the synaptic 

weight was also increased by       if both neurons fired at the same time (Suppl. Fig. 

2i). Originally, the structural plasticity rule prescribed a fixed number of synapse 

creation attempts per time step (Suppl. Fig. 2k). We introduced a homeostatic structural 

plasticity rule which attempted to keep the number of connections constant (Suppl. Fig. 

2j,k). Synapses were added with initial weight     . The synaptic weight developed over 



time following the STDP rule (Suppl. Fig. 2l). Together, these alterations of the STDP-

SORN model yielded pairwise connectivity properties that complied with the 

experimentally observed ones in the barrel circuit (Suppl. Fig. 2m). 

Detailed functional investigation of models 

To investigate the models’ functional properties, we considered the sensory input to a 

barrel module, which is dominated by the response to the aligned principal whisker 65. 

An awake behaving mouse is frequently swiping its whiskers across objects with 

different surface texture 66, 67, 68, 69. When doing so, neurons in thalamus and cortex 

have been shown to exhibit specific responses to troughs and elevations in the surfaces 

the whisker is exposed to (“slip – stick events”, 70, 71). We therefore considered the 

discrimination of surface textures, represented as height – correlated activity, as a 

simple realistic model test, and exposed the ER-ESN, EXP-LSM and LAYERED models 

to such a texture discrimination task. The API model had been already specifically 

proposed for rodent S1 55, and we therefore tested the anti-phase stimulus 

representation property directly. The FEVER model had been proposed to allow 

extended representation of sensory stimuli on time scales relevant for short-term 

working memory, so we used the correlation between the representations in the network 

at the beginning and end (after 20 neuronal time constants) as a test of model 

functionality. Finally, the STDP-SORN and SYNFIRE models have so far been mainly 

tested for basic stability properties, namely the lack of correlated firing modes in SORN 

62 and the faithful transmission of activity across pools in SYNFIRE 50, which we 

therefore considered as the required readouts for model functionality for SORN and 

SYNFIRE.  

ER-ESN, EXP-LSM, LAYERED. The ER-ESN, EXP-LSM and LAYERED models were 

tested using a texture classification task (Suppl. Fig. 1a). We assumed that texture 

elevation    (Suppl. Fig. 1a,b) is converted into a temporal activity when the whisker is 

sweeping over that surface (Suppl. Fig. 1b, see above). Such elevation profiles were 

sampled from 7 textures (Suppl. Fig. 1a,c) and presented as network input activity 

(Suppl. Fig. 1d,e, this would correspond to thalamic input to layer 4). The neurons in the 

presumed L4 network were then connected to dedicated readout neurons,         , 



whose activity was interpreted as (continuous) texture classification readout (Suppl. Fig. 

1e, top).  In order to extract a texture class prediction from the activity of the output 

neurons, their activity was integrated over the second half of the texture presentation, 

and the highest activity was interpreted as texture choice (Suppl. Fig. 1f). For the ER-

ESN and EXP-LSM models, only the readout projections from the L4 pool to         

were trained. In the LAYERED model, all inter-layer projections      (Fig. 2d) were 

trained in addition. Training was performed using the “Adam” adaptive moment 

estimation method 72. 

While the performance of the LAYERED model was substantially higher than that of ER-

ESN and EXP-LSM models (accuracies 90.8% vs 66.1%, 66.5%, Suppl. Fig. 1g), all 

models performed substantially above chance level (chance level 14% accuracy, Suppl. 

Fig. 1g). 

SYNFIRE. Synfire chains were proposed as a model to explain synchronous 

propagation of cortical activity 35. We therefore tested whether the initial activation of a 

single neuron pool in our modified SYNFIRE model still yielded a propagation of activity 

along the embedded SYNFIRE chain in a sequential manner (Suppl. Fig. 1h). For this 

we first activated all neurons in one neuron pool, and then tracked whether the 

subsequent pools were also activated, and in the right sequence. We considered a pool 

to be activated if at least half of its neurons were active (Suppl. Fig. 1i). We found that 

the SYNFIRE model did indeed support stable propagation within the imposed circuit 

constraints (Suppl. Fig. 1h,i). The average activated fraction of the chain     was 

substantially above 95% for pool sizes           (Suppl. Fig. 1j) and reached about 

80% for          (Suppl. Fig. 1j). Since the structural constraints had defined a range 

of pool sizes 80-300 (Fig. 2h-j), the modified SYNFIRE model was considered to still be 

sufficiently viable. 

FEVER. For the adapted FEVER model, we evaluated whether it could faithfully 

maintain a given input stimulus representation over time, as proposed in the original 

work in the context of short-term memory 53. We compared the imprinted state at the 

beginning of a trial (imposed as activity in 53 to each neuron) to the represented state at 

the end of a trial (using the cosine similarity as measure (Suppl. Fig. 3a,b)). In fact, the 



representation was robustly stable over time for a range of feverization ratios    (range 

0.5-1, Suppl. Fig. 3b). Thus, although the FEVER error had increased by 11% 

compared to the original model (Suppl. Fig. 2c), the modified FEVER network still 

provided its key proposed functional feature: to keep stimuli represented over 

macroscopic time scales within a network. 

API. The originally proposed API network 54 was intended to convert the purely 

excitatory thalamocortical input impinging on L4 neurons (Suppl. Fig. 3c) into an 

intracortical activity that was inhibition-dominated for those neurons whose feature 

vectors were anticorrelated to that of the thalamic input (Suppl. Fig. 3d). Similarly, the 

intracortical synaptic input to neurons with feature vectors orthogonal to that of the 

thalamic input was intended to be close to zero, and the intracortical synaptic input was 

intended to be excitation-dominated for neurons with feature vector aligned to that of the 

thalamic input (Suppl. Fig. 3d). We took the inhibition-dominated regime as the key 

property of this network (“antiphase inhibition”) and tested whether for neurons with a 

feature vector anticorrelated with the thalamic input feature vector in fact increasingly 

inhibition-dominated input could be found after          time constants of the network 

simulation (Suppl. Fig. 3d). We found that also in the modified API model, neurons with 

a feature vector tuned antiphasic to the thalamic input were inhibited (Suppl. Fig. 3d). 

Since furthermore the correlation between cortical feature vectors of antiphasic tuned 

neurons and thalamic feature vectors decreases with increasing feature space 

dimension (Suppl. Fig. 3e), the API tuning property vanished for feature space 

dimension above about 50 (Suppl. Fig. 3e; see inset in Suppl. Fig. 3e for an example of 

the API tuning property for a higher feature space dimension of 93). Since this was in 

the range of possible thalamic feature space dimensions (note that only about 250 

thalamic neurons project to a L4 barrel), we considered the API tuning property to be 

sufficiently realized for our adapted API model, as well. 

STDP-SORN. The STDP-SORN model was proposed as an example of network self-

organization, demanding that neuronal activity in this network would neither overly 

synchronize nor be limited to a small subset of the neuronal population (Suppl. Fig. 3f). 

We used a simple measure of median correlation between the activities in all pairs of 



neurons in the network to detect overly synchronized network activity. We found that for 

learning rates       of 0.0006-0.0014 and intrinsic learning rates    of 0.05-0.1 (Suppl. 

Fig. 3f), this network activity correlation remained below 0.0422, indicating that the 

modified STDP-SORN model fulfilled this basic functional requirement. Similarly, the 

spike source entropy (SSE) was greater than 0.99, similar to the original work 62, for the 

modified STDP-SORN model indicating equally distributed activity. 

In summary, the process of adapting the previously proposed models to basic 

experimentally determined circuit constraints in L4 of barrel cortex (Fig. 2, Suppl. Fig. 1, 

Suppl. Fig. 2) did not compromise the basic functional properties that these models 

were expected to exhibit in the context of sensory input to cortex (Suppl. Fig. 1, Suppl. 

Fig. 3).  

Supplementary methods: functional properties of STDP-
SORN, API, FEVER 

The STDP-SORN model was tested for pairwise neuronal correlation. The Pearson 

product-moment correlation coefficients      were calculated for the activity traces of 

each neuron pair. The median    (    ) of these correlations was calculated to 

represent the whole network. It was also tested for equal activity distribution through the 

spike source entropy (SSE), defined by     
∑          
  
   

        
 in which    denoted the 

mean firing probability of neuron   across the complete trial. 

The API model was tested for its antiphase inhibition property. The dynamical model 

was  (   )  (   ) ( )        ( ( )    ) with       . Neuron   received input 

     given by           (    (       )  ). The stimulus was          where    

               (   ) was a randomly chosen neuron. At the end of a trial the feature 

vector-stimulus cosine similarity     (      ) was calculated. The simulation was 

implemented in Theano. 

The FEVER dynamics were given by  (   )   ( )   ((   )  ( ( ))   ( )) 

according to 53, with  ( )      (   (   )      ),        ,  ( )     (           ) 

and     ( ) where   was a random vector with components       ‖ ‖,         



with     (    ) iid. and       (    ) iid.. At the end      of the trial the 

represented state        (    ), with   the feature vector matrix, was compared to 

the target state        via the cosine similarity     (       ).  

Supplementary methods: extended analysis of incomplete 
and erroneous circuit measurements 

Edge removal only. A fraction of the edges (connections) was uniformly at random 

removed from the network irrespective of whether their pre- and postsynaptic neurons 

were excitatory or inhibitory. 

Edge addition only. A fraction of the number of edges present in the unperturbed 

network was added between previously non connected neurons. Neuron pairs were 

chosen uniformly at random irrespective of whether their pre- and postsynaptic neurons 

were excitatory or inhibitory. Connections were then added and the sign of the added 

connection determined according to the type of the presynaptic neuron. 

Biased perturbation. Removal and addition of edges was biased towards a 

subnetwork. A subnetwork consisting of a fraction    of the excitatory and of the same 

fraction    of the inhibitory neurons, i.e.      excitatory and      inhibitory neurons was 

chosen uniformly at random from all subnetworks with such excitatory and inhibitory 

neuron numbers. A total number of  (     ) connections were then first removed from 

the subnetwork and reinserted again. 

Locally dense reconstruction of a barrel subvolume. Neurons and connections were 

assumed to be uniformly and independently distributed in the barrel cube of side length 

   (Fig. 2a). The locally dense reconstruction of a barrel subcube of side length     

was simulated as follows: First, the connectome was restricted to neurons located within 

the subcube. Each neuron had a probability   (      )
  of being located within the 

subcube. Of the remaining connections, the ones not located within the subcube were 

discarded. Each connection had a probability   of being located within the subcube. 

Note that the minimum acceptance distance      was set to zero for the simulation of 

locally dense reconstructions.  
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Figure S1 Functional performance of candidate models in the local circuit context of a 
barrel in primary somatosensory cortex. (a) Example input to the whisker-pathway: 

surface texture profiles       (sampled from two dimensional (  and  ) images, white 
line). (b) Sketch of transformation of the texture elevation    into a temporal activity 
trace through whisker movement. (c) Example texture traces from textures         that 
were fed into the modeled L4 network for the ER-ESN, EXP-LSM and LAYERED 
models. Note that the networks were trained during the second half of the texture 
presentation (black line). (d) Discrimination of thalamocortical input by a L4 network with 
output to L2/3. The thalamic input was modeled as the texture traces (a-c). Models were 
trained to classify by output to seven classification units (for example in L2/3). (e) 

Example activities in the network: thalamocortical input signal     (bottom), intra-L4 
activity     of 40 example neurons   (excitatory neurons (e), blue; inhibitory neurons (i), 

red, middle), activity      of readout neurons         potentially located in L2/3 (top). 
Average readout activity in the second half of presentation time was used for 
determining the classification result. (f) Classification results for the ER-ESN, EXP-LSM 
and LAYERED models determined from 4497 randomly selected test-set texture 
exposures. (g) Classification accuracy for the results in (f) (box plot of bootstrapped 
texture classification tests, n=100 bootstrap samples; center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers). Note that 
all models provide high classification accuracy (above 80%) in this texture 
discrimination task, well above chance level (dashed line). (h-j) Functional properties of 
the SYNFIRE model as implemented for the model discrimination in Fig. 4-6. (h) 
Example activity (right) in an embedded SYNFIRE model with 6 pools of size spool=290 

neurons each (i.e.     of 0.15,     of 0.33, see Fig. 2h-j). Random subset of 74 neurons 
(of the 1780 neurons in the circuit) and their pool membership (left) shown. Note that in 
the embedded SYNFIRE model, neurons belong to multiple pools. (i) Fractional pool 
activation (fraction of neurons per pool active over time) for the example in h. (j) 
Fractional chain activation over pool size. Each pool size was evaluated 200 times on 
networks with 2000 neurons (center line: mean; shading: s.d.). (k) Short-term memory 
in the FEVER model; three examples shown. The stimulus to be represented (black) 
and the state actually represented by the FEVER network (orange) are closely aligned. 
(l) Short-term memory in the API model; three examples shown. The state actually 
represented by the API model is dissimilar to the stimulus. Also the normalized 
represented state (blue) is not aligned with the stimulus. (m) Stimulus tuning in the 
FEVER model; three examples shown. All responses are weak. (n) Stimulus tuning in 
the API model; three examples shown. The aligned neuron (39° relative tuning) 
responds strongly positive, the anti-aligned neuron (151° relative tuning) responds 
strongly negative. 
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Figure S2 Compliance of candidate models with the so-far experimentally determined 
pairwise circuit constraints in L4 (see Fig. 1d): FEVER, API and STDP-SORN. (a) 
Adaptation of the feature vector recombination model (FEVER). The adapted model 
starts with a randomly initialized network, whereas the original model starts with an 

empty network. (b) Excitatory reciprocity     over excitatory pairwise connectivity     for 
the original and adapted FEVER model. The feature space dimension    is color coded. 

(c) Average FEVER error for the original and the adapted FEVER model. Errors bars 
indicate 95% confidence intervals from 1000 bootstrapped iterations. (d) Adaptation of 

the antiphase inhibition model (API). Excitatory and inhibitory connection probability    
and    over cosine similarity of the feature vectors     (     ) of feature vector    and 
feature vector   . (e) Distribution of cosine similarities in an API network for        

and      . (f) Excitatory reciprocity     over excitatory pairwise connectivity     for the 

original and adapted API model. The conversion factor      is color coded. (g) 

Excitatory reciprocity     over excitatory pairwise connectivity     for the original and 
adapted API model. The feature space dimension    is color coded. (h) Spike timing 

dependent plasticity / self-organizing recurrent neural network (STDP-SORN) model. 

Transition from time   to time     . The network is modified through spike timing 
dependent plasticity with learning rate      , intrinsic plasticity with learning rate   , 
random synapse addition with probability     , and synaptic normalization  . (i) A 

synaptic weight is increased by       if a postsynaptic spike is emitted after an interval 
   after the presynaptic spike has occurred or if the postsynaptic spike is emitted at the 
same time. A synaptic weight is decreased by       if a presynaptic spike is emitted 
after an interval    after the postsynaptic spike. (j) Evolution of the number of synapses 

   from time t through time      . The number of synapses     is not modified by the 
spike timing dependent plasticity STDP or the synaptic normalization  . The negative 
synapses       are removed in a subsequent pruning step. New synapses are then 
added with probability     . (k) Probability of adding a synapse      over time   is 
adjusted such that pruned synapses are replaced. (l) Histogram of excitatory synaptic 

weights   at the start    and the end      of a SORN simulation. Randomly added 
synapses are initialized with weight      (black triangle). (m) Excitatory reciprocity     
over excitatory pairwise connectivity    . Orange dots represent the adapted model, 
black dots the original model (black box: known barrel circuit constraints, see Fig. 1d).  
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Figure S3 Functional performance of candidate models in the local circuit context of a 
barrel in primary somatosensory cortex: FEVER, API, SDTP-SORN models. (a) FEVER 

model. Dimensions 14, 92, and 102 of the imprinted state    and the represented state 
at the end of the trial      for a feature space with dimension       . (b) Cosine 

similarity     (       ) of    and      over feature space dimension    and feverization 

ratio   .   (c) API model.  (d) Activity at the end of the trial  (    ) and thalamic input for 
the API model. Excitation (exc.) and inhibition (inh.) are plotted on the ordinate, the 
cosine similarity between feature vector and stimulus     (      ) on the abscissa. (e) 
Correlation of  (    ) with     (      ) for those neurons with     (      )    as 
function of the feature space dimension   . The full data corresponding to the blue and 

green dots is shown in the insets (f) Example STDP (SORN) activity for excitatory 
neurons (E) and inhibitory neurons (I). Top left: Example with low median activity 
correlation    (    ). Top right: Example with high median activity correlation 

   (    ). Bottom left: Median activity correlation    (    ) over STDP learning rate 

      and intrinsic learning rate   . The dashed bars in the scatter plot and the black 
lines at the color bar indicate the support of the prior distribution. Bottom right: spike 
source entropy. 
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Figure S4 Probability mass or density functions of the priors used for Bayesian model 

selection (Fig. 3). (a) Uniform prior over the model classes  . (b) Parameters shared 
across models: number of neurons  , inhibitory ratio   , excitatory connectivity   , and 
inhibitory connectivity   . (c) Number of layers    for the LAYERED model. (d) Pool size 
      for the SYNFIRE model. (e) Feature space dimension    and feverization    for the 

FEVER model. (f) Selectivity      and feature space dimension    for the API model. 

(g) STDP learning rate       and intrinsic learning rate    for the STDP-SORN model. 
(h) Excitatory forward connectivity      and excitatory lateral connectivity      for the 

LAYERED model (dotted:           ,         -  ,         -).  
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Figure S5 Extended analysis of noisy and incomplete circuit measurements. Noise prior 
during ABC-SMC inference was of the same type as the perturbations to the measured 
connectome. (a) Biased perturbation: 15% of the connections of the unperturbed 

network were randomly removed from a randomly chosen sub-network of size    
    of the original network. The same amount of connections was then randomly 
reinserted in the same sub-network before ABC-SMC inference (n=1 repetition; noise 
prior of Beta(2,10)). (b) Effect of highly informative noise prior on accuracy of model 
selection from noisy and incomplete circuit measurements. Top: Uniform distributions 
centered on true noise levels with scales of 8 percentage points were used as noise 
priors. Middle and bottom: model selection accuracy reported as average posterior 
probability and maximum-a-posteriori accuracy (n=1 repetition per entry), respectively. 
Note that highly informative noise priors result in more accurate model selection 
compared to Beta(2, 10) noise priors (Fig. 5c,d). 
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