Supplementary Information

Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia

Yotaro Ochi, Kenichi Yoshida, Ying-Jung Huang, Ming-Chung Kuo, Yasuhito Nannya, Ko Sasaki, Kinuko Mitani, Noriko Hosoya, Nobuhiro Hiramoto, Takayuki Ishikawa, Susan Branford, Naranie Shanmuganathan, Kazuma Ohyashiki, Naoto Takahashi, Tomoiku Takaku, Shun Tsuchiya, Nobuhiro Kanemura, Nobuhiko Nakamura, Yasunori Ueda, Satoshi Yoshihara, Rabindranath Bera, Yusuke Shiozawa, Lanying Zhao, June Takeda, Yosaku Watatani, Rurika Okuda, Hideki Makishima, Yuichi Shiraishi, Kenichi Chiba, Hiroko Tanaka, Masashi Sanada, Akifumi Takaori-Kondo, Satoru Miyano, Seishi Ogawa, and Lee-Yung Shih

Supplementary Fig. 1. WES of CML-CP and BC samples. a, Sequencing quality of WES data in 52 pairs of CP and BC samples. Samples were sorted by mean depth. b, Number of acquired SNVs during evolution from CP to BC in 52 patients analysed for both CP and BC samples by WES. The average numbers and ranges are also described. c, Scatter plots showing time to progression to BC (horizontal axis) and number of recurrent mutations in CML-BC (vertical axis). d, Scatter plots for time to progression (horizontal axis) and number of acquired SNVs (vertical axis) during progression from CP to BC in 13 patients from an external cohort. Regression lines with 95% confidence intervals are also plotted. Cases with or without TKI therapy after CP diagnosis are indicated separately. e, Summary of mutations in CML-BC patients analysed by WES. Each column indicates one patient. Data on the lineage of blasts and prior history of TKI therapy before BC diagnosis are also shown. Categories of mutations are depicted in different colours, and "multiple" indicates ≥2 distinct mutations found in the same gene in the same patient. Mutations are ordered by frequency. f, TCFs of the indicated mutations in the corresponding CP and BC samples determined by deep amplicon sequencing. Black dashed lines indicate a TCF of 0%. Colours represent individual cases.

Supplementary Fig. 2. Relationship between ASXL1 and other mutations during clonal evolution. TCFs of mutations determined by deep amplicon sequencing in the corresponding CP and BC samples of the indicated cases with ASXL1 mutations. Black dashed lines indicate a TCF of 0%. Colours represent individual mutations. Mutations estimated to be >100% of TCFs are indicated as 100% in dashed lines. Note that two MYH11 mutations (L1332P and L1348P) in a case (TW-CML-M-077) were found in different alleles, which was confirmed by IGV.

Supplementary Fig. 3. *RUNX1-ETS2* fusion in a patient with CML. a, Breakpoints of *RUNX1* and *ETS2* gene loci in a case with *RUNX1-ETS2* fusion (TW-CML-M-001), visualised by using the Integrated Genome Viewer (IGV). Although both breakpoints were within intronic regions, our pipeline could detect this SV as the breakpoint in the *ETS2* gene loci was close to the exon and could be captured by WES. b, Scheme depicting the expected in-frame fusion protein generated by the *RUNX1-ETS2* fusion. RHD, runt-homology domain; TAD, transactivation domain; AD, activation domain; HLH, helix-loop-helix domain; ID, inhibitory domain; Ets, Ets domain. c, RT-PCR of cDNA derived from a patient with *RUNX1-ETS2* fusion at diagnosis of CP, accelerated phase (AP), diagnosis of BC, and secondary CP. HL-60 cell line-derived cDNA and water were used as controls for the experiment. The expected band sizes of amplicons showing *RUNX1-ETS2* fusion and *ABL1* (as a control) are indicated by red and blue arrows, respectively.

Supplementary Fig. 4. Detection of focal and chromosomal CNAs. a, Deletion in exons 4-6 of the *IKZF1* gene in a patient with CML-BC (TW-CML-L-007) evaluated by using the ExomeDepth package in R. The ratio between observed and expected read depth and genomic locus are shown in the vertical and horizontal axes, respectively. The 95% confidence interval is marked by using a grey shaded area. **b**, *RUNX1* gene deletion in a patient with CML-BC (TW-CML-M-075) detected by using the ExomeDepth (left) and CNACS algorithm (right). CN, copy-number; AsCN, allele-specific copy-number. **c**, Representative results of sequencing-based copy number profiling showing del(17p) and/or amp(17q). i(17q) is a known driver event in CML-BC, resulting in one copy of 17p and three copies of 17q, and can be successfully detected by conducting sequencing-based copy number profiling, as illustrated in the left panel. We also noticed that a few cases harboured either del(17p) or amp(17q), as represented in the cases illustrated in the middle and right panels. NA, not available.

Supplementary Fig. 5. Distribution of mutations. Positions and types of mutations in the indicated proteins found in BC patients. Each circle and colour indicate the mutation and type of mutation, respectively. Functional domains are indicated in the coloured bands.

Supplementary Fig. 6. Correlation between genetic lesions in CML-BC. Correlations between genetic lesions in CML-BC. Co-occurring and mutually exclusive lesions are shown as red and blue circles, respectively. Odds ratio and the associated q-value are indicated by the colour gradient and the size of the circles, respectively.

Supplementary Fig. 7. Genetic landscape of CML-BC with or without prior history of TKI therapy. a, Frequencies of mutations in 134 BC patients evaluable for prior history of TKI therapy (left panel), and those with (n = 56) or without prior TKI treatment history (n = 78) (right panel). Categories of mutations are depicted in different colours, and "multiple" indicates \geq 2 distinct mutations found in the same gene in the same patient. The forest plot at the bottom shows odds ratios with 95% CIs for enrichment of each genetic lesion in cases with a prior history of TKI therapy. The dashed line represents an odds ratio of 1. Positive and negative odds ratios are indicated by red and blue colours, respectively. Genetic lesions found in >4 cases were included. *P*-values were calculated using the Fisher's exact test. **b**, Summary of genetic lesions in BC patients with or without prior history of TKI therapy. Each column indicates one patient. Types of alterations are depicted in different colours, and "multiple" indicates \geq 2 distinct mutations found in the same gene in the same gene in the same gene in the same patient. The rearrangement of immunoglobulin (*IG*) and T-cell receptor (*TCR*) genes is shown in cases analysed by WES. NA, not available.

Supplementary Fig. 8. Correlation of genetic and clinical factors in survival analysis of CML-BC. Correlations between genetic/clinical factors in survival analysis of 99 BC patients. Co-occurring and mutually exclusive factors are shown in red and blue circles, respectively. Odds ratio and the associated q-value are indicated by the colour gradient and the size of the circles, respectively.

Supplementary Fig. 9. Prognostic impact of genetic abnormalities in patients with CML-BC treated with TKI-based therapy. a, Kaplan-Meier survival curves for OS in 59 patients with BC who were treated with TKI-based therapy according to the indicated clinical or genetic factors. The prognostic impact of each factor on OS was calculated using the log-rank test. b, Frequencies of each variable included in 100 bootstrapping and Cox proportional hazards regression modelling with a stepwise variable selection. The variables included in the final model, shown in Fig. 5b, are indicated in red.

Supplementary Fig. 10. Prognostic impact of genetic abnormalities in patients with CML-BC in the external cohort. a, Kaplan-Meier survival curves for OS in 17 patients with BC in the external cohort according to the indicated clinical or genetic factors. The prognostic impact of each factor on OS was calculated using the log-rank test. b, Kaplan-Meier survival curves for OS in 12 patients who were treated with TKI-based therapy according to the number of genetic risk factors listed in Fig. 5b. *P*-values were calculated using the log-rank test.

Supplementary Table 1: Summary of analysed cases

samplename-BC	samplename-CP all	WES-BC WES-C	P WES-germ target-B	C target-CP inhou	use BC inhou	use CP publishe	ed publication institution
CML BC1		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML_BC16		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML BC17		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML BC18		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML_BC2		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML BC20		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML BC21		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML_BC23		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML BC24		1 0	õ õ	1 0	1	Õ i	0 The University of Tokyo
CML BC25		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML BC3		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML BC4		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML_BC8		1 0	0 0	1 0	1	0	0 The University of Tokyo
CML_BC9	BUL ON BOOM	1 0	0 0	1 0	1	0	0 The University of Tokyo
DU CML BC002	DU CML BC001	1 0	0 0	1 1	1	1	0 Dokkyo Medical University
DU_CML_BC004		1 0	0 0	1 0	1	0	0 Dokkyo Medical University
DU_CML_BC005		1 0	0 0	1 0	1	0	0 Dokkyo Medical University
DU CML BC006		1 0	õ õ	1 0	1	Õ i	0 Dokkyo Medical University
DU CML BC007		1 0	0 0	1 0	1	0	0 Dokkyo Medical University
DU CML BC008		1 0	0 0	1 0	1	0	0 Dokkyo Medical University
DU_CML_BC009		1 0	0 0	1 0	1	0	0 Dokkyo Medical University
	DU_CML_BC010	1 0	0 0	0 1	0	1 (0 Dokkyo Medical University
	DU CML BC011	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU_CML_BC012	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU_CML_BC014	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU CML BC014	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU CML BC016	1 0	0 0	0 1	õ	1	0 Dokkyo Medical University
	DU CML BC017	1 0	0 0	0 1	0	1 (0 Dokkyo Medical University
	DU CML BC018	1 0	0 0	0 1	0	1 (0 Dokkyo Medical University
	DU_CML_BC019	1 0	0 0	0 1	0	1 (0 Dokkyo Medical University
	DU CML BC020	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU CML BC021	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU_CML_BC022	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU CML BC023	1 0	0 0	0 1	0	1	U Dokkyo Medical University
	DU CML BC024	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU_CML_BC026	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
	DU CML BC020	1 0	0 0	0 1	0	1	0 Dokkyo Medical University
DU CML BC028	50 0M2 5002	1 0	Ö Ö	1 0	1	0 I	0 Dokkyo Medical University
KCGH 256 1		1 0	0 0	1 0	1	0	0 Kobe City Medical Center General Hospital
KCGH203-BC	KCGH203-D	1 1	1 1	0 0	1	1 (0 Kobe City Medical Center General Hospital
TW-CML-L-001-BC	TW-CML-L-001-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-002-BC	TW-CML-L-002-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-003-BC	TW-CML-L-003-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-004-BC	TW-CML-L-004-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-005-BC	TW-CML-L-005-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-007-BC	TW-CML-L-009-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-010-BC	TW-CML-L-010-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-011		1 0	o õ	1 Ŭ	1	o i	0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-012-BC	TW-CML-L-012-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-013-BC	TW-CML-L-013-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-014-BC	TW-CML-L-014-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-L-015-BC	TW-CML-L-015-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-001-BC	TW-CML-M-001-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-004-BC	TW-CML-M-004-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CIVIL-IVI-000-BC	TW-CML M 007 D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-010-BC	TW-CML-M-010-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-014-BC	TW-CML-M-014-D-2	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-016-BC	TW-CML-M-016-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-018-BC	TW-CML-M-018-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-021-BC	TW-CML-M-021-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-049-BC	TW-CML-M-049-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-050-BC	TW-CML-M-050-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-051-BC	TW-CML-M-051-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-052-BC	TW-CML-M-052-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CNL-M-054-BC	TW-CML-M-054-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-055-BC	TW-CML-M-055-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-056-BC	TW-CML-M-056-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-058		1 0	0 0	1 0	1	0	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-059-BC	TW-CML-M-059-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-060-BC	TW-CML-M-060-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-061-BC	TW-CML-M-061-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-062-BC	TW-CML-M-062-D	1 1	1 0	0 0	1	1 0	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-064 PC	TW-CML-M-064 D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-065-BC	TW-CML-M-065-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-066-BC	TW-CML-M-066-D	 1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-067-BC	TW-CML-M-067-D	1 1	1 0	õ õ	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-068-BC	TW-CML-M-068-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-069-BC	TW-CML-M-069-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-070		1 0	0 0	1 0	1	0	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-071-BC	TW-CML-M-071-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-072	TH 014 14 070 D	1 0	0 0	1 0	1	0	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-073-BC	TW-CML-M-073-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CIVIL-IVI-074-DC	TW-CML-W-074-D	1 1	1 0	0 0	1	1	Chang Gung Memorial Hospital-Linkou
TW-CML-M-076-BC	TW-CML-M-075-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-077-BC	TW-CML-M-077-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-078-BC	TW-CML-M-078-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-079-BC	TW-CML-M-079-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-080-BC	TW-CML-M-080-D	1 1	1 0	0 0	1	1 (0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-081		1 0	0 0	1 0	1	0	0 Chang Gung Memorial Hospital-Linkou
TW-CML-M-082-BC	TW-CML-M-082-D	1 1	1 0	0 0	1	1	0 Chang Gung Memorial Hospital-Linkou
IW-CML-M-083-BC	IW-CML-M-083-D	1 1	1 0	0 0	1	1 0	0 Chang Gung Memorial Hospital-Linkou
IW-CML-M-084		1 0	U 0	1 0	1	0	U Chang Gung Memorial Hospital-Linkou
IW-CML-M-086		1 0	U Ü	1 0	1	U	U Chang Gung Memorial Hospital-Linkou
CIEU 142 1		I U	U U	1 0	1	U I	U Hyogo College of Medicine
GIFU-140-1 GIFU-140-1		1 U		1 0	1	0	0 Gifu University Hospital
GIFU-239-1		1 0	0 0	1 0	1	0	0 Gifu University Hospital
GIFU-313-1		1 0	0 0	1 0	1	0	0 Gifu University Hospital
TMU-196-1		1 Õ	0 Õ	1 Õ	1	õ	0 Tokyo Medical University
TMU-298-1		1 0	0 0	1 0	1	0	0 Tokyo Medical University
TMU-475-1		1 0	0 0	1 0	1	0	0 Tokyo Medical University
TMU-960-1		1 0	0 0	1 0	1	0	0 Tokyo Medical University
TMU-800-1		1 0	0 0	1 0	1	0	0 Tokyo Medical University
1MU-006-7		1 0	0 0	1 0	1	0	0 Tokyo Medical University
JUN-001		1 0	U 0	1 0	1	0	U Juntendo University School of Medicine
JUN-002		1 0	U Ü	1 0	1	0	U Juntendo University School of Medicine
2010-003		ı U	U U	ı U	1	U	Juntenao University School of Medicine

JUN-004 AKT-001 AKT-003 AKT-005 AKT-006		1 1 1 1	0 0 0 0 0	0 0 0 0	D D D D D	1 1 1 1	0 0 0 0 0	1 1 1 1	0 0 0 0	0 Juntendo University School of Medicine 0 Akita University Graduate School of Medicine
AKT-007 KCGH-217-1 KCGH-350-1 KCGH-356-1 KCGH-421-1		1 1 1 1	0 0 0 0 0	0 0 0 0 0	D D D D D	1 1 1 1	0 0 0 0 0	1 1 1 1 1	0 0 0 0 0	0 Akita University Graduate School of Medicine 0 Kobe City Medical Center General Hospital
KCGH-444-1 KCGH-210-1 KCGH-762-1 KCH-116-1 1 MBC Dx.WES		1 1 1 1	0 0 0 1	0 0 0 0 0	D D D D 1	1 1 1 0	0 0 0 0	1 1 1 1 0	0 0 0 0	0 Kobe City Medical Center General Hospital 0 Kobe City Medical Center General Hospital 0 Kobe City Medical Center General Hospital 0 Kurashiki Central Hospital 1 Branford et al. Blood 2018
10_LBC.WES 12 LBC.WES 13_LBC.WES 14 LBC.WES	10_CP_Dx.WES 11_CP_Dx.WES 12_CP_Dx.WES 13_CP_Dx.WES 14_CP_Dx.WES	1 1 1 1	1 0 1 1 1	1 1 1 1	D 1 1 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
15 MBC.WES 16_LBC.WES 17 MBC.WES 18 MBC.WES 19_MBC.WES 19_MBC.WES	15 CP Dx.WES 16_CP_Dx.WES 17 CP Dx.WES 18 CP Dx.WES 19_CP_Dx.WES	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
2 MBC DX.WES 20 MBC.WES 21_MBC.WES 22 MBC.WES	21_CP_Dx.WES	1 1 1 1	1 1 1 1	0 0 1 0	1 1 1 1	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
23 MBC.WES	23 CP Dx.WES 24_CP_Dx.WES 25 CP Dx.WES 26 CP Dx.WES	1 1 1	1 0 0	1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
3_MBC.WES	28 CP Dx.WES 29 CP Dx.WES 30 CP Dx.WES	1 1 1	0 0 1 0	1 1 0 1	' 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
	31 CP Dx.WES 32_CP_Dx.WES 33 CP Dx.WES 34 CP Dx.WES	1 1 1	0 0 0 0	1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
4_LBC.WES	35_CP_Dx.WES 36_CP_Dx.WES 37_CP_Dx.WES 4_CP_Dx.WES 5_CP_Dx.WES	1 1 1 1	0 0 1 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
6_MBC.WES 7_LBC.WES	51 CP.WES 6_CP_Dx.WES 7_CP_Dx.WES 8 CP_Dx.WES	1 1 1 1	0 1 1 0	1 1 1	1 1 D 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018 1 Branford et al. Blood 2018
9_LBC.WES	9_CP_Dx.WES CML212_103_CP CML212_104_CP CML212_109_CP CML212_114_CP	1 1 1 1	1 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Branford et al. Blood 2018 1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017
	CML212_125 CP CML212 125 CP CML212 128 CP CML212_129_CP CML212_130 CP	1 1 1 1	0 0 0 0	1 1 1 1	' 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017
	CML212 131 CP CML212_137_CP CML212 141 CP CML212 147 CP	1 1 1	0 0 0	1 1 1	1 1 1	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017
	CML212_148_CP CML212_152_CP CML212_154_CP CML212_155_CP CML212_165_CP	1 1 1 1	0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 logasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017
	CML212 185 CP CML212 182 CP CML212_197_CP CML212 203 CP CML212 204 CP	1 1 1 1	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017
	CML212_208_CP CML212_222_CP CML212_223_CP DU01_CP	1 1 1 1	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017 1 Togasaki et al. Blood Cancer J 2017 1 Mitani et al. Blood 2016
	DU02 CP DU03 CP DU04_CP DU05 CP	1 1 1	0 0 0	1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016
	DU06 CP DU07_CP DU08 CP DU09 CP DU10 CP	1 1 1 1	0 0 0 0	1 1 1 1	1 1 1 1 1	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016
	DU11 CP DU12 CP DU13_CP DU14_CP	1 1 1	0 0 0 0	1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016
	DU15 CP DU16_CP DU17_CP DU18 CP	1 1 1	0 0 0	1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Mitani et al. Blood 2016 1 Mitani et al. Blood 2016
Case-10-blood Case-11-blood Case-15-blood	DU19_CP DU20_CP	1 1 1 1	U 0 1 1 1	1 0 0 0	1 1 1 1 1	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 Wintani et al. Blood 2016 1 Mitani et al. Blood 2016 1 Kim et al. Leuk Res 2017 1 Kim et al. Leuk Res 2017 1 Kim et al. Leuk Res 2017
Case-6-blood		1 216	<u>1</u> 76 12	0 9 8	1 5 6	0 60 1	0	0 112	0 71	1 Kim et al. Leuk Res 2017 86

WES: whole-exome sequencing target: targeted-capture sequencing

Supplementary Table 2: Gene baits for targeted capture sequencing

ABL1	CEBPA	ETV6	KIT	PDGFRA	SETD2	UBE2A
ARID1A	CHEK2	EZH2	KLC2	PDS5B	SF1	USP9X
ARID2	CREBBP	FLT3	KMT2A	PHF6	SF3A1	WT1
ASXL1	CSF3R	GATA1	KMT2C	PHIP	SF3B1	ZRSR2
ASXL2	CSNK1A1	GATA2	KMT2D	PIGA	SMC1A	
ATRX	CTCF	GNAS	KMT2E	PPM1D	SMC3	
BCOR	CUX1	GNB1	KRAS	PRPF8	SPI1	
BCORL1	DCLRE1C	GNB2	LUC7L2	PTEN	SRSF2	
BRAF	DDX41	HRAS	MECOM	PTPN1	STAG1	
BRCC3	DNMT3A	IDH1	MPL	PTPN11	STAG2	
CACNA1H	DOT1L	IDH2	MYH11	RAD21	STAT3	
CALR	EED	IKZF1	NBEAL2	RAF1	SUZ12	
CBFB	EP300	IRF1	NF1	RUNX1	TERT	
CBL	EPOR	JAK1	NIPBL	SAMD9	TET2	
CBLB	ETNK1	JAK2	NOTCH1	SAMD9L	TP53	
CCND3	ETS1	KAT6A	NPM1	SETBP1	U2AF1	
CDKN2A	ETS2	KDM6A	NRAS	SETD1B	U2AF2	

Number of cases	148
Age at CP diagnosis (y), median (range) (n = 132)	49 (14-88)
Sex, n (%) (n = 71)	
Male	43 (60.6)
Female	28 (39.4)
TKI use, n (%) (n = 148)	
Yes	115 (77.7)
No	33 (22.3)
Initial TKI, n (%) (n = 60)	
Imatinib	48 (80.0)
Nilotinib	7 (11.7)
Dasatinib	5 (8.3)
Best response to TKI, n (%) (n = 106)	
MMR/CMR	68 (64.2)
CCyR	8 (7.5)
MCyR	10 (9.4)
CHR	19 (17.9)
No haematologic remission	1 (0.9)
Progression to BC, n (%) (n = 148)	
Yes	71 (48.0)
No	77 (52.0)
Time to BC diagnosis (d), median (range) (n = 70)	810 (21-4,653)
Final status, n (%) (n = 71)	
Alive	23 (32.4)
Dead	48 (67.6)
Genotyping method, n (%) (n = 148)	
Whole-exome sequencing	129 (87.2)
Targeted capture sequencing	19 (12.8)
[Median follow-up time (m), median (range) ($n = 87$)	114 (15.3-232)

Supplementary Table 3: Characteristics of patients with CML-CP

Supplementary Table 4: Representative CNAs in CML-BC (in-house)

Sample ID	Region	Type of CNA
CML_BC1	BCR_ABL1	amplification
CML_BC16	chr8	amplification
CML BC16	BCR ABL1	amplification
CML_BC16	hvperploidv	amplification
CML BC17	chr7/7p	deletion
CML_BC17	chr9/9p	deletion
CML BC17	chr17n	deletion
CML BC17	hypoploidy	deletion
CML BC18	BCR ABL 1	amplification
CML BC20	BCR ABL1	amplification
CML BC20	COMPLex CNAS	complex CNAs
CML BC21	chr10	amplification
CML BC21		amplification
	obr ⁰	amplification
	chilo chr17n	deletion
CIVIL_BC22	DUR_ADLI	
	complex_CINAS	complex_CINAS
		amplification
CML_BC24	cnr17p	deletion
CML_BC24	chr19	amplification
CML_BC24	chr21	amplification
CML_BC24	BCR_ABL1	amplification
CML_BC24	complex_CNAs	complex_CNAs
CML_BC25	BCR_ABL1	amplification
CML_BC3	chr9/9p	deletion
CML_BC3	chr17p	deletion
CML_BC3	BCR_ABL1	amplification
CML_BC3	complex_CNAs	complex_CNAs
CML_BC3	CDKN2A/B	deletion
CML_BC4	chr7/7p	deletion
CML_BC4	BCR_ABL1	amplification
CML_BC8	BCR_ABL1	amplification
CML_BC9	chr21	amplification
DU_CML_BC002	chr6	amplification
DU_CML_BC002	chr8	amplification
DU_CML_BC002	chr19	amplification
DU_CML_BC002	chr21	amplification
DU_CML_BC002	BCR_ABL1	amplification
DU_CML_BC002	hyperploidy	amplification
DU_CML_BC004	chr17p	deletion
DU_CML_BC004	chr19	amplification
DU_CML_BC004	chr21	amplification
DU_CML_BC004	BCR_ABL1	amplification
DU_CML_BC004	complex_CNAs	complex_CNAs
DU_CML_BC005	RUNX1	deletion
DU_CML_BC008	chr21	amplification
DU_CML_BC009	chr8	amplification
DU_CML_BC029	RUNX1	deletion
GIFU-143-1	chr7/7p	deletion
GIFU-161-1	RUNX1	deletion
GIFU-313-1	IKZF1	deletion
HCM-017-1	chr8	amplification
KCGH_256_1	chr7/7p	deletion
KCGH203-BC	chr9/9p	deletion

KCGH203-BC	complex CNAs	complex CNAs
KCCH-210-1		deletion
KCGH-217-1	chr///p	deletion
KCGH-350-1	IKZF1	deletion
KCGH-762-1	chr17a	amplification
KCCH-762-1		deletion
KCGH-762-1	complex_CNAs	complex_CNAs
KCH-116-1	IKZF1	deletion
TMU-006-7	IKZF1	deletion
TMU-196-1	chr6	amplification
		amplification
110-196-1	BUR_ABLI	amplification
TMU-196-1	IKZF1	deletion
TMU-298-1	chr8	amplification
TMU-298-1	chr17p	deletion
TMU-960-1	BCR ARI 1	amplification
		amplification
TW-CML-L-002-BC	cnr//p	deletion
TW-CML-L-003-BC	chr7/7p	deletion
TW-CML-L-003-BC	RUNX1	deletion
TW-CML-L-005-BC	IKZE1	deletion
	h/2h/7	deletion
	chi <i>7/7</i> p	deletion
TW-CML-L-007-BC	chr9/9p	deletion
TW-CML-L-007-BC	BCR_ABL1	amplification
TW-CML-L-007-BC	complex CNAs	complex CNAs
		deletion
TW-CIVIL-L-007-BC	IKZF1	deletion
TW-CML-L-010-BC	chr8	amplification
TW-CML-L-010-BC	chr9/9p	deletion
TW-CMI -I -010-BC	complex CNAs	complex CNAs
		deletion
TW-CML-L-011-BC	cnr//p	deletion
TW-CML-L-011-BC	chr9/9p	deletion
TW-CML-L-011-BC	chr17p	deletion
TW-CMI -I -011-BC	BCR ABL1	amplification
	complex CNAs	complex CNAs
TW-CML-L-011-BC	CDKN2A/B	deletion
TW-CML-L-012-BC	chr7/7p	deletion
TW-CML-L-012-BC	chr9/9p	deletion
TW-CMI-I-012-BC	chr17n	deletion
		amplification
		deletier
TW-CML-L-012-BC	IKZF1	deletion
TW-CML-L-012-BC	hypoploidy	deletion
TW-CML-L-013-BC	chr7/7p	deletion
TW-CML-L-013-BC	chr9/9p	deletion
TW-CML-L-013-BC	complex CNAs	complex CNAs
TW-CML-L-013-BC	CDKNZA/B	deletion
TW-CML-L-014-BC	chr7/7p	deletion
TW-CML-L-014-BC	chr9/9p	deletion
TW-CMI -I -014-BC	BCR ABL1	amplification
	complex CNAs	complex CNAs
		complex_CINAS
TW-CIVIL-L-014-BC	CDKNZA/B	deletion
TW-CML-L-015-BC	chr17p	deletion
TW-CML-L-015-BC	chr17q	amplification
TW-CML-L-015-BC	complex CNAs	complex CNAs
	IK7F1	deletion
	nv <u>r</u> i obr ⁰	omplification
		amplification
I VV-CML-M-001-BC	BCR_ABL1	amplification
TW-CML-M-001-BC	complex_CNAs	complex_CNAs
	-	-

	ohrQ	omplification
		amplification
	BCR_ABL1	amplification
IW-CML-M-006-BC	complex_CNAs	complex_CNAs
TW-CML-M-007-BC	chr21	amplification
TW-CML-M-007-BC	RUNX1	deletion
TW-CML-M-018-BC	BCR_ABL1	amplification
TW-CML-M-018-BC	complex CNAs	complex CNAs
TW-CML-M-049-BC	chr17a	amplification
TW-CMI -M-049-BC	complex CNAs	complex CNAs
TW-CML-M-051-BC	chr21	amplification
TW-CML-M-051-BC	complex CNAs	complex CNAs
		dolotion
	nuiva i	deletion
	chi 17p	
		amplification
TW-CML-M-053-BC	BCR_ABL1	amplification
TW-CML-M-053-BC	complex_CNAs	complex_CNAs
TW-CML-M-058-BC	chr19	amplification
TW-CML-M-058-BC	BCR_ABL1	amplification
TW-CML-M-058-BC	complex_CNAs	complex_CNAs
TW-CML-M-059-BC	chr19	amplification
TW-CML-M-060-BC	chr6	amplification
TW-CML-M-060-BC	chr8	amplification
TW-CML-M-062-BC	chr6	amplification
TW-CML-M-062-BC	chr8	amplification
TW-CML-M-062-BC	chr17n	deletion
TW-CML-M-062-BC	chr19	amplification
TW-CML-M-062-BC	chr21	amplification
		amplification
	DUR_ADLI	amplification
	nyperpiolay	amplification
TW-CML-M-063-BC		amplification
	chr19	amplification
TW-CML-M-063-BC	chr21	amplification
TW-CML-M-063-BC	hyperploidy	amplification
TW-CML-M-065-BC	chr7/7p	deletion
TW-CML-M-065-BC	complex_CNAs	complex_CNAs
TW-CML-M-066-BC	chr19	amplification
TW-CML-M-066-BC	BCR_ABL1	amplification
TW-CML-M-066-BC	complex_CNAs	complex_CNAs
TW-CML-M-069-BC	chr6	amplification
TW-CML-M-069-BC	chr8	amplification
TW-CML-M-069-BC	chr17p	deletion
TW-CML-M-069-BC	chr19	amplification
TW-CML-M-069-BC	chr21	amplification
TW-CML-M-069-BC	BCR ABI 1	amplification
TW-CML-M-069-BC	hyperploidy	amplification
TW-CML-M-070-BC	chr8	amplification
	chr17a	amplification
	complex_CINAS	complex_CINAS
	unri7p	
	cnri/q	amplification
IW-CML-M-074-BC	complex_CNAs	complex_CNAs
IW-CML-M-075-BC	RUNX1	deletion
TW-CML-M-076-BC	chr17p	deletion
TW-CML-M-076-BC	complex_CNAs	complex_CNAs
TW-CML-M-078-BC	chr6	amplification
TW-CML-M-078-BC	chr8	amplification
TW-CML-M-078-BC	chr19	amplification

TW-CML-M-078-BC hyperploidy amplification	
TW-CML-M-079-BC chr8 amplification	
TW-CML-M-080-BC RUNX1 deletion	
TW-CML-M-081-BC chr8 amplification	
TW-CML-M-081-BC complex_CNAs complex_CNAs	
TW-CML-M-081-BC RUNX1 deletion	
TW-CML-M-082-BC chr8 amplification	
TW-CML-M-082-BC chr21 amplification	
TW-CML-M-082-BC BCR_ABL1 amplification	
TW-CML-M-082-BC complex_CNAs complex_CNAs	
TW-CML-M-083-BC BCR_ABL1 amplification	
TW-CML-M-083-BC complex_CNAs complex_CNAs	
TW-CML-M-086-BC chr7/7p deletion	
TW-CML-M-086-BC chr8 amplification	
TW-CML-M-086-BC chr9/9p deletion	
TW-CML-M-086-BC complex_CNAs complex_CNAs	
TW-CML-M-086-BC CDKN2A/B deletion	
AKT-001 BCR_ABL1 amplification	
AKT-003 chr8 amplification	
AKT-003 chr17p deletion	
AKT-003 chr17q amplification	
AKT-005 chr17p deletion	
AKT-005 chr17q amplification	
AKT-006 chr7/7p deletion	
AKT-006 chr19 amplification	
AKT-006 BCR_ABL1 amplification	
AKT-006 complex_CNAs complex_CNAs	
JUN-001 BCR_ABL1 amplification	
JUN-001 <i>IKZF1</i> deletion	
JUN-002 chr9/9p deletion	
JUN-002 <i>IKZF1</i> deletion	
JUN-002 CDKN2A/B deletion	
JUN-002 RUNX1 deletion	
JUN-002 complex_CNAs complex_CNAs	
JUN-003 hypoploidy deletion	
JUN-003 chr7/7p deletion	
JUN-003 chr9/9p deletion	
JUN-003 BCR_ABL1 amplification	
JUN-003 CDKN2A/B deletion	
JUN-003 complex_CNAs complex_CNAs	

Supplementary Table 5: Characteristics of patients with CML-BC analysed for survival

	Internal cohort	External cohort	Р
Number of cases (n =116)	99	17	
Age at BC diagnosis (y), median (range) ($n = 116$)	50 (16-86)	55 (19-84)	0.60
Sex, n (%) (n = 116)		, , , , , , , , , , , , , , , , , , ,	1
Male	59 (59.6)	10 (58.8)	
Female	40 (40.4)	7 (41.2)	
Lineage of blasts, n (%) (n = 116)	()	· · · ·	0.79
Mveloid	64 (64.6)	12 (70.6)	
Lymphoid	35 (35.4)	5 (29.4)	
WBC ($\times 10^3$ /ul) median (range) (n = 116)	50 100 (1 700-412 000)	11 000 (2 220-580 000)	0.094
Hb (g/dl), median (range) (n = 116)	9.3 (5.0-15.8)	11.8 (7.7-15.3)	0.014
$P[T(x_{10}^{3}(u))] = median (range) (n - 116)$	96,000 (3,000-2,740,000	133,000 (10,000-496,000)	0.24
I DH (II/I) median (range) (n = 75)	850 (75-6 332)	465 (189-3 671)	0.032
Blast in BM (%) median (range) $(n - 113)$	59 (1.0-98)	50 (17-96)	0.052
Diast in Div (76), median (range) ($n = 115$) Prior history of CP diagnosis n (%) ($n = 115$)	39 (1.0-98)	30 (17-30)	1.00
	76 (77 6)	14 (82.4)	1.00
No	22(224)	3 (17.6)	
Time from CP diagnosis (m) median (range) (n $-$ 85)	34.3 (0.27-363)	35.2(4.0-98.4)	0.64
Age at CP diagnosis (v), median (range) ($n = 85$)	43 (14-85)	48 (14-82)	0.04
Prior TKI therapy before BC n (%) ($n = 114$)	40 (14 00)	40 (14 02)	0.20
	36 (37 1)	10 (58.8)	0.11
No	61 (62 9)	7 (41 2)	
TKIs used for CP $n(\%)(n = 46)$	01 (02.0)	. (1
Imatinib	34 (94.4)	10 (100)	•
Dasatinib	2 (5.6)		
TKI-based therapy for BC, n (%) ($n = 116$)	= (0.0)	0 (0)	0.43
Yes	59 (59.6)	12 (70.6)	0.10
No	40 (40.4)	5 (29.4)	
TKIs used for BC, n (%) ($n = 71$)		- ()	0.11
Imatinib	33 (55.9)	3 (25.0)	
Dasatinib	23 (39.0)	8 (66.7)	
Nilotinib	2 (3.4)	0	
Ponatinib	1 (1.7)	1 (8.3)	
Final status, n (%) (n = 116)	(),	, , , , , , , , , , , , , , , , , , ,	0.12
Alive	24 (24.2)	1 (5.9)	-
Dead	75 (75.8)	16 (94.1)	
Method, n (%) (n = 116)			< 0.001
Whole-exome sequencing	50 (50.5)	17 (100)	
Targeted capture sequencing	49 (49.5)	0 (0)	
Median follow-up time (y), median (range) (n = 116)	3.2 (0.48-30.4)	12.9 (12.9-12.9)	0.33

The two-sided Wilcoxon rank-sum test and Fisher's exact test were used for continuous and categorical data to calculate P-values, respectively.

Supplementary Table 6: Representative CNAs in CML-CP (in-house)

Region	Type of CNA
chr8	amplification
BCR_ABL1	amplification
RUNX1	deletion
	Region chr8 BCR_ABL1 RUNX1

Supplementary Table 7: Primers used in this study

Name	Sequence	Application
RUNX1-FTS2-QF	CTTCACAAACCCACCGCAAG	measurement of RUNX1-FTS2
RUNX1-ETS2-QR	AGGGAGTCTGAGCTCTCGAAG	measurement of RUNX1-ETS2
1 CMI chr1 11189760+300 F	AAGCGGCCGCGCCTACCAGAGTTGCATCCT	deep amplicon-sequencing
2 CML chr1 38187211+287 F	AAGCGGCCGCAGCTCCCTCCCATAGCTGA	deep amplicon-sequencing
3 CML chr1 115258621+279 F	AAGCGGCCGCCCGACAAGTGAGAGACAGGA	deep amplicon-sequencing
4 CML chr2 209112973+260 F	AAGCGGCCGCTCATACCTTGCTTAATGGGTGT	deep amplicon-sequencing
5 CML chr3 10089560+290 F	AAGCGGCCGCTCCTACAGCTTCTTTTCTCTCTCT	deep amplicon-sequencing
6_CML_chr3_12632297+250_F	AAGCGGCCGCTCCATTCCCTGAGCCGTCT	deep amplicon-sequencing
7_CML_chr3_47036851+278_F	AAGCGGCCGCATTGGACTCGGAACCAGGC	deep amplicon-sequencing
8_CML_chr3_47043874+247_F	AAGCGGCCGCTGTCCCAGTTCGAAATGGACA	deep amplicon-sequencing
9_CML_chr3_47165521+300_F	AAGCGGCCGCAGTGTTGTGGCTTGGGCA	deep amplicon-sequencing
10_CML_chr3_128200592+296_F	AAGCGGCCGCTCTTGCCTGGCAGCACAA	deep amplicon-sequencing
11_CML_chr3_128204756+275_F	AAGCGGCCGCGGGGACTGCCACTTTCCAT	deep amplicon-sequencing
12_CML_chr4_106156656+250_F	AAGCGGCCGCTGGTAGCAGTGGAGAGCT	deep amplicon-sequencing
13_CML_chr4_106157416+250_F	AAGCGGCCGCGGATCATTCTTTGGCCAGACT	deep amplicon-sequencing
14_CML_chr5_176939030+279_F	AAGCGGCCGCTCTGACTTCCAGCACCCCT	deep amplicon-sequencing
15_CML_chr6_56358814+250_F	AAGCGGCCGCTTCATTGAGTTTGGTTTCCACC	deep amplicon-sequencing
16_CML_chr6_/96948/1+465_F	AAGCGGCCGCGCAGATCTAGTTGCAATCACCA	deep amplicon-sequencing
17_CML_chr6_/9/28662+333_F	AAGCGGCCGCTCTCAGTTACTTATTAGCTCTGGCA	deep amplicon-sequencing
18_CML_CNI6_11/080/39+3/6_F		deep amplicon-sequencing
19_CML_CM7_50467601+549_F		deep amplicon-sequencing
20_CIVIL_CIII7_50406003+245_F		deep amplicon-sequencing
21_CML_CIII7_101910419+305_F		deep amplicon-sequencing
22_CML_CIII7_104001320+320_F		deep amplicon-sequencing
23_CML_CH17_131943032+476_F		deep amplicon sequencing
25 CML_chr9_133738182+299 F	AAGCGGCCGCCCTGGCCGAGTTGGTTCAT	deep amplicon-sequencing
26_CML_chr9_133747460+248_F	AAGCGGCCGCACCCACTGAAAAGCACTTCCT	deep amplicon-sequencing
27 CML_chr9_133748121+283 F	AAGCGGCCGCTGTTGGAAGTTGGGCCCA	deep amplicon-sequencing
28 CML chr9 133760457+250 F	AAGCGGCCGCTCCTGGGCGCAAAGACAA	deep amplicon-sequencing
29 CML chr10 45485034+291 F	AAGCGGCCGCGGGTGTAGTTACTGTCAGGGG	deep amplicon-sequencing
30 CML chr10 112343854+271 F	AAGCGGCCGCTGTTTCTGTGTGCAGTTGACA	deep amplicon-sequencing
31 CML chr10 124271411+247 F	AAGCGGCCGCGGTGAGAGCTGAGTTTTGCG	deep amplicon-sequencing
32 CML chr11 32414106+274 F	AAGCGGCCGCACACATGGCTGACTCTCTCA	deep amplicon-sequencing
33_CML_chr11_32417788+249_F	AAGCGGCCGCAGCGGGCACACTTACCAGT	deep amplicon-sequencing
34_CML_chr11_66031296+242_F	AAGCGGCCGCAGAAGCTTCCGTTCTCCCA	deep amplicon-sequencing
35_CML_chr11_66033292+291_F	AAGCGGCCGCATTCACTGCCTGATGCCCC	deep amplicon-sequencing
36_CML_chr11_66033805+244_F	AAGCGGCCGCACCACCAGTCTGTTCCCT	deep amplicon-sequencing
37_CML_chr12_4409025+276_F	AAGCGGCCGCGGATTGTCTCAAAGCTTGCCA	deep amplicon-sequencing
38_CML_chr12_49441667+296_F	AAGCGGCCGCTGGTATGGCCAGGACAAGG	deep amplicon-sequencing
39_CML_chr12_69233300+248_F	AAGCGGCCGCACACAAGCTTCACAATCACAAG	deep amplicon-sequencing
40_CML_chr12_112888090+250_F	AAGCGGCCGCCCCTTGCCTCCCTTTCCAA	deep amplicon-sequencing
41_CML_chr12_112926085+297_F	AAGCGGCCGCGCCCIAIGCIIIIIGCCAACA	deep amplicon-sequencing
42_CML_chr12_112926734+279_F	AAGCGGCCGCAGCATIGICICIGAGICCACI	deep amplicon-sequencing
43_CML_chr12_122243732+240_F	AAGCGGCCGCCCCTGCCAGATCGATGAGT	deep amplicon-sequencing
44_CML_CNF12_122255571+398_F		deep amplicon-sequencing
$45_CML_CH112_122205104+270_F$		deep amplicon-sequencing
$40_{CML}_{CML}_{CML}_{CML}_{CML}_{A30203217104}_{F}$		deep amplicon sequencing
47_CML_chr15_90031786+280_F		deep amplicon-sequencing
49 CML_chr16_3781226+296 F		deep amplicon-sequencing
50 CML_chr16_3817599+296 F		deep amplicon-sequencing
51 CML chr16 15818442+293 F	AAGCGGCCGCGGGATCTCAGCGCAGAGAA	deep amplicon-sequencing
52 CML chr16 24573255+244 F	AAGCGGCCGCACAACCTCTGATGAGATCTCCG	deep amplicon-sequencing
53 CML chr16 67670562+265 F	AAGCGGCCGCCACCACCTGTGCTTCCTGA	deep amplicon-sequencing
54 CML chr17 7577411+272 F	AAGCGGCCGCAATCGGTAAGAGGTGGGCC	deep amplicon-sequencing
55 CML chr17 7578082+297 F	AAGCGGCCGCAAGCAGCAGGAGAAAGCCC	deep amplicon-sequencing
56_CML_chr17_37566570+296_F	AAGCGGCCGCATCGAAGAGACAGGTGGCG	deep amplicon-sequencing
57_CML_chr18_29099587+382_F	AAGCGGCCGCAGGCCCTATGCAGTTTGCT	deep amplicon-sequencing
58_CML_chr20_31021575+241_F	AAGCGGCCGCAATCCTTTGAGCAGGCGG	deep amplicon-sequencing
59_CML_chr20_31022179+482_F	AAGCGGCCGCTCCCTAGGTCAGATCACCCA	deep amplicon-sequencing
60_CML_chr20_31022674+250_F	AAGCGGCCGCACCTGCCTTCTCTGAGAAAGG	deep amplicon-sequencing
61_CML_chr20_49195660+243_F	AAGCGGCCGCTGAGAATTGGACCTGGCTGAC	deep amplicon-sequencing
62_CML_chr20_57415469+290_F	AAGCGGCCGCACGAGGAAGAGTTCGACTACG	deep amplicon-sequencing
63_CML_chr21_30927357+300_F	AAGCGGCCGCGAAAGAGATGACTCACCTGTTCA	deep amplicon-sequencing
64_CML_chr21_36164269+400_F	AAGCGGCCGCGCCTGACCTACAGCGAGATC	deep amplicon-sequencing
65_CML_chr21_36231667+250_F	AAGCGGCCGCGGGAAAGGTTGAACCCAAGGA	deep amplicon-sequencing

AAGCGGCCGCGGGAAAGGTTGAACCCAAGGA

66_CML_chr21_36252741+244_F 67 CML chr21 36252801+283 F 68_CML_chr21_36258989+363_F 69_CML_chrX_39922923+250_F 70_CML_chrX_39923662+248_F 71_CML_chrX_39931966+276_F 72_CML_chrX_39933746+289_F 73_CML_chrX_41025250+273_F 74_CML_chrX_44942614+316_F 75_CML_chrX_53441831+272_F 76_CML_chrX_118708577+295_F 77_CML_chrX_118708697+370_F 78_CML_chrX_118716950+298_F 79_CML_chrX_129148413+300_F 80_CML_chrX_129149659+240 F 81 CML chrX 133548839+566 F 1 CML chr1 11189760+300 R 2_CML_chr1_38187211+287_R 3_CML_chr1_115258621+279_R 4_CML_chr2_209112973+260_R 5_CML_chr3_10089560+290_R 6_CML_chr3_12632297+250_R 7_CML_chr3_47036851+278_R 8_CML_chr3_47043874+247_R 9_CML_chr3_47165521+300_R 10_CML_chr3_128200592+296_R 11_CML_chr3_128204756+275_R 12_CML_chr4_106156656+250_R 13_CML_chr4_106157416+250_R 14_CML_chr5_176939030+279_R 15 CML chr6 56358814+250 R 16_CML_chr6_79694871+465_R 17_CML_chr6_79728662+333_R 18_CML_chr6_117680739+376_R 19_CML_chr7_50467801+349_R 20_CML_chr7_50468003+245_R 21 CML chr7 101918419+385 R 22 CML chr7 104681328+320 R 23_CML_chr7_151945032+478_R 24_CML_chr8_128753053+250_R 25_CML_chr9_133738182+299_R 26 CML chr9 133747460+248 R 27_CML_chr9_133748121+283_R 28_CML_chr9_133760457+250_R 29_CML_chr10_45485034+291_R 30_CML_chr10_112343854+271_R 31_CML_chr10_124271411+247_R 32_CML_chr11_32414106+274_R 33_CML_chr11_32417788+249_R 34_CML_chr11_66031296+242_R 35_CML_chr11_66033292+291_R 36_CML_chr11_66033805+244 R 37_CML_chr12_4409025+276_R 38_CML_chr12_49441667+296_R 39_CML_chr12_69233300+248_R 40_CML_chr12_112888090+250_R 41_CML_chr12_112926085+297_R 42_CML_chr12_112926734+279_R 43 CML chr12 122243732+240 R 44_CML_chr12_122255571+398_R 45_CML_chr12_122263104+276_R 46_CML_chr14_45628321+134_R 47 CML chr15 90631786+280 R 48 CML chr15 90631786+280 R 49_CML_chr16_3781226+296_R 50_CML_chr16_3817599+296_R 51_CML_chr16_15818442+293_R 52_CML_chr16_24573255+244_R 53_CML_chr16_67670562+265_R 54 CML chr17 7577411+272 R

AAGCGGCCGCTGTTAAGACAGACCGAGTTTCT AAGCGGCCGCTGGGTTTGTTGCCATGAAACG AAGCGGCCGCTCCCCACATCCCAAGCTA AAGCGGCCGCGCCCTTTTCCTGCCAGGTT AAGCGGCCGCGCTGCTGTCACCTGAGACT AAGCGGCCGCACGGTGAAGACTGGCTGT AAGCGGCCGCTGTCTGCGCAATGGACGA AAGCGGCCGCTGATGGGGGGATGAACCAGAC AAGCGGCCGCTCTGATTGGAACACAAGGGTT AAGCGGCCGCTGCATGAGTTGGCAAGGGT AAGCGGCCGCCCTCCCCTTCTCCTGCTTCT AAGCGGCCGCGCCTCATGCGGGACTTCAA AAGCGGCCGCAGCAGATTCACATAACTCTGGGT AAGCGGCCGCTGCTTCTGCCAAGGTGCT AAGCGGCCGCGCTTGTGGCCTGAAGCT AAGCGGCCGCGGCAGTCCTCATTTTATTTCAATGTCC AAGCGGCCGCGTCTTTGCTATGTGCCAGGT AAGCGGCCGCTGTGGCTGCTTGCAGCT AAGCGGCCGCTGGAAGGTCACACTAGGGT AAGCGGCCGCGGAAATCACCAAATGGCACCA AAGCGGCCGCAGACCCAGGTCAGAGTTCCT AAGCGGCCGCTCCACGGGAAAGCACAGT AAGCGGCCGCCCCACCTGTACAGCTGCTT AAGCGGCCGCATAGGTCAGTCCCCTGGCT AAGCGGCCGCCCCTCCAGCTGTACCTCTTC AAGCGGCCGCTTGACTGAGCTGGTGGGGA AAGCGGCCGCACTCTCTGTGTACCCAGGGG AAGCGGCCGCGGAGGTCATTTGATTGGAGAGA AAGCGGCCGCCTGCAAAAAGTTCAGGATGTGT AAGCGGCCGCAGCGCCACCTTAGCTGTT AAGCGGCCGCGAGCTTGGGACTGATGACCT AAGCGGCCGCTCTGCCCACCTTGACCTCT AAGCGGCCGCAGGGAGCCATCTGTTGCT AAGCGGCCGCTGGATCAAAATCAAGTTGTGTGGAC AAGCGGCCGCACACCTTCATCTGCTCCCC AAGCGGCCGCCATGTTGCACTCAAAAGGATCAC AAGCGGCCGCTCAAAGCCCAGTGTGGCA AAGCGGCCGCAGCAATCACGTTCTCAGTGTT AAGCGGCCGCAGAGGAACCTGAAACAGTGGT AAGCGGCCGCAAGGTTGTGAGGTTGCATTTG AAGCGGCCGCAATGCCAGCAGACGCCTT AAGCGGCCGCTCCAACGAGGTTTTGTGCAG AAGCGGCCGCTCCAGGTACTCCATGGCTGA AAGCGGCCGCACTCGGGTTGATATGAGAGGGA AAGCGGCCGCTTCATGCTGGGAGGCACAG AAGCGGCCGCTGCTTCAGTGTCTTCCAAATCC AAGCGGCCGCAACAGCGCTCCCTCTTCCT AAGCGGCCGCTCCTAGTAGGAGAGGTTGCCT AAGCGGCCGCTCCAGTGCTCACTCTCCCT AAGCGGCCGCTGGGTGAAACTTGCCCAGG AAGCGGCCGCTCAAGGAGCCACTGCCATC AAGCGGCCGCTGAAGAGGCATGCTGGAGG AAGCGGCCGCTGATCTAGGTGGGGGGCAGA AAGCGGCCGCTGGGGTTCCTGACTCTGGT AAGCGGCCGCGCACATGTAAAGCAGGCCA AAGCGGCCGCGTGGTCACTAAAATGTTACTGACCT AAGCGGCCGCTCGTGAGCACTTTCCTTCCA AAGCGGCCGCTGAGAATCCGCATGCCAG AAGCGGCCGCGGAAGTGCTGTGCAAGTGC AAGCGGCCGCAGATGGAACCGTACGCCAC AAGCGGCCGCCTCTGGCCTCACAACTCCTC AAGCGGCCGCTCGTGCTTTTCCCTGAGGC AAGCGGCCGCCGTCTGGCTGTGTTGTTGC AAGCGGCCGCCGTCTGGCTGTGTTGTTGC AAGCGGCCGCAGGTGCCATGTCCCTTGTG AAGCGGCCGCTGCAAGGAGCTTCCCAAGT AAGCGGCCGCTGCCACATCATCCAGGGGA AAGCGGCCGCAAACACACAGGCTTACCGAA AAGCGGCCGCACAAGGACCCATCTGGCTC AAGCGGCCGCAAAAGGCCTCCCCTGCTTG

deep amplicon-sequencing deep amplicon-sequencing

55 UML CNT17 7578082+297 R AAGCGGCCGCTAGCGATGGTGAGCA	AGCTG dee	p amplicon-sequencina
56 CML chr17 37566570+296 R AAGCGGCCGCAAAAAGAACCTGCCC	CCGG dee	p amplicon-sequencing
57 CML chr18 29099587+382 R AAGCGGCCGCACATAAAAGTCCTCT	CACACCACA dee	p amplicon-sequencing
58 CML chr20 31021575+241 R AAGCGGCCGCTTAACTTCAGGGCCC	CAGA dee	p amplicon-sequencing
59 CML chr20 31022179+482 R AAGCGGCCGCTCTGGACATGGCAGT	TCCG dee	p amplicon-sequencing
60_CML_chr20_31022674+250_R AAGCGGCCGCTGCTCCTCATCATCA	CTTTCCC dee	p amplicon-sequencing
61_CML_chr20_49195660+243_R AAGCGGCCGCTGGTCACACCTGGAT	TCAAACA dee	p amplicon-sequencing
62_CML_chr20_57415469+290_R AAGCGGCCGCTTTGTCCTCGGGCTT	GAGC dee	p amplicon-sequencing
63_CML_chr21_30927357+300_R AAGCGGCCGCTGGTGACCAATATCC	AGATGG dee	p amplicon-sequencing
64_CML_chr21_36164269+400_R AAGCGGCCGCTACCACCTGTACTAC	GGCG dee	p amplicon-sequencing
65_CML_chr21_36231667+250_R AAGCGGCCGCACCAACCTCATTCTG	TTTTGTTCTC dee	p amplicon-sequencing
66_CML_chr21_36252741+244_R AAGCGGCCGCTGGCACTCTGGTCAC	CTGT dee	p amplicon-sequencing
67_CML_chr21_36252801+283_R AAGCGGCCGCCACTACACAAATGCC	CTAAAAGTGT dee	p amplicon-sequencing
68_CML_chr21_36258989+363_R AAGCGGCCGCTGAGCCCAGGCAAG/	ATGAG dee	p amplicon-sequencing
69_CML_chrX_39922923+250_R AAGCGGCCGCCCTCTAACCACTTAG	AAGACCCAC dee	p amplicon-sequencing
70_CML_chrX_39923662+248_R AAGCGGCCGCGCCTTCTCATGGCGA	CCTT dee	p amplicon-sequencing
71_CML_chrX_39931966+276_R AAGCGGCCGCGCGCGAACCCCAACTG	GAAT dee	p amplicon-sequencing
72_CML_chrX_39933746+289_R AAGCGGCCGCCTGCCCTGGGTCAAT	CCTT dee	p amplicon-sequencing
73_CML_chrX_41025250+273_R AAGCGGCCGCCGTACATGAAAAAGT	ACATCAGACACC dee	p amplicon-sequencing
74_CML_chrX_44942614+316_R AAGCGGCCGCTCTGGCTGTCTTTGC	ATGT dee	p amplicon-sequencing
75_CML_chrX_53441831+272_R AAGCGGCCGCGGATGCCATCAGCTT	TGTGC dee	p amplicon-sequencing
76_CML_chrX_118708577+295_R AAGCGGCCGCCCTGCAACCTTCGGG	GAAGA dee	p amplicon-sequencing
77_CML_chrX_118708697+370_R AAGCGGCCGCCCCAGCCAGACCCAA	ACAT dee	p amplicon-sequencing
78_CML_chrX_118716950+298_R AAGCGGCCGCTGGCCAGCTTCTTTA	AACTGT dee	p amplicon-sequencing
79_CML_chrX_129148413+300_R AAGCGGCCGCTTGCTGCTGGTGTGC	CAC dee	p amplicon-sequencing
80_CML_chrX_129149659+240_R AAGCGGCCGCTTTCACTCGCCCCAG	ATCC dee	p amplicon-sequencing
81_CML_chrX_133548839+566_R AAGCGGCCGCACGGCTTGCAAATGC	CTTG dee	p amplicon-sequencing

Supplementary Table 8: Public datasets used in this study

Datasets	Accession ID
Kim, T. et al. Leuk Res 59, 142-148 (2017).	PRJEB20846
Branford, S. et al. Blood 132, 948-961 (2018).	EGAS00001003071