## **Supplementary Information**

## Decreased YAP Activity Reduces Proliferative Ability in Human Induced Pluripotent Stem Cell of Duchenne Muscular Dystrophy Derived Cardiomyocytes

Hideki Yasutake<sup>1 2</sup>, Jong-Kook Lee<sup>2\*</sup>, Akihito Hashimoto<sup>1 3</sup>, Kiyoshi Masuyama<sup>1</sup>, Jun Li<sup>1 2</sup>, Yuki Kuramoto<sup>1</sup>, Shuichiro Higo<sup>4</sup>, Shungo Hikoso<sup>1</sup>, Kyoko Hidaka<sup>5</sup>, Atsuhiko T. Naito<sup>6</sup>, Shigeru Miyagawa<sup>7</sup>, Yoshiki Sawa<sup>7</sup>, Issei Komuro<sup>8</sup>, Yasushi Sakata<sup>1</sup>

<sup>1</sup>Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
<sup>2</sup>Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
<sup>3</sup>Daihatsu Health Care Center, 2-1-1 Momozono, Ikeda 563-0045, Japan
<sup>4</sup>Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
<sup>5</sup>Center for Fundamental Education, The University of Kitakyushu, 4-2-1 Kokura Minami-ku Kitagata, Kitakyushu 802-8577, Japan
<sup>6</sup>Department of Physiology, Faculty of Medicine, Toho University, 5-21-16 Omorinishi, Ohta-ku, Tokyo 143-8540, Japan
<sup>7</sup>Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
<sup>8</sup>Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

\*Correspondence: Jong-Kook Lee, Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan, E-mail jlee@cardiology.med.osaka-u.ac.jp

## **Supplemental Figure**



Supplemental Figure I. Genotyping of Con-iPSCs and DMD-iPSCs using PCR for each exon in DMD.





Supplemental Figure II. A, Dystrophin expression in Con-iPSC-CMs according to time course of cardiac differentiation demonstrated using immunofluorescence staining (Scale bar: 50  $\mu$ m). B, Scatter plots of one field in Con-iPSC-CMs according to the time course of cardiac differentiation. Red frames indicate dystrophin-positive cells in troponin T-positive cells. C, Percentage of dystrophin-positive cells in troponin T-positive cells was evaluated in Con-iPSC-CMs. (n = 6 sessions, mean analyzed troponin T-positive cell number = 3202 ± 1739 cells, mean ± SD; \*P < 0.05, \*\*P < 0.01).



Supplemental Figure III. A, YAP localization was demonstrated using immunofluorescence staining in low and high cell densities (Scale bar: 50  $\mu$ m). B, Scatter plots of one field in low density and high density in Con-iPSC-CMs. Red bars indicate mean N/C ratio in troponin T-positive cells. C, N/C ratio in troponin T-positive cells was evaluated in low and high cell density (n = 7 sessions, mean analyzed troponin T-positive cell number at low density: 403 ± 228 cells, at high density: 6906 ± 1285 cells, mean ± SD; \**P* < 0.05).



Supplemental Figure IV. A, YAP localization was demonstrated using immunofluorescence staining in soft substrate (0.5 kPa) and hard substrate (32 kPa) (Scale bar: 50 µm). B, Scatter plots of one field in soft substrate (0.5 kPa) and hard substrate (32 kPa) in Con-iPSC-CMs. Red bars indicate mean N/C ratio in troponin T-positive cells. C, N/C ratio in troponin T-positive cells was evaluated in soft substrate (0.5 kPa) and hard substrate (32 kPa) (n = 3 sessions, mean analyzed troponin T-positive cell number at 0.5 kPa: 1535  $\pm$  664 cells, at 32 kPa: 1649  $\pm$  1493 cells, mean  $\pm$  SD, \*P < 0.05).



Supplemental Figure V. A, Ki67 expression was demonstrated using immunofluorescence staining in Con-iPSC-CMs, day1 and day4 from seeding. Arrowheads indicate Ki67-positive cells in troponin T-positive cells (Scale bar: 50  $\mu$ m). B, Scatter plots of one field in Con-iPSC-CMs according to the time course from seeding. Red frames indicate Ki67-positive cells in troponin T-positive cells. C, Percentage of Ki67-positive cells in troponin T-positive cells was evaluated in Con-iPSC-CMs day1 and day4 from seeding (n = 3 sessions, mean analyzed troponin T-positive cell number on day 1: 1060 ± 274 cells, on day 4: 3972 ± 2129 cells, mean ± SD, \*\*\*P < 0.001).



**Supplemental Figure VI. A,** Immunofluorescence image using troponin T of iPSC-CMs cotransfected with EGFP-TNNT and LifeAct-RFP (Scale bar: 50  $\mu$ m). Arrowheads indicate both EGFP and RFP expression in troponin T-positive cells. **B,** EGFP-TNNT revealed a sarcomere structure in iPSC-CMs (Scale bar: 20  $\mu$ m).



Supplemental Figure VII. The images demonstrate non-cardiomyocyte of iPSCs during cell division with actin dynamics (Scale bar:  $10 \ \mu m$ ) (Movie 1).



**Supplemental Figure VIII. A,** Actin dynamics in Con-iPSC-CMs was demonstrated using live cell imaging (Scale bar: 10  $\mu$ m) (Movie 2). White squares frames show cell edge and cell body. **B,** Actin tracking speed was estimated at the cell edge and cell body (n = 4 sessions, 11 cells, mean  $\pm$  SD, \*\*P < 0.01).



В

**Supplemental Figure IX. A,** The images demonstrate actin dynamics in non-cardiomyocytes and cardiomyocytes of Con-iPSCs (Scale bar: 10  $\mu$ m) (Movie 3). **B,** Actin tracking speed was estimated at the cell edge of non-cardiomyocytes and cardiomyocytes (n = 3 sessions, 7 cells, mean  $\pm$  SD, \*\*P < 0.01).

## Supplemental Table

| Target of sgRNA           | Sequence                 |
|---------------------------|--------------------------|
| Upstream of exon55        | caccGCAACAACTCACCCCATTGT |
| Upstream of exon55-anti   | aaacACAATGGGGTGAGTTGTTGC |
| Downstream of exon55      | caccGTACTTGTAACTGACAAGCC |
| Downstream of exon55-anti | aaacGGCTTGTCAGTTACAAGTAC |

| Target of DMD exon | Sequence               |
|--------------------|------------------------|
| Exon 47 Forward    | GTCAATCAGCTCTGTGCTCA   |
| Exon 47 Reverse    | ACAACAATCCACATACCAGCCT |
| Exon 48 Forward    | GCCTTTGTGTAAGGTGTGTG   |
| Exon 48 Reverse    | CGTCAAATGGTCCTTCTTGG   |
| Exon 54 Forward    | TCCTGAAAGGTGGGTTACCT   |
| Exon 54 Reverse    | GTCTGAGCCAAGTCCGTGAGT  |
| Exon 55 Forward    | CCCCATACAAACGCCTTTAAG  |
| Exon 55 Reverse    | GTTTTGTCCCTGGCTTGTCAGT |
| Exon 46-56 Forward | GGAGGAAGCAGATAACATTGCT |
| Exon 46-56 Reverse | ACGTCTTTGTAACAGGACTGC  |
| Exon 47-56 Forward | AGTGCTCCCATAAGCCCAGAAG |
| Exon 47-56 Reverse | GCATCATCGGAACCTTCCAGG  |

Supplemental Table 1. Designed sgRNA sequences for DMD-iPSCs and primers of genotyping for DMD-iPSCs

| Name                    | Maker, Catalog number              | dilution |
|-------------------------|------------------------------------|----------|
| Anti-Dystrophin         | Abcam, ab15277                     | 1:300    |
| Anti-Cardiac Troponin T | Abcam, ab8295                      | 1:300    |
| Anti-Cardiac Troponin T | Abcam, ab45932                     | 1:300    |
| Anti-Cardiac Troponin T | Abcam, ab64623                     | 1:300    |
| Anti-YAP1               | Santa Cruz Biotechnology, sc101199 | 1:200    |
| Ki67                    | Abcam, ab15580                     | 1:500    |

| Name                                            | Maker, Catalog number             | dilution |
|-------------------------------------------------|-----------------------------------|----------|
| Alexa Fluor 488 donkey<br>anti-mouse IgG (H+L)  | Thermo Fisher Scientific , A21202 | 1:300    |
| Alexa Fluor 568 donkey<br>anti-rabbit IgG (H+L) | Thermo Fisher Scientific , A10042 | 1:300    |
| Alexa Fluor 647 donkey<br>anti-goat IgG (H+L)   | Life technologies, A21447         | 1:300    |

Supplemental Table 2. Immunofluorescence primary antibodies and second antibodies.

| Name            | Maker, Catalog number              | dilution |
|-----------------|------------------------------------|----------|
| Anti-Dystrophin | Abcam, ab15277                     | 1:500    |
| Anti-YAP1       | Santa Cruz Biotechnology, sc101199 | 1:200    |
| GAPDH           | CST, 14C10                         | 1:10000  |

| Name                         | Maker, Catalog number | dilution |
|------------------------------|-----------------------|----------|
| Peroxidase AffiniPure Donkey | Jackson, 711-035-152  | 1:5000   |
| Anti-Rabbit IgG (H+L)        |                       |          |

Supplemental Table 3. WB primary antibodies and second antibodies