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Supplementary Note 1 

When matching the cell populations from two datasets, we distinguish five options: simple, multiple 
columns, multiple rows, complex, and impossible. When describing the different scenarios within 
these options, we sometimes make a distinction between leaf nodes and internal nodes. Here, it is 
important to remember that only T1 can have internal nodes since this is the tree that is updated. T2 
is always a flat classification tree, so only consists of the root node and leaf nodes. 

Simple 

In this scenario, we find a unique match between a cell population, Pi, from dataset 1 and a cell 
population, Pj, from dataset 2. As as consequence, Xj,I will be 1 or 2 and the rest of row j and column i 
in X are zero. Within this scenario, there are three different options: 

1. Both cell populations are leaf or internal nodes. This indicates a perfect match. The tree is not 
updated, but the labels of Pj are renamed to Pi (Supplementary Fig. 24A). This is the same 
scenario as the ‘perfect match’ scenario described in the main text. 

2. Pi is a leaf or internal node, but Pj is the root node of T2. This indicates that Pi is missing in 
dataset 2. The node, however, is already in the tree, so it is not updated  (Supplementary Fig. 
24B). 

3. Pi is the root of T1, but the Pj is a leaf node. This indicates that Pj is missing in dataset 1. The 
cell population is thus also not in the tree yet, so we will add it as a child to the root 
(Supplementary Fig. 24C). This is the same scenario as the ‘new population’ scenario described 
in the main text. 

Multiple rows 

In this scenario, a cell population, Pi, from dataset 1 matches multiple populations from dataset 2. In X 
there will be multiple non-zero values in column i. Here, we distinguish two different scenarios: 

1. Pi matches only cell populations from dataset 2 that are leaf node. We consider the cell 
populations from dataset 2 subpopulations of Pi, so we add them as descendants to Pi 

(Supplementary Fig. 25A). This is the same scenario as the ‘splitting nodes’ scenario described 
in the main text. 

2. The root node of T2 is also involved. We simple ignore this node and for the rest do the same 
as above (Supplementary Fig. 25B-C). 

Multiple columns 

This scenario is quite similar to the multiple rows scenario. Here, however, multiples populations from 
dataset 1 match one cell population, Pj, of dataset 2. In X there will be multiple non-zero values in row 
j. This scenario is a little more complex since the populations from dataset 1 does not have to be leaf 
nodes or the root node, but there can also be internal nodes in this tree. Here, we distinguish three 
different scenarios: 

1. The root node of T1 and T2 are not involved, so multiple cell populations, which can be leaf or 
internal nodes, from dataset 1 match Pj. We consider the cell populations from dataset 1 
subpopulations of Pj, so we need to add Pj as a parent node to these cell populations.  
(Supplementary Fig. 26A). This is same scenario as the ‘merging nodes’ scenario described in 
the main text. It could be, however, that this node already exists in this tree. (Supplementary 
Fig. 26B). If this is the case, we have a perfect match between a node from tree 1 and tree 2, 
so we do not have to update the tree, but we only have to update the labels of Pj. 



2. Besides leaf or internal nodes, the root of T1 is involved. This indicates that Pj is ‘bigger’ than 
the cell populations from dataset 1 as part of it is unlabeled. Therefore, we add Pj as a 
descendant to the root of T1. Next, we rewire the involved cell populations from dataset 1 
such that they become descendants of Pj (Supplementary Fig. 26C). 

3. The root node of T2 is involved. This indicates that multiple cell populations from dataset 1 are 
missing in dataset 2. These nodes, however, are already in the tree, so the tree can remain the 
same (Supplementary Fig. 26D). 

Complex 

The scenarios described above were all relatively easy. A cell population from one dataset matches 
either one or multiple cell populations from another. It could also happen, however, that multiple cell 
populations from dataset 1 match multiple cell populations from dataset 2 (Supplementary Fig. 27). As 
a consequence, there will a certain place Xj,I which is either 1 or 2 and there are two or more non-zero 
values in the corresponding row j and column i. Here, we distinguish three different scenarios: 

1. The root node of T1 is involved. We just assume that the boundary should be adjusted and this 
is automatically done, so we remove this `1' from the table (Supplementary Fig. 27A). If the 
situation is still complex after the one is removed, we continue to scenario 2 or 3. If not, we 
treat it as a multiple rows problem as explained above. 

2. The root node of T2 is involved. Again, we just assume that the boundary should be adjusted, 
so we remove this `1' from the table (Supplementary Fig. 27B). If the situation is still complex 
after the one is removed, we continue to scenario 3. If not, we treat it as a multiple columns 
problem as explained above. 

3. Multiple leaf/internal nodes of dataset 1 are involved and multiple leaf nodes of dataset 2. We 
can only solve this if the ‘complex’ cell population, Pi, of dataset 1 is not a leaf node. Otherwise 
we are dealing with an impossible scenario which is described below. If the complex node is 
an internal node, we attach the involved cell populations of dataset 2 as descendants to the 
complex node (splitting scenario) and attach the involved cell populations of dataset 1, except 
for Pi, to Pj (Supplementary Fig. 27C). 

Impossible 

Sometimes, it could be impossible to match the labels from two datasets. Something could have gone 
wrong during the clustering, e.g. a population 1 and 2 from dataset 1 match population A from dataset 
2, but population 2 also matches population C from dataset 2 (Supplementary Fig. 28A). Here, 
population A and C should be merged into population 2, but population A should also be split into 
population 1 and 2. Population 2, however, cannot be added to the tree twice.  

It could also be that dataset 2 contains labels at a different resolution, e.g. that population B is a 
subpopulation of population A (Supplementary Fig. 28B). This is not what we assumed and thus 
impossible to match. 

Both scenarios occur when a leaf node from dataset 1 is at a crossing of multiple rows and multiple 
columns (i.e. a complex situation). An extra difficulty is that there are thus multiple situations that 
could explain this. All of these situation are not what we desired and thus we call it impossible and do 
nothing. 

  



Supplementary Note 2 

If there is a complex scenario that cannot be solved immediately, matrix X will be changed into a strict 
matrix. In the strict matrix, only reciprocal matches are considered, so all ‘1’s’ are turned into ‘0’. There 
are some exceptions to this rule.  

- A population can never have a reciprocal match with the root, so these ‘1’s’ are never 
removed. 

- If a population from a dataset has only one match, it is also never removed. Consider the 
following example: If population P1 of Dataset 1 is only predicted to be Population Q of Dataset 
2, we know that P1 should be a match with Q as it cannot be matched with any other 
population or with the root. It could be that this match is not reciprocal if population Q has 
many different subpopulations (e.g. P1, P2, P3, P4). Imagine that population P2 is really big. 
Almost all cells of population Q will be predicted to be P2 and so the matches with P1 (and P3 
and P4) are missed because of the matching threshold. In case there is a complex scenario 
caused by any other population (maybe P2 or P3 or P4), we still know that P1 is a subpopulation 
of Q, since that was super clear and didn’t cause any complexity.    



Supplementary Note 3 

Current scRNA-seq data simulators cannot simulate hierarchical data, so we simulated this dataset 
step by step (Supplementary Fig. 1B).  

First, we simulated the expression of 3,000 genes for 9,000 cells. For this simulation, the cells were 
divided into three groups. The 3,000 simulated genes represent genes that are differentially expressed 
between the cell populations at a low resolution, so for example B cells vs. T cells. Next, we simulated 
another 3,000 genes for the same 9,000 cells. Now, the cells were divided into five groups. Here, the 
differentially expressed genes represent genes that distinguish cell populations at a slightly higher 
resolution, so for example CD4+ T cells vs. CD8+ T cells. We repeated this step for another set of 3,000 
genes, but now there were six populations. The third dataset represents the highest resolution, so for 
instance CD4+ memory T cells vs. CD4+ naïve T cells. 

Together this resulted in a dataset of 9,000 cells and 9,000 genes. The cells were labeled at three 
resolutions. There was some inconsistency between the labels at the different resolutions (e.g. some 
cells were labeled as ‘Group12’, ‘Group3’, ‘Group3’). We removed these cells from the dataset, which 
resulted in a final dataset of 8,839 cells and 9,000 genes. 

  



Supplementary Figures 

 

Supplementary Fig. 1 (A) Classification tree for the simulated dataset. (B) We simulated three 
datasets separately and concatenated them in one dataset. The labels and their proportion are 
indicated in the simulated datasets. (C) UMAP of the final dataset. 

 



 

Supplementary Fig. 2 (A) Classification tree for the PBMC-FACS dataset. Bold names indicate cell 
populations that exist in our dataset. (B) UMAP embedding of the PBMC-FACS data 



 

Supplementary Fig. 3 Classification tree of the AMB dataset. The circular and rectangle nodes indicate 
internal and leaf nodes respectively. If multiple leaf nodes are descendants of the same internal node, 
they are placed in the same rectangle. 

 

 

Supplementary Fig. 4 Effect of selection HVG on the classification performance on the PBMC-FACS 
dataset when using the (A) linear SVM and (B) one-class SVM during cross-validation (n = 10). In the 
boxplots, the middle (orange) line represents the median, the lower and upper hinge represent the 
first and third quartiles, and the lower and upper whisker represent the values no further than 1.5 
inter-quartile range away from the lower and upper hinge respectively. 

 



 

Supplementary Fig. 5 Pearson correlation between the cell population in the PBMC-FACS dataset. 



 

Supplementary Fig. 6 UMAPs showing the cell populations of the (A) FACS, (B) Bench-10Xv2, (C) eQTL, 
(D) Bench-10Xv3 datasets after integration with Seurat. 
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FACS Bench-10Xv2 

Bench-10Xv3 eQTL 



 

Supplementary Fig. 7 UMAPs showing the expression of FCGR3A in the PBMC datasets. We visualized 
the original counts of FCGR3A, so before integration.  FCGR3A is a marker gene for CD16+ monocytes. 
In the eQTL dataset, FCGR3A is expressed in the cells labeled as mDC (Supplementary Fig. 6). 



 

Supplementary Fig. 8 UMAPs showing the expression of FCER1A in the PBMC datasets. We visualized 
the original counts of FCER1A, so before integration.  FCER1A is a marker gene for mDC. In the eQTL 
dataset, FCER1A is lowly expressed in the cells labeled as CD16+ monocytes (Supplementary Fig. 6). In 
the FACS dataset, part of the cells labeled as CD14+ monocytes also expressed FCER1A.  

 

 



 

Supplementary Fig. 9 UMAPs showing the expression of CD14 in the PBMC datasets. We visualized the 
original counts of CD14, so before integration.  CD14 is a marker gene for CD14+ monocytes. In the 
FACS dataset, part of the cells labeled as CD14+ monocytes express no CD14+ (Supplementary Fig. 6).  

 

 



 

Supplementary Fig. 10 UMAPs showing the expression of CD4 in the PBMC datasets. We visualized the 
original counts of CD4, so before integration.  CD4 is a marker gene for CD4+ T-cells and monocytes. In 
the eQTL and Bench-10Xv2 dataset, CD4 is only lowly expressed in the CD4+ T-cells at the right of the 
cluster and expression is missing at the bottom-left part of the cluster (Supplementary Fig. 6).  

 



 

Supplementary Fig. 11 UMAPs showing the expression of CD8A in the PBMC datasets. We visualized 
the original counts of CD8A, so before integration.  CD8A is a marker gene for CD8+ T-cells. In the eQTL 
and Bench-10Xv2 dataset, CD8A is also expressed in the CD4+ T-cells at the bottom-left part of the 
cluster (Supplementary Fig. 6). 

 



 

Supplementary Fig. 12 UMAPs showing the expression of CCR7 in the PBMC datasets. We visualized 
the original counts of CCR7, so before integration.  CCR7 is a marker gene for naive T-cells.  

 



 

Supplementary Fig. 13 UMAPs showing the expression of NKG7 in the PBMC datasets. We visualized 
the original counts of NKG7, so before integration.  NKG7 is a marker gene for NK cells and cytotoxic 
T-cells.  

 

 

 



 

Supplementary Fig. 14 UMAPs showing the expression of CD34 in the PBMC datasets. We visualized 
the original counts of CD34, so before integration.  CD34 is a marker gene for CD34+ cells.   

 



 

Supplementary Fig. 15 UMAPs showing the expression of SERPINF1 in the PBMC datasets. We 
visualized the original counts of SERPINF1, so before integration.  SERPINF1 is a marker gene for pDC.   



 

Supplementary Fig. 16 (A) Constructed classification tree when using a one-class SVM during the PBMC 
inter-dataset experiment. The color of a node represents the dataset(s) of the cell population. If a color 
refers to multiple datasets, this indicates that the populations from these datasets had a perfect match. 
The NK and CD8+ T-cell populations from the PBMC-Bench10Xv2 are missing from the tree. (B) 
Confusion matrix when using the constructed classification tree to predict the labels of PBMC-
Bench10Xv3. 

 

 



 

Supplementary Fig. 17 Confusion matrix when using the constructed classification tree to predict the 
labels of PBMC-Bench10Xv3 with linear and one-class SVM (columns) when varying the number of 
anchors to integrate the dataset (rows). 

 

 

 



 

Supplementary Fig. 18 (A) UMAP embedding showing the AMB2016 and AMB2018 datasets after data 
integration. The red rectangle shows the cells we zoomed in on to visualize the expression of marker 
genes. (B) Different cell populations within this part of the UMAP. (C-D) Expression of Sla and Rgs12. 
The ‘L6b VISp Col8a1 Rprm’ population does not express Rgs12, but does express Sla, which support 
the match with ‘L6a Sla’  instead of ‘L6b Rgs12’. 

 



 

Supplementary Fig. 19 Size of the cell populations in the (A) Saunders, (B) Zeisel – low resolution, (C) 
Tabula Muris, and (D) Zeisel – high resolution dataset. When comparing the size of the difference 
populations, notice the different scales on the y-axis. 

 



 

Supplementary Fig. 20 (A) Learned hierarchy when applying scHPL with a one-class SVM to the 
Saunders, Zeisel (low resolution), and Tabula Muris dataset. (B) Confusion matrix when using the 
learned classification tree to predict the labels of the Rosenberg dataset. 

 



 

Supplementary Fig. 21 UMAP embeddings of (A) Saunders, (B) Zeisel (high resolution), (C) Tabula Muris 
after data integration. 

 

 



 

Supplementary Fig. 22 (A) Learned hierarchy when applying scHPL with a linear SVM to the Saunders, 
Zeisel (high resolution), and Tabula Muris dataset. The 14 neuronal populations in the tree include: 
olfactory inhibitory neurons,  cholinergic and monoaminergic neurons, glutamatergic neuroblasts, di- 
and mesencephalon inhibitory neurons, cerebellum neurons, peptidergic neurons,  spinal cord 
inhibitory neurons, di- and mesencephalon excitatory neurons, spinal cord excitatory neurons, 
telencephalon projecting excitatory neurons, hindbrain neurons, dentate gyrus granule neurons, 
telencephalon inhibitory interneurons, and  telencephalon projecting inhibitory neurons. Bergmann  
glia (TM) and astrocytes (TM) are missing from the tree. (B) Confusion matrix when using the learned 
classification tree to predict the labels of the Rosenberg dataset. 



 

 

Supplementary Fig. 23 Result one-class SVM on the high resolution. Almost all neuronal cell 
populations are missing. Fourteen neuronal populations are missing from the tree: olfactory inhibitory 
neurons,  glutamatergic neuroblasts, non-glutamatergic neuroblasts, di- and mesencephalon 
inhibitory neurons, cerebellum neurons, peptidergic neurons,  spinal cord inhibitory neurons, di- and 
mesencephalon excitatory neurons, spinal cord excitatory neurons, telencephalon projecting 
excitatory neurons, hindbrain neurons, dentate gyrus granule neurons, telencephalon inhibitory 
interneurons, and  telencephalon projecting inhibitory neurons. (B) Confusion matrix when using the 
learned classification tree to predict the labels of the Rosenberg dataset. 

  



 

Supplementary Fig. 24 Schematic examples of the simple scenarios. For  each  scenario,  we  show  
what  the  cell  populations  in  the  two datasets could look like, X and the updated tree.  



 

Supplementary Fig. 25 Schematic examples of the colsums scenarios. For  each  scenario,  we  show  
what  the  cell  populations  in  the  two datasets could look like, X and the updated tree.  

 



 

Supplementary Fig. 26 Schematic examples of the rowsums scenarios. For  each  scenario,  we  show  
what  the  cell  populations  in  the  two datasets could look like, X and the updated tree.  

 



 

Supplementary Fig. 27 Schematic examples of the complex scenarios. For  each  scenario,  we  show  
what  the  cell  populations  in  the  two datasets could look like, X and the updated tree.  

 

 



Supplementary Fig. 28 Schematic examples of the impossible scenarios. For  each  scenario,  we  show  
what  the  cell  populations  in  the  two datasets could look like, X and why the updated tree is not 
possible.  



Supplementary tables 

Supplementary Table 1 Explanation of the most common matching scenarios. 

Scenario Biological explanation Identification in 
the matching 
matrix (X) 

Solution 

Perfect 
match 

Population i of dataset 1 
exactly matches population j 
of dataset 2 

Xj,i = 1 or 2 rest of 
row j and column i 
is zero 

Rename labels of 
population j to population i 

Splitting 
populations 

Multiple populations from 
dataset 2 are subpopulations 
of population i of dataset 1 

Multiple non-zero 
values in column i 
of X 

Add corresponding 
populations from dataset 2 
as children to population i 

Merging 
populations 

Multiple populations from 
dataset 1 are subpopulations 
of population j of dataset 2 

Multiple non-zero 
values in column j 
of X 

Add population j as a 
parent to the 
corresponding populations 
of dataset 1 

New 
population 

Dataset 2 contains a new, 
unseen population j 

Xj,root1 = 1, the rest 
of row j is zero 

Add population j as a child 
to the root node. 

 

Supplementary Table 2 Labels of the simulated dataset when testing tree construction 

Original label Label Batch 1 Label Batch 2 Label Batch 3 
Group1 Group12 Group1 Group1 
Group2 Group12 Group2 Group2 
Group3 Group3 Group3 Group3 
Group4 Group456 Group4 Group4 
Group5 Group456 Group56 Group5 
Group6 Group456 Group56 Group6 

 

 
Supplementary Table 3 Labels of PBMC-FACS dataset when testing tree construction 

Original label Label Batch 1 Label Batch 2 Label Batch 3 
CD14+ Monocytes CD14+ Monocytes CD14+ Monocytes CD14+ Monocytes 
CD19+ B-cells CD19+ B-cells CD19+ B-cells CD19+ B-cells 
CD56+ NK cells CD56+ NK cells CD56+ NK cells CD56+ NK cells 
CD4+ T-cells T-cells CD4+ T-cells - 
CD4+/CD25+ reg. T-
cells 

T-cells - CD4+/CD25+ reg. T-
cells 

CD4+/CD45RA+/CD25- 
naive T-cells 

T-cells - CD4+/CD45RA+/CD25- 
naive T-cells 

CD4+/CD45RO+ mem. 
T-cells 

T-cells - CD4+/CD45RO+ mem. 
T-cells 

CD8+ T-cells T-cells CD8+ T-cells - 
CD8+/CD45RA+ naïve 
T-cells 

T-cells - CD8+/CD45RA+ naïve 
T-cells 



Supplementary Table 4 Confusion matrix of the linear SVM on the PBMC data. Here, the linear SVM 
was trained using the predefined hematopoietic tree.  

 CD14+ 
MC 

CD19+ 
B 

CD34+ CD56+ 
NK 

CD4+ T  CD4+ T 
Reg 

CD4+ T 
Naive  

CD4+ T 
Memory 

CD8+ T CD8+ T 
Naive  

root 

CD14+ 
MC 1957 1 0 1 2 15 0 1 0 0 23 

CD19+ B 0 1998 0 0 0 0 0 1 0 0 1 

CD34+ 1 26 1794 1 0 0 0 0 6 0 172 

CD56+ 
NK 0 0 2 1988 0 0 0 1 6 0 3 

CD4+ T  1 0 0 0 191 1010 790 3 0 2 3 

CD4+ T 
Reg 0 0 0 0 113 1704 175 4 0 0 4 

CD4+ T 
Naive 1 1 0 0 94 140 1751 1 1 9 2 

CD4+ T 
Memory 0 0 3 0 1 33 14 1888 32 26 3 

CD8+ T 0 0 0 0 1 5 0 44 1884 65 1 

CD8+ T 
Naive 0 1 0 0 3 0 13 36 31 1916 0 

 

Supplementary Table 5 Confusion matrix of the linear SVM on the PBMC data. Here, the linear SVM 
was trained on the learned tree. The CD4+ memory T-cells are a subpopulation of CD8+ T-cells now. 

 CD14+ 
MC 

CD19+ 
B 

CD34+ CD56+ 
NK 

CD4+ T  CD4+ T 
Reg 

CD4+ T 
Naive  

CD4+ T 
Memory 

CD8+ T CD8+ T 
Naive  

root 

CD14+ 
MC 1957 1 0 1 0 17 0 1 0 0 23 

CD19+ B 0 1998 0 0 0 0 0 0 0 1 1 

CD34+ 1 26 1794 1 0 0 0 2 0 4 172 

CD56+ 
NK 0 0 2 1988 0 0 0 7 0 0 3 

CD4+ T  1 0 0 0 0 1116 875 5 0 0 3 

CD4+ T 
Reg 0 0 0 0 0 1794 200 2 0 0 4 

CD4+ T 
Naive 1 1 0 0 0 133 1860 2 0 1 2 

CD4+ T 
Memory 0 0 3 0 0 4 0 1972 0 18 3 

CD8+ T 0 0 0 0 0 2 0 774 0 1223 1 

CD8+ T 
Naive 0 1 0 0 0 0 3 24 0 1972 0 

 



 
Supplementary Table 6 Labels of the simulated dataset when testing tree construction with missing 
cell populations 

Original label Label Batch 1 Label Batch 2 Label Batch 3 
Group1 Group12 Group1 Group1 
Group2 Group12 Group2 Group2 
Group3 Group3 Group3 Group3 
Group4 Group456 Group4 Group4 
Group5 Group456 - Group5 
Group6 Group456 Group6 Group6 

 

Supplementary Table 7 Characteristics of the brain datasets 

 Year Protocol Number of cells  Number of cell 
populations 

Tabula Muris 2018 Smart-seq2 7,856 9 

Rosenberg 2018 SPLiT-seq 76,322 73 

Zeisel 2018 10Xv1 85,621 11, 30 

Saunders 2018 Drop-seq 389,439 11, 437 

 


