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Supplementary Figure 1 | Visual appearance of the superparticle for different value of the proposed 

registration error metric. (a-f) Superparticles are the result of stacking 100 simulated STORM particles 

with an average localization uncertainty of 4 nm and 50% DOL. For each superparticle, ground-truth 

transformations are altered to make the group-wise alignment worse. From top to bottom and left to 

right, the measured error is increasing which also visually matches the quality of the reconstructions. 

For the error less than ~10 nm (a-b), the double blobs are still recognizable. For larger error as in (c-d), 

the double blobs merge into a single blob and for errors above ~20 nm the reconstructions lose the 

geometrical features of the ground-truth. 



Supplementary Figure 2 | Statistics of localizations per binding sites for (a) PAINT and (b) STORM 

simulations. For PAINT particles, the distribution of localizations per site follows a Gaussian 

distribution while for STORM it is a Poisson. In case of STORM data, higher bleaching rate result in 

fewer localization per sites and a narrower bandwidth for the distribution. 



Supplementary Figure 3 | Particle fusion error for the alignment of PAINT and STORM SMLM images of 

simulated Nup107 particles with different initial tilt variations. (a-b) Particle fusion error of simulated 

PAINT data for different DOLs and for two range of tilt variations. (c-d) Particle fusion error of 

simulated STORM data for different number of localizations per particle (proportional to bleaching 

rate) and for two range of tilt variations. The particle fusion performance is getting slightly worse by 

increasing the tilt variations but in general it is quite stable even at high tilt angle range of 60 degree. 

Solid lines indicate the mean and shaded area show the standard error of the mean (n=15). 



Supplementary Figure 4 | Fusion of 50 simulated particles of three structures with different degree of 

symmetricalness. (a-d) “Dodecahedron”, (e-h) “building” and (i-l) “ring-square” as examples of a highly 

symmetric, semi-symmetric and asymmetric structures, respectively. For all cases, 50 particles with 

arbitrary poses are simulated using PAINT kinetics with DOL of 75% (b, f and j) and 50% (c, g, k) and a 

photon count of 5000 resulting in an average lateral localization uncertainty of ~3.5 nm. With these 

settings, the reconstructed superparticles perfectly match the design models in (a, e and i) used for 

the simulation with fluorophores on the corners (red balls). In case of 50% DOL and mean localization 

uncertainty ~6.3 nm (d, h, l), the result still resembles the structure, however, with unsharp binding 

sites at locations where the distance between the binding sites is close to the mean localization 

uncertainty (the top of the building (h) and the ring above the square (l)). 



Supplementary Figure 5 | Whole field of view of SNAP-Tag labelled Nup107 proteins for DNA-PAINT 

imaging. The field of view shows the nuclei of four U2OS cells. The insert in the top-right corner 

presents a zoom in into the highlighted area. This is a typical result, representative from 5 repeats. 



Supplementary Figure 6 | Example images of SNAP-Tag labelled Nup107 particles imaged with PAINT. 

The individual localizations are color-coded in z. The average number of localizations per particle for 

this dataset is ~88. 



Supplementary Figure 7 | Fourier shell correlation1 (FSC) and spectral signal-to-noise ratio (SSNR) 

curves for the initial particles and the corresponding super-particles of 3D astigmatic PAINT, 3D 

astigmatic STORM and 4Pi STORM data. (a-c) The FSC curves show the resolution improvement from 

42.6, 40.5 and 52.2 nm to 16.6, 15.1 and 14.2 nm for the three reconstructions respectively. (d-f) The 

SSNR curves show about two orders of magnitude improvement in spectral signal-to-noise ratio 

overall. These values are in good accordance with the visual quality of the super-particles. From these 

FSC values it is also clear that the dimers cannot be resolved which are at 12 nm distance according to 

the EM model. The FSC/SSNR curves for particle pairs averages (blue) are computed between pairs of 

individual particles and then averaged. SSNR is computed as SSNR = FSC/(1-FSC). 



Supplementary Figure 8 | The distribution of the localizations over azimuthal angle and the fitted sine 

function for the super-particles in Figure 2. (a) PAINT reconstruction. (b) STORM reconstruction. (c) 4Pi 

reconstruction. In order to find the phase shift between the cytoplasmic and nuclear rings, we fit a 

sine function to the azimuthal angles of the localization data points in each ring. The difference in the 

phases of the fitted sine function for each reconstruction defines the azimuthal phase shift of the two 

rings. 



Supplementary Figure 9 | Tilt variations of the STORM experimental Nup107 particles. (a-b) The 

histograms of the Euler angles � and � (rotation around x and y axis) expressing the tilt variations of 

the unaligned particles with respect to each other. Both histograms fit a normal distribution with a 

standard deviation of ~12°. 



Supplementary Figure 10 | Whole field of view of three-dimensional DNA origami tetrahedron 

structures imaged with DNA-PAINT on a spinning disk microscope. The side length of the symmetric 

tetrahedron structure is 100 nm. The insert in the top-right corner presents a zoom in into the 

highlighted area. This field of view is only a part of a whole cover slip, but more than two independent 

repeats show similar results.



Supplementary Figure 11 | Example images of tetrahedron DNA-origami nanostructures imaged with 

PAINT. 



Supplementary Figure 12 | Fusion of 400 tetrahedron DNA-origami nanostructures. (a) Side view of the 

super-particle. (b) Top (x-y) view of the super-particle. (c) Front (x-z) view of the super-particle. (d)

Histogram of the z coordinate of the localization data showing a distance of ~90 nm between the two 

peaks. This implies a side length of 104 nm which agrees well with the origami design of 100 nm2. 

Particle fusion of the nanostructures result in an isotropic distribution of the localization over the four 

binding sites of the tetrahedron as seen from the round localization distributions around the binding 

sites. 



Supplementary Figure 13 | Automatic scale selection for GMM registration. The mean (line) and one 

standard deviation (error bar) in cost function values for n=10 independent scale sweeps over 50 

different particle pairs. The peak of the line indicates the optimal scale parameter which can be 

subsequently used for the fusion of all particles. 
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Supplementary Figure 14 | The comparison of the performance of �� (left column) and �� (right column) 

Lie-algebraic averaging in the presence of registration error and outliers. Zero mean Gaussian 

distributed angles are added to ground-truth relative rotations to simulate registration error. For 



outliers, a certain percentage of ground-truth relative rotations are replaced by totally random 

rotations. Each row compares the histogram of the error between the ground-truth rotations and the 

result of Lie-algebraic averaging with �� and �� norms together with the expected error (red curve) 

based on the distribution of the simulated added noise. The graphs suggest that �� norm Lie-algebra 

averaging is very sensitive to the presence of outliers and �� norm Lie-algebra averaging outperforms it 

in all scenarios. Furthermore, �� norm Lie-algebra averaging performs better than expected (the 

histogram is on the left side of the hypothesis curve) due to better handling of outliers for the first three 

settings. 



Supplementary Figure 15 | Comparison of the performance of L1 and L2 Lie-algebra averaging (a) as a 

function of only registration error and (b) as a function of registration outlier percentage, in the 

presence of a fixed mean registration error of 25 degree. 



Supplementary Figure 16 | The effect of symmetry promoting on data-driven template for the fusion 

of 306 PAINT Nup107 particles. (a-b) The distribution of the localizations over azimuthal angle (blue) 

and the fitted (red) curves for the top and bottom rings of the superparticle in (c) after Lie-algebra 

averaging and before bootstrapping. (d-e) Similar figure as in (a-b) for the superparticle in (f) after 

promoting symmetry. Although the 8-fold symmetry of the NUP structure is already revealed in the 

top ring (a) of the initial superparticle (c), symmetry promotion enhanced the 8-fold symmetry in both 

rings and subsequently provided a better data-driven template (see Supplementary Movie 5 for 3D 

visualization). Scale bar is 50 nm. 



Supplementary Figure 17 | Outlier particle removal. (a) All-to-all Bhattacharya heat map matrix for the 

fusion of 356 particles from the STORM dataset. Each value is rendered as a pixel in a  356 × 356

image. (b) The histogram of the Bhattacharya scores (cost function value) of each particle which is 

obtained by averaging the matrix in a along the columns (or rows) together with the median absolute 

deviations (MAD) magenta line magenta and its lower and upper bounds. Only 5 particles are 

recognized as outliers in this dataset with these default settings of the MAD threshold. (c) Overlay of 

the localizations of the best particles (10 top scores). (d) Overlay of the localizations of the worst 

particles (10 lowest scores). While the (good) particles in c form a sharp super-particle, the overlay in d

is quite blurry and the localizations are more scattered around the NUP structure. 



Supplementary Figure 18 | The principle of the proposed registration error measurement. (a) Overlay 

of 10 simulated particles before alignment. (b) Overlay of the binding sites of the particles in a. (c)

Superparticle as a result of fusing the particles in a. (d) The corresponding binding sites of the aligned 

particles in c in a perfect fusion (zero measurement error). (e) The corresponding binding sites of the 

aligned particles in c with the effect of the registration error taken into account. Ideally and in a 

perfect fusion, all the binding sites of the ground-truth simulation model should co-locate. Due to the 

registration error they scatter around the mean shape model of the super-particle.  The corresponding 

registration error for a run of the particle fusion pipeline is found by quantifying this scatter.  



Supplementary Figure 19 | Correspondence problem in matching binding sites of two aligned particles. 

(a-h) Different correspondence possibilities for computing the error between the registered particles 

with registration error. In this example, each particle includes 16 binding sites. Since the binding sites 

are ordered, there are only 8 different combinations of the correspondences between them. The 

minimum Euclidean distance among these eight candidates defines the correct correspondence and 

its value is the alignment error. 



Supplementary Note 1: Automatic scale selection for GMM registration 

We have implemented a pre-alignment step that aims to automatically search for an appropriate scale. 
The algorithm picks a user selected number of particle pairs (typical value of 50 would suffice) at 
random from the full dataset and aligns them over a range of scales. The scale for which the average 
cost function has a peak is then used. This pre-alignment scale sweep step makes it easier and more 
objective to register novel structures for which the proper scale cannot be known a priori. 
Supplementary Figure 13 shows error bars representing the standard deviation for 10 scale sweeps 
using different particle pairs each time. The cost values are highly variant as a result of the stochastic 
distribution of the localizations and their uncertainties. It may happen that a particular particle pair is 
registered worse at the selected optimal scale. All-to-all registration can possibly be improved by 
allowing a range of scales in addition to the multiple initial rotations. The Bhattacharya cost function 
would then select the best alignment for each particle pair from every combination of initial rotations 
and scales. This does however come at the cost of an increase in computation time.  

Supplementary Note 2: Proper angular initialization of pair registration 

In two-dimensional particle fusion, the pair registration of two particles is initialized with uniform 

sampling of the [0, 2�] interval (��(2)). However, uniform sampling of the three Eulerian angles for 

the 3D problem does not produce uniform sampling of the Lie-group ��(3). Based on the method that 

is proposed by Yershova et al. [3], we modified the initialization step of the pair registration in order to 

properly cover the whole ��(3) landscape for the initial pose of each particle. This method is based on 

Hopf fibration which describes the 3D rotation group in terms of the circle �� and the ordinary 2-sphere 

��. It can be shown that ��(3) is locally isomorphic to the Cartesian product of these two spaces, i.e.  

��(3) =� ��⊗� ��. Multiresolution grids over the circle (��) and the 2-sphere (��) have ����2��

points at the resolution level � with a base resolution (� = 0,�� = 6,�� = 12) of ���� = 72 points. 

The uniform sampling of ��(3) on a grid needs to be done once at each different resolution level. 

Therefore, these values are stored as a look-up table in the source code of our pipeline and depending 
on the application the user can invoke a different initialization strategy. It should be noted that increasing 
the resolution level can lead to excess computational time and therefore it is always recommended to 
start at the base resolution level.  



 Supplementary Note 3: L1 versus L2 norm Lie-algebraic averaging 

All-to-all registration of � given particles provides us with �(� − 1) relative transformations ���
���

which connect the coordinates in the different poses of particles � and �. Ideally, ���
��� = ���

���� with 

���
���� = ��

�������
�����

��
, (1) 

and ��
���� denotes the ground-truth absolute pose of particle � in the global reference frame. 

The goal is to find the � individual transformations from a set of given relative transformations. Suppose 

we have estimates ��
��� that are close to the true transformations. Then: 

��� = ���
����

��
���
������

��� (2) 

is close to unity, and if we write ��
��� = ��

����(��)
�� then all the �� are also close to unity. Moreover, 

we have: 

��� = ��(��)
��.  (3) 

Making use of the logarithmic mapping, the Lie-group elements can be mapped to their equivalent Lie-
algebra as follow 

��� = log(���) (4) 

�� = log(��).  (5) 

Considering the fact that all �� and all ��� are close to unity, the Lie-algebra elements ��� and �� are 

close to zero, and must satisfy the linear relations: 

��� = �� − �� (6) 

The idea here is that quadratic and higher order terms in the �� can be neglected, as they are assumed to 
be small. The pseudo-inverse (least squares) solution of this problem is: 

�� =
�

�
∑ ���
�
��� (7) 

up to an arbitrary constant term, representing a global transformation that can always be applied to the 
collective set of particles. The improved estimate for the individual transformations is then: 

��
���� = ��

�����.  (8) 

This, in turn, leads to an update of the residual relative transformations: 

�′�� = ���
�����

��
���
������

���� = (��)
������� (9) 

that should be even closer to unity than ���, and to ��
���� = ��

����(�′�)
�� where the �′� are even closer 

to unity than the ��. These next updates �′� can be computed along the same lines, etc. The idea of Lie-

algebra averaging is to iteratively compute the estimates  ��
��� by repeatedly solving the linear set of 

equations for the Lie-algebra elements of the update transformations for the individual transformation 
estimates. The final overall estimate of the individual transformations is: 

��
���,�����

= ��
���,����������′��′′� … (10) 

It is assumed that this procedure will converge to the correct result, i.e. that ��
���,�����

= ��
����,  but this 

is by no means obvious. 



Alternative to the least square solution above (which corresponds to the �� norm), we can reformulate 

the linear system of equations in equation 6 to solve it with the �� norm, which appears to be more 
robust to outlier registrations. In this approach, we try to solve the following minimization problem: 

min
�
‖��− �‖� (11) 

where � is the �(� − 1)/2 ×� indicator matrix consisting of -1, 0 and 1 elements, � is the � × 1

column vector of absolute Lie-algebras (��) and � is the �(� − 1)/2 × 1 vector containing the 

relative Lie-algebras (���).  

In order to compare the performance of both approaches, we first simulated 200 NPC particles with 

completely random orientations (��
��

). Then, we added a certain amount of noise to their relative poses 

using 

��� = ��
��
������(��

��
)� (12) 

where ������ is a rotation matrix with a completely random rotation axis and a rotation angle that is 

drawn from a zero mean Gaussian distribution with a standard deviation of ��. Furthermore, we 

simulated the effect of completely wrong registrations (outliers), by replacing a fraction of ground-truth 

relative transformations (���
��

= ��
��

(��
��

)�) with completely random rotation matrices. Once the 

simulated noise and outliers are added to the relative ground-truth transformations, we use the �� and 

�� Lie-algebra averaging to find the absolute pose of each particle (��
���). Using equation (2), we can 

finally compute the resulting estimation error by computing the rotation angle of the matrix ��� as 

follows 

����� = arccos�
Trace�������

�
�. (13) 

In Supplementary Figure 14, we show the histograms of ��� at different noise and outlier settings to 

show how �� Lie-algebra averaging outperforms �� Lie-algebra averaging especially for large 

amounts of outlier registrations. Supplementary Figure 15 summarizes the comparison for a range of 
values for noise and outlier percentages. 
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