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I. GENERAL THEORY OF C-PAIRED SVL AND ITS UNIQUE PROPERTIES

A. General theory of C-paired SVL

Without loss of generality, consider a 2D anti-ferromagnetic (AFM) system with two sublattices A and B with the
local magnetic moments MRA,RB . By definition of AFM, the total magnetic moment should be zero, i.e. MRA +
MRB = 0. It means there must be a symmetry operation C connecting two sublattices as RA = CRB , ~σRA = C†~σRBC
and MRA = C†MRBC, where RA,B are the coordinates and ~σRA,RB are local spin operator. By definition, the local
moments can be calculated as MRA,RB =

∑
n

∫
Ω
〈φn(k)|~σRA,RB |φn(k)〉 dk, where

∑
n

∫
Ω

means the integral for all
the occupied states. On the other hand, due to the symmetry operation,

MRA = C†MRBC

=
∑
n

∫
Ω

C† 〈φn(k)|~σRB |φn(k)〉Cdk

=
∑
n

∫
Ω

〈
φn(Ck)|C†~σRBC|φn(Ck)

〉
dk

=
∑
n

∫
Ω

〈φn(Ck)|~σRA |φn(Ck)〉 dk.

(1)

To satisfy MRA = −MRB in general, one can get

〈φn(Ck)|~σRA |φn(Ck)〉 = −〈φn(k)|~σRB |φn(k)〉 . (2)

And similarly, one can get

〈φn(Ck)|~σRB |φn(Ck)〉 = −〈φn(k)|~σRA |φn(k)〉 . (3)

Then, we can get

MCk =
∑
RA

〈φn(Ck)|σRA |φn(Ck)〉+
∑
RB

〈φn(Ck)|σRB |φn(Ck)〉

= −
∑
RA

〈φn(k)|σRA |φn(k)〉 −
∑
RB

〈φn(k)|σRB |φn(k)〉

= −Mk

(4)

It means that the spin-polarization for states at k and
Ck are always opposite. If there are two valleys K and
CK at different positions of the momentum space, the
symmetry C will enable a strict spin-valley locking. This
can be easily generated to the case of AFM with multiple
sublattices.

B. Strain induced valley polarization and
piezomagnetic effect

The k · p equation of a crystal is read as[1–3]

Hu0
nk(x) = E0

n(k)u0
nk(x), (5)

where

H = H0 +Hk +Hk·p, (6)

here we ignore the relativistic effects and

H0 =
p2

2m

Hk =
~k2

2m
+ V0(x)

Hk·p =
~
m
k · p

(7)

for the cell periodic part of the Bloch wave function. Un-
der homogeneous strain, we adopt the methods proposed
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by Pikus and Bir[1] by which we can perform perturba-
tion on the unstrained wave function unk(x). With this
method we have

x′ = (1− ε)x
p′ = (1 + ε)p

V (x′, ε) = V0(x) +
∑
ij

Vij(x)εij ,
(8)

where Vij(x) = ∂V0(x)/∂εij . The additional terms to the
Hamiltonian induced by the strain up to its first order is

D = D0 +Dk·p, (9)

with

D0 =
∑
ij

[
− pipj

m
+ Vij(x)

]
εij

Dk·p = − ~
m

∑
ij

kiεijpj .
(10)

Here the superscripts ′ are omitted. The energy gain at
the valley extrema (assume to be non-degenerate) then
is

∆E = 〈un|D0 +Dk·p|un〉 , (11)

where un refers to wave function of nth band. This form
is usually refers to the deformation potential theory[1] if
rewrite as

∆E =
∑
ij

Dijεij . (12)

where D is the tensor of deformation potential, ε is the
strain tensor. For 2D SVL material having two valleys in
the first BZ which are related by a mirror operation

Mφ =

(
−cos(2φ) −sin(2φ)
−sin(2φ) cos(2φ)

)
,

where φ is the angle between the mirror plane and x axis.
Choosing the coordinate so that major axis of valley K
coincide with the x axis. Upon external strain, the energy
shift of valley K is

∆EK = Dxxεxx +Dyyεyy + 2Dxyεxy . (13)

For valley K ′, using the coordinate transformation
DK′ = MφDKM

−1
φ , explicitly

D11
K′ = Dxxcos2(2φ) +Dyysin2(2φ) +Dxysin(4φ)

D12
K′ = (Dxx −Dyy)sin(4φ)/2−Dxycos(4φ)

D21
K′ = (Dxx −Dyy)sin(4φ)/2−Dxycos(4φ)

D22
K′ = Dxxsin2(2φ) +Dyycos2(2φ)−Dxysin(4φ) ,

(14)

the energy shift of valley K ′ can be calculated as

∆EK′ = [Dxxcos2(2φ) +Dyysin2(2φ) +Dxysin(4φ)]εxx

+ 2[(Dxx −Dyy)sin(4φ)/2−Dxycos(4φ)]εxy

+ [Dxxsin2(2φ) +Dyycos2(2φ)−Dxysin(4φ)]εyy .
(15)

The relative energy shift of the two valley then is

δE =∆EK −∆EK′

=[(Dxx −Dyy)sin2(2φ)−Dxysin(4φ)]εxx+

[(Dyy −Dxx)sin2(2φ) +Dxysin(4φ)]εyy+

[(Dyy −Dxx)sin(4φ) + 4Dxycos2(2φ)]εxy .

(16)

Now considering uniaxial strain applied along the direc-
tion having the angle θ with respect to the x axis, the
matrix of the strain tensor can be obtained as

ε = R(θ)

(
εθ 0
0 0

)
R−1(θ) =

(
cos2(θ) sin(2θ)/2

sin(2θ)/2 sin2(θ)

)
εθ ,

here we denote εxx with εθ, R(θ) is the 2D rotation ma-
trix. Substituting it to Eq. (12), the relative energy shift
of the two valleys is

δE(θ) =∆EK(θ)−∆EK′(θ)

=[(Dxx −Dyy)sin(2φ)− 2Dxycos(2φ)]

sin(2φ− 2θ)εθ

=γsin(2φ− 2θ)εθ

(17)

with

γ = (Dxx −Dyy)sin(2φ)− 2Dxycos(2φ) . (18)

Now we check the results with

∆EK(θ)−∆EK′(θ) = ∆EK′(Mφθ)−∆EK(Mφθ), (19)

as required by the mirror symmetry, this is equivalent to
show that δE(θ) = −δE(Mφθ) = −δE(2φ− θ) as

δE(2φ− θ) ={(Dxx −Dyy)sin(2φ)sin[2φ− 2(2φ− θ)]−
2Dxycos(2φ)sin[2φ− 2(2φ− θ)]}εθ

=− [(Dxx −Dyy)sin(2φ)sin(2φ− 2θ)−
2Dxycos(2φ)sin(2φ− 2θ)]εθ

=− δE(θ) ,
(20)

which verified the results.
From the above discussions we know that unaxial stain

may cause nonzero relative energy shift between the two
valleys. Therefore, if further dopes the sample, uncom-
pensated electrons or holes with specific spin should ap-
pear as

M =

∫ Ef (n)

−∞
[ρ↑(ε)− ρ↓(ε)]dE , (21)

where Ef is the fermi level after doping, n is the dop-

ing density, ρ↑(↓) is the spin-up (down) part of the den-
sity of states (DOS), which is dependent on the external
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strain ε. Around the valley extrema, it may be taken
as a constant ρ for 2D parabolic band and the magnetic
moments per electron are taken as 1. After carefully
analyzing the behaviors of the induced magnetizations
under different doping concentration and uniaxial strain,
the explicit form of M under specific strain while varies
with the doping concentration n is

M(n, θ, εθ) =
{− np, 0 ≤ n < |m|εθ
−mεθ, n ≥ |m|εθ

, (22)

where m = ργsin(2φ− 2θ), p = sign[γsin(2φ− 2θ)]. And
varies with strain εθ while at finite doping concentration

M(n, θ, εθ) =

{−mεθ, 0 ≤ εθ < n/|m|
− np, εθ ≥ n/|m|

, (23)

the piezomagnetic effect is obvious.
Now we apply the above discussions to the valence val-

leys of monolayer V2Se2O, whose mirror plane is long the
diagonal φ = ±π/4 and ±3π/4. Upon uniaxial strain
along x direction, the energy shifts of the X or Y valley
are

∆EX = Dxxεxx

∆EY = Dyyεxx .
(24)

Therefore, the relative energy shift between the two val-
leys is

δE = ∆EX −∆EY = (Dxx −Dyy)εxx . (25)

This is nothing but the basic law of the PZM in hole-
doped monolayer V2Se2O if further proceeding to the
DOS difference.

C. DC spin current

From Bolzman equation the DC conductivity is read
as[4]:

σ =
∑
n

[
e2

∫
d3k

4π3
τn(En(k))vn(k)vn(k)

(
− ∂f
∂E

)
E=En(k)

]
,

(26)
where n is the band index; En(k) is the band energy;
τn(En(k)) is the relaxation time, which can be taken as

a constant; vn(k) = ∂En(k)
~∂k is the velocity and f(E) =

1/(e[E−Ef ]/kBT +1) is the Fermi-Dirac distribution func-
tion. Explicitly

σ =
∑
n

[
− e2τ

∫
d3k

4π3

∂En(k)

~∂k
∂En(k)

~∂k
∂f(En(k))

∂En(k)

]
=
∑
n

[
− e2τ

∫
d3k

4π3

1

~2

∂En(k)

∂k

∂f(En(k))

∂k

]
,

(27)

Integrating by part and using the fact that the boundary
integral must vanish[5], we obtain

σ =
∑
n

[
e2τ

∫
d3k

4π3
f(En(k))

1

~2

∂2En(k)

∂k2

]
. (28)

Written the index explicitly

σij =
∑
n

[
e2τ

∫
d3k

4π3
f(En(k))

1

~2

∂2En(k)

∂ki∂kj

]
, (29)

where i, j = x, y or z. For 2D material, by changing

the metric of the integral
∫
d3k
8π3 →

∫
d2k
4π2 , we obtain the

conductivity tensor

σij =
∑
n

[
e2τ

∫
d2k

4π2
f(En(k))

1

~2

∂2En(k)

∂ki∂kj

]
, (30)

where i, j = x or y. The additional 1/2 is from spin since
the valleys are spin-polarized.

In low-energy limit, the energy of the band extrema
(assumes to be non-degenerate) can be expanded in
quadratic terms of k. For materials with two valleys in
the first BZ which are related by mirror operation Mφ,
here φ is the angle between the mirror plane and x axis.
One can always choose the coordinate to make the major
axis of one valley coincides with the x axis as

EK =
~2

2m1
k2
x +

~2

2m2
k2
y . (31)

Of the another valley lies at K ′ = C−1K, where C = Mφ,
the energy dispersions of vallye K ′ are

EK′ =
~2

2m1
[kxcos(2φ) + kysin(2φ)]2+

~2

2m2
[kxsin(2φ)− kycos(2φ)]2

=[
~2

2m1
cos2(2φ) +

~2

2m2
sin2(2φ)]k2

x+

[
~2

2m1
sin2(2φ) +

~2

2m2
cos2(2φ)]k2

y+

(
~2

2m1
− ~2

2m2
)sin(4φ)kxky .

(32)
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For arbitrary direction n=cos(θ)x+sin(θ)y the electric field is applied along, at zero temperature, we have conduc-
tivity in matrix form contributed from valley K

σK =
ne2τ

m1m2

(
m1sin2(θ) +m2cos2(θ) (m1 −m2)sin(2θ)/2

(m1 −m2)sin(2θ)/2 m1cos2(θ) +m2sin2(θ) ,

)
where n = N/A is the carrier density, N is the number of bands (here N = 1) and A is the area of the unit cell. And
from valley K ′

σK
′

=
ne2τ

m1m2

(
m1sin2(2φ− θ) +m2cos2(2φ− θ) −(m1 −m2)sin(4φ− 2θ)/2
−(m1 −m2)sin(4φ− 2θ)/2 m1cos2(2φ− θ) +m2sin2(2φ− θ)

)
,

where the elements of the matrix are indexed by n and n′ (the unit vector perpendicular to n). The diagonal elements
refer to longitudinal part and off-diagonal elements refer to the transverse part, or the Hall part of the conductivity.
The total charge current σ = σK + σK

′
then is

σ =
ne2τ

m1m2

(
m1h1(ψ, θ) +m2h2(ψ, θ) −(m1 −m2)cos(2φ)sin(2φ− 2θ)

−(m1 −m2)cos(2φ)sin(2φ− 2θ) m1h2(ψ, θ) +m2h1(ψ, θ)

)
with h1(ψ, θ) = [sin2(θ) + sin2(2φ− θ)] and h2(ψ, θ) = [cos2(θ) + cos2(2φ− θ)]. Since different valleys have different

spin, we can define the spin current as σS = σK − σK′

σS =
ne2τ

m1m2

(
−(m1 −m2)sin(2φ)sin(2φ− 2θ) (m1 −m2)sin(2φ)cos(2φ− 2θ)
(m1 −m2)sin(2φ)cos(2φ− 2θ) (m1 −m2)sin(2φ)sin(2φ− 2θ)

)
.

The equivalent spin Hall angle is

S(φ, θ) = |σSnn′/σnn| =
∣∣∣ (m1 −m2)sin(2φ)cos(2φ− 2θ)

m1[sin2(θ) + sin2(2φ− θ)] +m2[cos2(θ) + cos2(2φ− θ)]

∣∣∣ . (33)

When θ = φ

S(φ) =
∣∣∣ (m1 −m2)sin(2φ)

(m1 +m2)− (m1 −m2)cos(2φ)

∣∣∣ , (34)

and the transverse spin current is pure, namely, there is no charge Hall current.
Now we Apply the above results to monolayer V2Se2O with φ = ±π/4, whose the band energy around the valley

extrema centered at X and Y points have the form

EX =
~2

2m1
k2
x +

~2

2m2
k2
y

EY =
~2

2m1
k2
y +

~2

2m2
k2
x .

(35)

For arbitrary direction n=cos(θ)x+sin(θ)y the electric field is applied along, at zero temperature, we have conductivity
contributed from valley X

σX =
ne2τ

m1m2

(
m1sin2(θ) +m2cos2(θ) (m1 −m2)sin(2θ)/2

(m1 −m2)sin(2θ)/2 m1cos2(θ) +m2sin2(θ)

)
and from valley Y

σY =
ne2τ

m1m2

(
m1cos2(θ) +m2sin2(θ) −(m1 −m2)sin(2θ)/2
−(m1 −m2)sin(2θ)/2 m1sin2(θ) +m2cos2(θ)

)
.

The total charge current σ = σK + σK
′

then is

σ =
ne2τ

m1m2

(
m1 +m2 0

0 m1 +m2

) Since different valleys have different spin, we can define
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FIG. S1. Optimized primitive cell of bulk V2Se2O using
optB88-vdW functional. The lattice constants are a = b =
c = 6.535 Å with angle α = β = 145.4 and γ = 49.8 deg.

the spin current can as σS = σK − σK′

σS =
ne2τ

m1m2

(
−(m1 −m2)cos(2θ) (m1 −m2)sin(2θ)
(m1 −m2)sin(2θ) (m1 −m2)cos(2θ)

)
The equivalent spin Hall angle is

S(θ) = |σSnn′/σnn|

=
∣∣∣sin(2θ)

m1 −m2

m1 +m2

∣∣∣ . (36)

II. PROPERTIES OF BULK V2SE2O

A. Ground state determination

Powder samples of bulk V2Se2O had been synthesized
recently, its lattice parameters were determined through
x-ray diffraction (XRD) measurements[6]. The primitive
cell is shown in Fig. S1, whose lattice constants are
a = b = c = 6.535 Å and the angles between the lat-
tice vectors are α = β = 145.4◦ and γ = 49.8◦. For the
calculations of the band structures and phonon spectrum
of the bulk, the primitive cell was adopted.

However, in finding the ground state, the conventional
cell was used in account of different magnetic orders, see
Fig. S2. The conventional cell consists of two V2Se2O
single layer with interlayer Se atoms AB stacked. Ferro-
magnetic (FM) state and three antiferromagnetic (AFM)
states together with the nonmagnetic (NM) state are con-
sidered in the total-energy calculations, the results are
listed in Fig. S3-4. With PBE functional at any value
of the Hubbard U , it turns out that magnetic state is
favored over the NM state for V2Se2O, especially when
each single layer being AFM. The ground state is two
AFM single layer are AFM coupled, i.e., the AFM-AFM
state (3D Néel order) as shown in Fig. S2. To solid the
conclusions, we have performed the same calculations us-
ing LDA functional and more properly, the VDW func-
tional which including the corrections of the interlayer

FIG. S2. Different magnetic order of bulk V2Se2O in a con-
ventional cell, where FM-AFM refer to interlayer ferromag-
netic and intralayer AFM coupled, similar as for other cases.

FIG. S3. Total energy difference ∆E, taking with respect
to the NM order, for different functionals, different magnetic
orders and at different Ueff of bulk V2Se2O. Ten atoms in one
conventional cell. “A” or “F” is the short for AFM and FM.
For the “+U” calculations, the simplified rotational invariant
approach introduced by Dudarev et al. is used[7]. At Ueff =
4.6 eV, the band gap of monolayer V2Se2O is consistent with
the one obtained by HSE06 calculations.

VDW interactions. We has also checked different imple-
ments of the Hubbard U , see Table S2, all the results are
consistent.

B. Lattice constants

Lattice constants were then obtained by fully relax-
ing the primitive cell and transforming into the con-
ventional cell in Table S1. Among the three function-
als, PBE,optB88-vdW[9] and LDA, the VDW functional
gives a best overall descriptions of the lattice constants;
the PBE functional overestimates while the LDA func-
tional underestimates the lattice constants. Hence later
in the calculations of the phonon spectrum and band
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FIG. S4. Same as Fig. S3, but here the rotational invariant
approach introduced by Liechtenstein et al[8]. is used for
“+U” calculations. The Hund’s rule coupling J is fixed at
0.8 eV. At U = 5.1 eV, the band gap of monolayer V2Se2O is
consistent with the one obtained by HSE06 calculations.

structures of the bulk, we shall adopt the optB88-vdW
functional.

C. Phonon spectrum and band structures

Though bulk V2Se2O had been synthesized
experimentally[6], we still calculate the phonon spectrum
check the reliability of the calculations, see Fig. S5.
No negative branch is observed, consistent with the
experimental results. To be concrete, we have applied
both DFPT and “finite difference (frozen phonon)”
methods to obtain the phonon spectrum, which give the
same distributions. Additionally, we find that in the
phonon spectrum the dispersions along the interlayer
direction, i.e., ΓH and PX branches, are weak, indicting
weak interlayer couplings.

TABLE S1. Optimized lattice constants of bulk V2Se2O using
different functionals. The optB88-vdW functional gives a best
description in overall. Here AFM is the short for the ground
3D Néel state.

Functional Magnetic order a (Å) c (Å)
Not FM 3.887 11.700

NM 3.850 13.232
PBE FM 3.919 13.355

AFM 3.897 13.144
NM 3.848 11.976

vdW FM 3.913 11.863
AFM 3.891 11.856
NM 3.777 11.487

LDA FM 3.779 11.479
AFM 3.786 11.434

FIG. S5. Phonon spectrum of bulk V2Se2O at ground state
(AFM-AFM state), calculated with optB88-vdW functional.
A 3×3×3 supercell is used. Branches along the layered direc-
tion ΓH and PX disperse weakly, indicating weak interlayer
couplings.

Evolutions of the band structures with U values are
shown in Fig. S6. With increasing the U , bulk V2Se2O
experiences a phase transition from metal to insulator.
Note in the experiments, V2Se2O is proposed to be a
strongly correlated insulator with a Mott gap[6]. There-
fore, finite U must be added in the calculations to re-
produce the experimental results. The value of U is
determined by fitting the band structures of monolayer
V2Se2O to those obtained with more accurate hybrid
functional calculations, see Fig. S6. The band structures
are spin split along the interlayer direction ΓH and PX,
and the diagonal ΓX (in the conventional cell). However,
if two AFM V2Se2O single layer are FM coupled, the
band structures are spin degenerate all through the BZ
(not shown). Similar to the phonon spectrum, the dis-
persions of the energy bands along ΓH and PX are weak,
indicting weak interlayer couplings. Hence we may ex-
pect that the bulk material may share similar properties
as the monolayer.

D. Band structures of different magnetic orders

The band structures for different magnetic order of
bulk V2Se2O is shown in Fig. S7. We can see that the
paramagnetic, ferromagnetic orders are metallic while
the AFM-AFM and AFM-FM (see Fig. S2) orders are
insulating. This insulating behavior is consistent with
the experimental observations[6], which indicates that
V2Se2O prefers intra-layer AFM order.



8

FIG. S6. Band structures of bulk V2Se2O at ground
state (AFM-AFM state), calculated using optB88-vdW+U
or HSE06 method. Similar to the phonon spectrum, branches
along the layered direction ΓH and PX disperse weakly, indi-
cating weak interlayer couplings.

FIG. S7. Band structures of bulk V2Se2O with different mag-
netic orders. PM is for paramagnetic.

E. Band structures of V2X2O (X = O, S, Se or Te)

We calculate the band structures of a family of materi-
als with common chemical formula V2X2O, where X= O,
S, Se or Te, for both the bulk and monolayer, the results
are shown in Fig. S8. As we can see, from O to Te, the
band gap of V2X2O is getting smaller and smaller, so as
the local magnetic moment. The band gap finally close
for V2Te2O, which indicates that V2X2O is metallic, in
consistent with the experimental observation[10].

FIG. S8. Band structures of V2X2O (X = O, S, Se or Te).
The first row is for the monolayer and the second row is for
the bulk. Red (blue) is for spin up (down) polarization. The
magnetic moment per V atom is indicated.

FIG. S9. Band structures of bulk V2Te2O with different mag-
netic orders. PM is for paramagnetic.

F. Band structures of bulk V2Te2O with different
magnetic orders

The band structures for different magnetic order of
bulk V2Te2O is shown in Fig. S9, as we can see, all
the magnetic orders are metallic.

III. PROPERTIES OF MONOLAYER V2SE2O

A. Ground state and magnetic order

For the monolayer, we follow the same procedures of
the bulk. First, we determine the ground state of the
monolayer via total-energy calculations. Three magnetic
states are considered including FM state, AFM Néel state
and the stripy AFM state (see Fig. S14), the results
are collected into Fig. S10. It turns out that the AFM
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FIG. S10. Total energy difference ∆E, which is taken with
respect to the NM order for different functionals, different
magnetic orders and at different Ueff of monolayer V2Se2O.
A 2×2 supercell with 20 atoms is used. AFM-N is the short
for the Néel state, the ground state; and AFM-S is short for
the stripy state, see Fig. S14. For the “+U” calculations, the
simplified rotational invariant approach introduced by Du-
darev et al. is used[7]. At Ueff = 4.6 eV, the band gap
of monolayer V2Se2O is consistent with the one obtained by
HSE06 calculations.

FIG. S11. Local magnetic moments of the V atoms, calcu-
lated with different functionals, different magnetic order and
at different Ueff of monolayer V2Se2O.

Néel state has the lowest total energy and much more
stable than other states at any value of U , especially
when U is getting larger. The magnetization per V site
is demonstrated in Fig. S11.

B. Lattice constants

We use two methods to obtain the optimized lattice
constants of monolayer V2Se2O. First we use the equa-
tion of state to determine the them[11], the results are
listed in Table S2; then we use VASP directly to get the
lattice constants. The two methods give consistent re-
sults. For monolayer, PBE functional is used in further
calculations since the VDW interactions does not enter
into the monolayer. We had also performed the calcula-
tions with VDW functionals, the results are similar.

C. Magnetic properties

1. Crystal-field-theory analysis

From the chemical formula V2Se2O, V atom should
roughly give 3 electrons to be in the V3+ state, and there
will be two 3d electrons left that contribute to the local
magnetic moments. Indeed, the magnetic moment ob-
tained from first-principles calculations is 1.8 µB per V
atom, indicating that the V3+ ion is in the spin-triplet
configuration (S = 1), which is consistent with Hund’s
rule. In the rough octahedron-shape local crystal field of
V atoms (Fig. S12), the 3d orbitals of V3+ will be first
split into two-fold degenerate eg and three-fold degener-
ate t2g orbitals as shown in Fig. S12a. Different from the
perfect octahedron crystal field, the differences of the O
and Se atoms will further split the degeneracy within the
two sets of degenerate orbitals. To be specific, the twofold
degenerate eg orbitals are split into two non-degenerate
orbitals, and the t2g orbitals are split into the twofold
degenerate dxz and dyz states, and the non-degenerate
dxy state. Because the two 3d electrons are in the high
spin state, one of them occupies the lowest dxy orbital,
and the other one occupies one of the doubly degener-
ate dxz and dyz orbitals, which will be further split into
two non-degenerate orbitals due to Jahn-Teller effects[12]

TABLE S2. Optimized lattice constant and distance between
the two Se layers of monolayer V2Se2O, using different func-
tionals and for different magnetic order. Here AFM is the
short for the ground 2D Néel state.The experimental value
was taken from the bulk.

Functional Magnetic order a (Å) dSe−Se (Å)
bulk 3.887 3.437
NM 3.869 3.472

PBE FM 3.929 3.411
AFM 3.908 3.443
NM 3.845 3.493

vdW FM 3.903 3.426
AFM 3.887 3.458
NM 3.789 3.420

LDA FM 3.789 3.420
AFM 3.796 3.411
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FIG. S12. Magnetic properties of monolayer V2Se2O. a,
Schematic of 3d orbital splitting of V3+ under the local oc-
tahedral crystal field, where (dxz + dyz)‖ orbital is the in-
plane (V-O plane) part of the linear combination of dxz and
dyz orbitals and (dxz + dyz)⊥ the out-of-plane part, see Fig.
S13 for details. b, Partial DOS of monolayer V2Se2O. c, Spin
density distributions in real space, the V atoms are hidden in
cut view.

The results from crystal field analysis are consistent with
the first-principles calculations, and we indeed observed
the splitting of (dxz + dyz)‖ or (dxz + dyz)⊥ orbitals (the
subscript ‖ and ⊥ denotes the in-plane and out-of-plane
part of the linear combination or dxz and dyz orbitals) in
the site-projected DOS as shown in Fig. S13. Meanwhile,
this can be further confirmed from the optimized lattice
structure as shown in Fig. 2a, the four Se atoms sur-
rounding a V atom form a rectangle instead of a square
due to the Jahn-Teller distortion. The calculated ratio
between the short side and the long side of the rectangle
is about 0.88, which is consistent with the experimental
value.

2. Site-projected DOS in local coordinates

From the lattice structure of monolayer V2Se2O we
know that the V atoms are surrounded by a local octa-
hedral, hence, to accurately describe the lm decomposed
DOS, we adopt the local coordinates spanned by the oc-
tahedral to perform the site-projected calculations, see
Fig. S13. Moreover, in doing this, we try to solid the un-
derstandings of the mirror symmetry of the monolayer.
In details, for the V1 atom (see Fig. S12c), we have ro-
tated the global z axis to the b direction and y to the c di-
rection, the DOS are then shown in the top of each panel
in Fig. S13; similarly, for the V2 atom, we have rotated
the global z axis to the a direction and and y to the c
direction, the DOS are then shown in the bottom of each
panel in Fig. S13. In such coordinate systems, the dxz

FIG. S13. DOS of monolayer V2Se2O. Top panel, lm decom-
posed DOS of Se, the upper and lower parts follow the same
convention as the bottom panel. Bottom panel, Site projected
DOS of V1 and V2 atoms as indicated in the inset image. To
obtain the accurate lm decomposed and site projected DOS
with respect to the local octahedral coordinate (we do not use
this coordinate system since the quadrilateral formed by the
four Se atoms do not arrange into a square), we adopt the lo-
cal octahedral coordinate system during the calculations for
DOS of V1 and V2 separately. For each calculation, the z
axis (here the xyz axis are coincide with the abc axis of the
lattice) is rotate to coincide with the principal axis of the cor-
responding octahedron (see the text), and the y axis along
the out-of-plane direction. All the subscript xyz in the image
are for the local octahedral coordinate.

and dyz orbitals in the are transformed into (dxz + dyz)‖
the in-plane part and (dxz + dyz)⊥ the out-of-plane part
with respect to the local octahedral coordinate. In a sim-
ilar manner, the pa or pb orbital of Se are transformed
from pz orbital or the linear combinations or px and py
orbitals. For an AFM compound, the structure can be
separated into two sublattice, i.e., the spin-up sublattice
which include the V1 atoms and spin-up components of
the Se atoms (here we focus on the energies around the
fermi level, contributions from the O atom are thus ig-
nored), and the spin-down parts which include the V2
atoms and the spin-down components of the Se atoms.
In such a partition we find that valleys in the valence
bands are mainly from the pz orbitals and valleys in the
conduction bands originate from the (dxz+dyz)‖ orbitals.
Based on these orbitals a four-band tight-binding model
may be built to catch the physics of the valleys.
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3. Superexchange interactions

With the above orbital splitting in mind, we be-
gin to study the exchange interactions between the V
atoms to understand the antiferromagnetism in mono-
layer V2Se2O. First, the p electrons of O atoms are not
expected to be irrelevant since their energy are far away
from the Fermi level (see partial DOS in Fig. S12b).
Therefore, we focus on the exchange interactions includ-
ing the nearest neighbors (NN) and next-nearest neigh-
bors (NNN) within the V and Se atoms. For the NN
exchange interactions, the main contribution comes from
the superexchange via the Se atoms. We may treat this
superexchange as an effective exchange between the V1
and V2 atoms (see Fig. 12c) after considering the hy-
bridization of the p orbitals of Se and 3d orbitals of V.
As illustrated in the top view of the spin density distri-
bution in Fig. S12c, the occupied (dxz +dyz)‖ orbitals of
V1 and V2, are directed head-to-head, which results into
large overlap of the two orbitals. Therefore, the effec-
tive NN exchange between V1 and V2 favors AFM and
should be strong according to the general Goodenough-
Kanamori-Anderson (GKA) rules[13–15]. Contributions
from other orbitals can be neglected since their overlaps
are comparably small. For the NNN exchange interac-
tions, similar analysis shows that the superexchange via
Se atoms also prefers AFM, but they have limited in-
fluence on the overall exchange interactions because the
distance for the effective exchange is much longer. In to-
tal, monolayer V2Se2O prefers AFM and the exchange
interactions is dominated by the NN superexchange.

The above analysis is consistent with the first-
principles calculations. Total energy calculations show
that the ground state of monolayer V2Se2O is AFM of
the 2D Néel type, which is much more stable than para-
magnetic and other magnetic states and independent on
the exchange-correlation functionals used in calculations
(see more details in Fig. S10). To solid the results, we
quantitatively extract the exchange coupling parameters
based on a Heisenberg model using both supercell (Fig.
S14) and the “frozen magnon” methods[12, 16] (Table
S3).

4. Parameters of the Heisenberg model

We adopt the following Heisenberg model:

H = −
∑
〈ij〉

J1SiSj −
∑
〈kl〉

JO2 SkSl −
∑
〈kl〉

JSe2 SkSl , (37)

where 〈ij〉 the nearest neighbors and 〈kl〉 the next-
nearest neighbors, S is the net spin of each V atom. As-
suming that the V atoms are polarized parallel along the
c direction, then the S can be simply replaced with its
magnitude S (Ising models). We use two methods to ob-
tain these Heisenberg parameters. The first method is
based on the assumption that energy difference between

FIG. S14. Spin configurations which are insulating for the
calculations of Heisenberg exchange parameters, 2×2 super-
cell which contains 8 V atoms. Here we denote the exchange
interactions which path through O atoms as JO

2 , path through
Se atoms as JSe

2 .

different magnetic oder only comes from the Heisenberg
exchange energy, that is the total energy of any magnetic
state can be written as two parts:

EMorder = E0 + EHeisenberg , (38)

where E0 is the background energy which is a constant
for all magnetic order;the second term is nothing but the
Heisenberg exchange energy. Note that the assumption
is only valid when all the magnetic order are in the same
phase (metallic or insulating); or no more precisely, no
other interactions except for the exchange interactions
that vary with magnetic order. Since there are three un-
known Heisenberg parameters, four magnetic order need
to be considered, see Fig. S14. Taking the ground state
(2D Néel) as reference, the total energy difference be-
tween the AF-stripy state is

ESN = 16(−J1 + JO2 + JSe2 )S2, (39)

between the AF-ZigzagX state is

EXN = 8(−2J1 + 2JO2 + JSe2 )S2, (40)

between the AF-ZigzagY state is

EY N = 8(−2J1 + JO2 + 2JSe2 )S2. (41)

After acquiring the total energy difference from DFT cal-
culations, the Heisenberg parameters can then be deter-
mined through above equations. We have performed the
calculations using both a 2×2 and 4×4 supercell, the re-
sults are listed in Table S3.

The second method to obtain the Heisenberg parame-
ters is the spin-spiral calculations with ”frozen magnon”
method, details can be find in ref[12, 16]. The method
has some advantages over the last one since there are only
magnon excitations, one needs not to consider the phases
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of the states as before. The total energy calculations
are performed using all-electron full-potential linearised
augmented-planewave (FP-LAPW) ELK code[17]. The
cone angle is set as cot(θ) = 3 rad. A 4×4 q-mesh over
the 2D BZ is adopt for back-Fourier transformation and
a 8×8 k-mesh is taken for total energy calculations. The
total energy (epsengy tag) and RMS change (epspot tag)
convergence criteria is set at 10−6 and 2× 10−6 Hartree
respectively. SOC has not been included.

Inconsistence is encountered for the determination of
J2, which indicates that the Heisenberg model maybe too
simple to model our system. More terms such as the p−d
mixing between the p orbitals of Se and d orbitals of V,
which may play an important role in lowering the total
energy, should be included. While all the calculations
show that J1 is negative and its value is much larger than
J2, strongly suggest that the AFM order in the compound
is robust.

In addition, we have also calculated that there is
a weak easy-plane anisotropy on the order of ∼0.05
meV per V atom for monolayer V2Se2O. Such a small
anisotropy may not be able to stabilize a long-range or-
der at high temperature according to Mermin–Wagner
theorem[18]. However, as shown in Fig. 2a, V2Se2O
monolayer is not strictly 2D, but consists of two Se layer
and one V-O layer, the constraint imposed by the the-
orem may not be so strong in our structure. Besides,
some other long-range order associated with continuous
symmetry breaking such as superconductivity[7] has been
observed in 2D materials as well. Therefore, we believe
that at least within some length scale, the stable 2D Néel
order of V2Se2O predicted in the present paper can be
maintained experimentally.

5. Discussion

Here we give a further discussion on the antiferromag-
netism in monolayer V2Se2O. Based on our systemati-
cal calculations and theory analysis, we believe that it
is highly possible that monolayer V2Se2O could be a 2D
AFM material to realize the C-paired SVL. The reasons
are as following:

1. The authors of ref[6] observed a log(1/T) tem-

TABLE S3. Heisenberg exchange parameters of monolayer
V2Se2O. Unit for energy difference and exchange parameters
is meV. Note for 4×4 supercell, the AF-Stripy state does not
converge, an alternative state which is similar to AF-Zigzag
state with the size of the zigzag increase by one V atom is cal-
culated. Spin-spiral calculations are performed using ”frozen
magnon” method.

Model & Method J1 JO
2 JSe

2

2×2 supercell -38.5 10.0 18.0
4×4 supercell -66.5 -8.7 -0.7

Spin-spiral -149.9 -4.7 -36.9

perature dependence of the resistance for V2Se2O,
which demonstrates that V2Se2O is insulating. In
addition, they had also extracted a value of 0.569
µB magnetic moment for each V atom in V2Se2O
from the magnetic susceptibility data, which con-
firms the existence of local magnetic moments. On
the contrary, V2Te2O was found to be metallic
and has no observable local magnetic moments in
ref[10].

2. We did systematic calculations for the electronic
and magnetic structures of bulk V2X2O (Fig. S8),
where X=O, S, Se or Te. We found the difference
between V2Se2O and V2Te2O can be attributed to
the different crystal field effect, which is stronger
in V2Se2O due to the larger electronic negativity of
Se and shorter V-Se bonds. The large crystal field
effect in V2Se2O also leads to stronger exchange
interactions between the local magnetic moments
(∼85 meV), which forces the local magnetic mo-
ments to form the in-plane AFM alignment.

3. Moreover, for V2Se2O, the band structures strongly
depend on the magnetic order. As shown in Fig.
S7, V2Se2O is metallic with large Fermi surface in
both FM and PM cases, and it is insulating only
when the local magnetic moments of monolayer
V2Se2O has an in-plane AFM alignment. However,
as shown in Fig. S9, V2Te2O is always metallic
even the local magnetic moments have an in-plane
AFM alignment.

4. Regardless of the strong in-plane AFM ordering,
bulk V2Se2O only exhibit paramagnetic behavior,
which is due to the small interlayer coupling (∼0.11
meV) and in-plane magnetic anisotropy (∼0.05
meV).

5. Note that paramagnetic bulk does not guarantee
paramagnetic monolayer. For example, bulk VSe2

is paramagnetic while monolayer VSe2 is demon-
strated to be room-temperature ferromagnetic[19].

Therefore, we can conclude that the most possible sce-
nario for V2Se2O is that it is paramagnetic for the bulk,
but AFM for the monolayer. In addition, even if mono-
layer V2Se2O is PM, one can use an external magnetic
field to stabilize the AFM order which is feasible since
the AFM interaction here is very strong (∼85 meV)

D. Band structures of monolayer V2Se2O obtained
with different functionals

We first apply ”DFT+U” method to calculate the
band structures[8], evolutions of the band structures with
respect to U values while fixing Hund’s rule couplings
J = 0.8 eV are shown in Fig. S15. Note we have also
repeated the calculations with the simplified ”DFT+U”
method proposed by Dudarev et al.[7], the results are
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FIG. S15. Band structures of monolayer V2Se2O at different
U , the Hund’s rule coupling J is fixed as 0.8 eV. Fermi level
is set at the middle of the band gap if there is one. Bottom
right panel, schematic of the 2D square Brillouin zone. The
red and blue triangles denote the integrated areas for the DOS
in the following figure.

similar. With increasing the U , monolayer V2Se2O expe-
rience a phase transition from metal to insulator,which
is a typical behavior of Mott insulator. The SVL also
becomes clear as U getting larger. To show that SVL
does exist in monolayer V2Se2O, we integrated out the
DOS over the area of the first BZ which covers only sin-
gle valley, i.e., ΓMY and ΓMX respectively as shown in
Fig. S16a. We can see that valleys in the conduction
bands and valence bands are both spin-polarized, which
indicates the SVL.

We have also calculated the band structures with more
accurate HSE06 functional[20], see Fig. S16c, which has
similar dispersions with those obtained with ”DFT+U ”
method at large U . Specifically, when U = 5.1 eV, the
two sets of band structures are highly similar. Therefore,
in the following calculations ,we adopt the more calcula-
tionally cheaper ”DFT+U ” method with U = 5.1 eV
and J = 0.8 eV.

From Fig. S16a-b we can see that the spin-split gaps
δv = 0.83 eV and δc = 0.88 eV (see Fig. S16a), which
are even larger than the band gap and much larger than
the SOC-induced spin splitting in TMDs. This indicates
that for monolayer V2Se2O, both electrons and electrons
can serve as charge carriers with long spin life time.

E. Projected band structures

In Fig. S17-18 the projected band structures of mono-
layer V2Se2O are shown, spin polarization is included.
Since the orbitals of O atoms lie deep in energy, hence
do not show here. For the Se and V atoms, as we can see
that the valence valleys are mainly contributed from the
p orbitals of Se atoms (and together part of the dxy of
V atoms), where the spin-up branch of py orbitals con-

FIG. S16. a, Total DOS of monolayer V2Se2O. Left (right),
integrated over the triangle area ΓMY (ΓMX) as indicated in
Figure S11. Hidden information about the spin splitting in
the total DOS can be uncovered in this way. δv (δc) indicates
the exchange splitting gap in valence (conduction) bands. b,
Band structures at U = 5.1 eV and J = 0.8 eV. By fitting
band gap with the one obtained from HSE06 calculations, the
Hubbard U can be determined. c, Band structures calculated
with more accurate HSE06 functional. The exchange splitting
is more prominent.

FIG. S17. Projected band structures for the Se atoms of
monolayer V2Se2O

stitute of the X valley and the spin-down branch of px
orbitals constitute the Y valley. The conduction valleys
are contributed from V atoms. Specifically, the X valley
is made from the spin-up branch of dyz orbital of V1 and
Y valley is made from the spin-down branch of dxz or-
bital of V2. We also find that SOC have little effects on
the valley extrema as one can see in Fig. S19. The spin
polarizations around the valley extrema keep intact even
including SOC as we have checked the spin textures.

F. Strain effects on the band structures and
effective mass

We have also studied the deformations of the band
structures under uniaxial strain, see Fig. S20, the band
gap getting larger under tensile strain whereas becoming
smaller when compressive strain is applied. The influence
of the strain to the relative shift in energy of the conduc-
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FIG. S18. Projected band structures for the V atoms of mono-
layer V2Se2O

FIG. S19. Band structures of monolayer V2Se2O with (dash
line) and without SOC (solid lines). The SOC have little
effects on the valleys

tion bands is not obvious, while for the valence bands,
the X valley is pushed lower in energy at compressive
strain while getting higher at tensile. This imbalance of
the energy shift of the two valleys is the origin of the
piezomagnetic effect after doping the sample.

After obtaining the strained band structures, the effec-
tive masses of the valence valley extrema under different

strain can calculated directly with mµν = ~2/ ∂E2

∂kµ∂kν
.

We calculated mxx and myy of both the X and Y val-
leys of monolayer V2Se2O, which are shown in Fig. S21.
For uniaxial strain along a (or x) direction, ky keeps un-
changed, hence the effective mass myy of the both the
X and Y valleys should show weak dependence on the
strain; while kx is proportional to the strength of the uni-
axial strain. Therefore, the effective mass mxx of both
the X and Y valleys should be almost linearly dependent
on the external strain. These are what we indeed see
in Fig. S21. Since the DOS of a 2D parabolic band is
linearly dependent on the effective mass, the change of
the effective mass would leads to increasing or decreas-

FIG. S20. Band structures at different uniaxial strain of
monolayer V2Se2O. Taking at U = 5.1 eV and J = 0.8 eV,
strain applied along a direction.

FIG. S21. Effective masses of the valence valleys extrema as
a function of uniaxial strain along x (or a) direction. me is
the mass of the electron.

ing of the DOS, and therefore affects the behaviors of the
strain-induced magnetizations.

G. Magnetization induced by uniaxial strain along
b direction

The calculated magnetizations induced by uniaxial
strain along a axis are present in the main text. Here
similar results can be found for the strain along b (or
b) in Fig. S22, the only difference is the induced mag-
netizations change sign, which is as expected due to the
diagonal mirror symmetry. The induced magnetizations
were first obtained with a very dense k-mesh, directly us-
ing VASP or interpolated with wannier90 code[21]. The
results were further verified with a mixed k-grid method,
namely, around the valleys a denser k-mesh is used. All
the results are consistent.
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FIG. S22. Magnetization induced by uniaxial strain along b
direction for hope-doped monolayer V2Se2O. a, For a given
hole density, the net magnetization increases linearly with
strain but has opposite direction for compressive and tensile
strains in the region of small strains. When strain is large
enough, all the carriers are polarized, and the net magneti-
zation saturates. b, For any given strain, the magnetization
is always equal to the number of holes per unit cell when the
doping is light. However, for heavy doping, the magnetization
is almost a constant which depends on the strain. Inset is the
diagram of strain-induced net magnetization for different hole
densities.

H. Calculations of the DC spin current of
monolayer V2Se2O

After obtaining the tight-banding Hamiltonian with
the interface of wannier90 code[21] to VASP, the con-
ductivity contributed from each valley are calculated di-
rectly with Eq. (26). The electronic temperature and
relaxation time are set as T = 150 K and τ = 10−13 s
respectively. A 300×300 k-mesh is used for the integra-
tion over the BZ. Different parameters were tested which
gave similar results.

FIG. S23. Mechanical and dynamic properties of monolayer
V2Se2O. a, Phonon spectrum of monolayer V2Se2O. b, Lat-
tice model for the exfoliating procedure, where d0 is the equi-
librium interlayer distance and d, the separation of the two
fractured parts. c, Cleavage energy of graphite and V2Se2O
as a function of the separation d − d0. d, Variation of total
energy with the 2D lattice constants for a single layer graphite
and V2Se2O.

I. Dynamical stability and mechanical properties

Now we turn to the experimental preparation of mono-
layer V2Se2O, which could be checked by the dynami-
cal stability, cleavage energy and in-plane stiffness. As
shown in Fig. S23a, there is no negative branch signi-
fied in the phonon spectrum, indicating the structure of
monolayer V2Se2O is dynamically stable. In addition,
for a 2D material to be easy to exfoliate for further ex-
perimental investigation, there are two requirements[22]:
i) small cleavage energy, which gives a quantitative de-
scription of weather it is easy to exfoliate nanosheets from
bulk material. ii) strong in-plane stiffness of the corre-
sponding 2D lattice, which enable us to obtain large-scale
flakes which is needed for experimental detection.

The cleavage energy is calculated by determining the
total energy difference (per unit area) of the fractured
structure as a function of the separation d, with respect
to the equilibrium position d0[23]. The results are illus-
trated Fig. S23b-c. The cleavage energy of V2Se2O in-
creases rapidly with increasing d at first, then gradually
converges to 0.40 J/m2, which is slightly smaller than
that of graphite (0.44 J/m2[24]) calculated within the
same scheme. We have also calculated the cleavage en-
ergy of the monolayer (bilayer) sheets and all the results
are consistent (0.38 (0.40), 0.37 (0.41) J/m2 for V2Se2O
and graphite). Similar calculations have given 0.24, 0.35
and 0.38 J/m2 for the widely studied 2D vdW materials
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transition metal tri-chalcogenides class CrCTe3[25],[12]
CrSiTe3 and CrGeTe3[22] respectively and 0.27 J/m2 for
MoS2[26]. All the calculations indicate that monolayer
V2Se2O should be easily prepared through the exfolia-
tion as other well studied 2D materials.

The in-plane stiffness is given by 2D Young’s modulus
which can be evaluated according to the equation

Y2D = A0

(∂2E

∂A2

)
A0

=
1

4

(∂2E

∂a2

)
a0
, (42)

where E is the total energy, a is the 2D lattice param-
eter and A is the corresponded surface area. From the
change of total energy with respect to 2D lattice constant
(Fig. S23d), we obtained Y2D= 94.5 N/m for single layer
V2Se2O and Y2D= 212.7 N/m for graphene. The in-plane
stiffness of V2Se2O is about 60% of graphene, the well-
known ultra-strong material. This rather high in-plane
stiffness means that large-scale V2Se2O monolayers with
the free-standing structure could be expected to obtain
during the exfoliation.
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