SUPPORTING INFORMATION

Role of mTORC2 in biphasic regulation of brown fat metabolism in response to mild and severe cold

Prasanna K. R. Allu^{1, 4}*#, Esther Paulo²#, Ambre M. Bertholet³, Gavin Situ^{1, 6}, Seung-Hwan Lee ^{2, 5}, Yixuan Wu², Catherine E. Gleason^{1, 6}, Bidisha Saha¹, Ajay Chawla², Biao Wang² and David Pearce^{1, 2}*

University of California at San Francisco, San Francisco, CA, USA, ¹Department of Medicine, Division of Nephrology. ²Cardiovascular Research Institute. ³Department of Physiology.

⁴Current location: Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.

⁵Current location: Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.

⁶Current location: Circle Pharma, South San Francisco, CA, 94080, USA.

Contributed equally.

* Co-corresponding authors:

Prasanna K. R. Allu Section on Integrative Physiology and Metabolism Joslin Diabetes Center Harvard Medical School Boston, MA, 02215 Ph: 628-224-7537

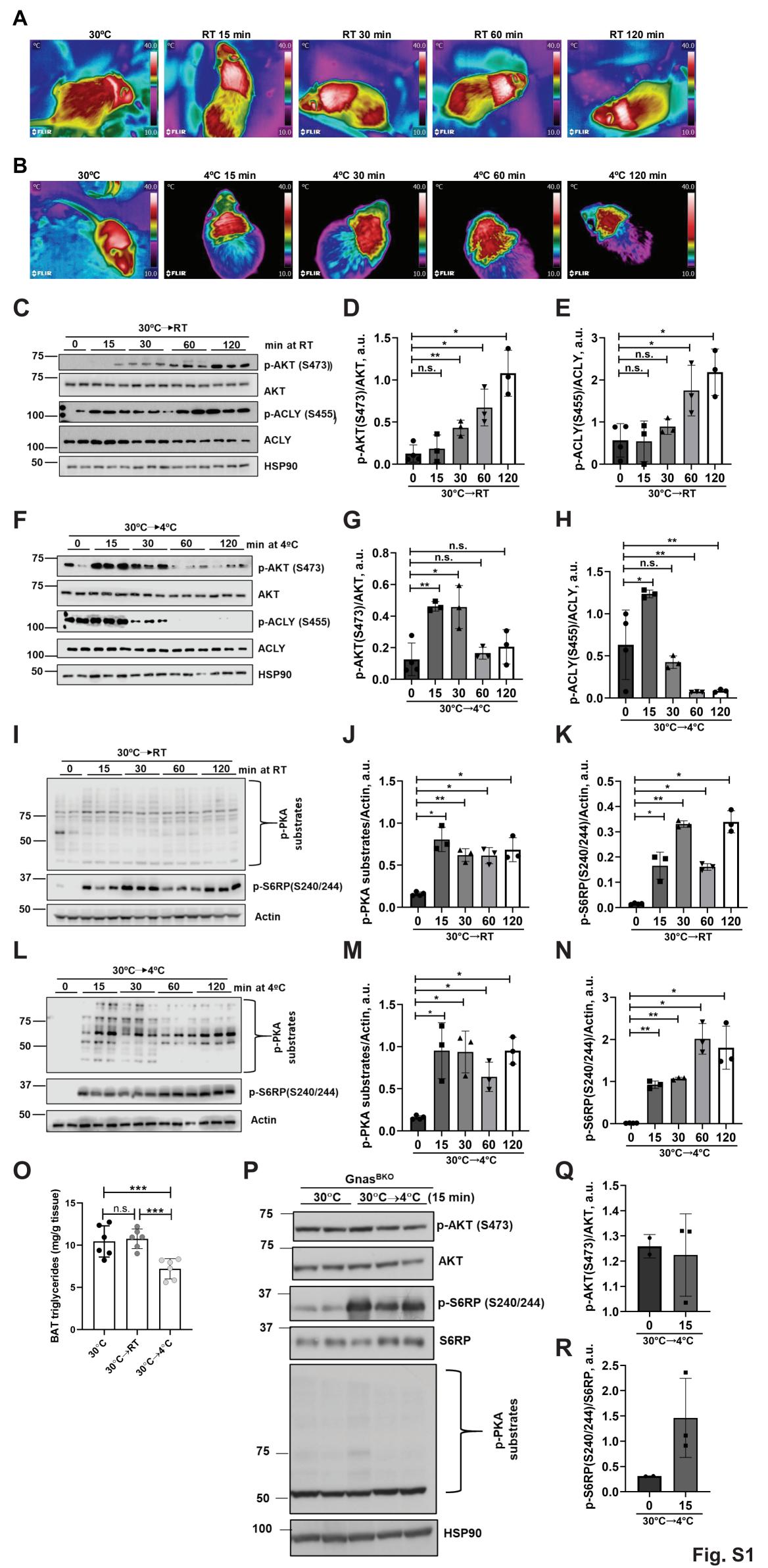
Prasanna.allu@joslin.harvard.edu

David Pearce Mission Bay, Genentech Hall, Rm N272C 600 16th St. San Francisco, CA 94158 Ph: 415-476-7015

Fax: 415-502-8644 david.pearce@ucsf.edu

The authors have no conflicts of interest to report.

Key words: mTOR, UCP1, cold, thermogenesis, lipogenesis, gene expression, brown adipose tissue, adipocytes.


Running title: Cold regulation of thermogenic fat.

SUPPLEMENTARY FIGURE LEGENDS:

- Fig. S1. Effects of mild and severe cold on mTORC2 activity in iBAT. Male wild type C57B6 mice (n=28) were acclimated to thermoneutrality (30 °C) for 4-weeks followed by exposure to either RT (n=14) or 4 °C (n=14) for various time poitns. A different set of infrared images of mice exposed to 23 °C (A) or 4°C (B) for times shown. Images are displayed using the rainbow high contrast color palette in the FLiR Research IR program using a temperature linear display between 10°C and 40°C. C. Immunoblots showing acute responses of mild cold (RT) on phosphorylation of Akt/s473 and its substrate, lipogenic enzyme, ACLY. Note monophasic increase in both Akt/pS473 and ACLY/pS455. Bar graphs represent image quantification of Akt/pS473 normalized to total AKT (D) and ACLY/pS455 normalized to total ACLY (E). F. Immunoblots showing acute responses of severe cold (4°C) on Akt/pS473 and ACLY/pS455. Bar graphs represent image quantification of Akt/pS473 normalized to total AKT (G) and ACLY/pS455 normalized to total ACLY (H). Note biphasic effect. I-K: PKA (phosphor-PKA substrates) activities and mTORC1 (p-S6RP/S240/244) activities at RT. L-N: PKA (phosphor-PKA substrates) and p-S6RP/S240/24 at 4°C. O: BAT triglycerides are calculated in the media from BAT in response to mild (RT) or severe cold (4⁰C) (n=6). P. Gnas BKO mice (n=5) were acclimated to thermoneutrality for 4 weeks. After acclimatization, Gnas^{BKO} (n=3) were exposed to 4 °C for 15 min. iBAT was assayed by western blot for Akt/pS473, total AKT, S6RP/p240-p244, total S6RP, PKA (phosphor-PKA substrates) and HSP90. Bar graphs represent image quantification of Akt/pS473 normalized to total AKT (Q) and S6RP/p240-p244normalized to total S6RP (R). Statistical difference between groups was calculated by unpaired 2-tailed T-test, n.s. non significant, *** p<0.001.
- **Fig. S2.** Effect of severe cold on mTORC2 and DNL is independent of all three β-adrenergic receptors signaling. Control mice (littermate controls) (n=6) and β-less mice (n=6) were acclimated to thermoneutrality (30 °C) for 4 weeks. After acclimatization at thermoneutrality (30 °C) for 4 weeks, controls (n=3) and β-less mice (n=3) were exposed to 4 °C for 1 hour, mice were euthanized, iBAT was assayed by western blot for mTORC2 (Akt/pS473), total AKT, ACLY/pS455, total ACLY, and Actin (A). Bar graphs represent image quantification of Akt/pS473 normalized to total AKT (B) and ACLY/pS455 normalized to total ACLY (C), Immunoblot for PKA (phosphor-PKA substrates) activities (D). Bar graphs represent image quantification of PKA normalized to Actin (E) and pS6RP normalized to Actin (F), Statistical difference among controls (30°C vs. 30°C to 4°C) or β-less animals (30°C vs. 30°C to 4°C) was calculated by unpaired 2-tailed T-test. *p< 0.05 and **p< 0.01. Note: Figs. S2A and S2D are from the same gel; actin stain is shown in both for clarity of presentation.
- **Fig. S3.** Cold inhibits SGK1 phosphorylation in differentiated 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were treated with dexamethasone for 4 hours to increase SGK1 expression and then either exposed to room temperature (24.5 °C) or maintained at 37 °C for 4 hours. (**A**) Whole cell lysates were prepared and analyzed by western blot and expression levels of p-SGK (S422) and Tubulin were quantitated by densitometry. (**B**) Bar graph represents image quantitation of p-SGK (S422) normalized to tubulin. Statistical difference between 37 °C and RT groups was calculated by unpaired 2-tailed T-test.
- **Fig. S4. IRS-1 phosphorylation is intact in cold exposed differentiated 3T3-L1 adipocytes.** Differentiated 3T3-L1 adipocytes were exposed to room temperature (24.5 °C) for 4 hours, and cell lysates were immunoprecipitated with anti-pY antibody and then immunoblotted with anti-IRS-1 antibody to detect p-Tyr IRS1 levels. (**A**). Whole cell lysates were also analyzed by western blot to detect IRS-1 expression levels. (**B**). Bar graph represents image quantitation of p-Tyr IRS-1 normalized to IRS-1 Statistical difference between 37 °C and RT groups was calculated by unpaired 2-tailed T-test.

Fig. S5 Lowering temperature inhibit mTORC2 activity in differentiated LgT brown adipocytes. Differentiated LgT adipocytes were adapted to 37°C and then exposed to various temperatures for 5 hours, as shown. Whole cell lysates were immunoblotted for p-AKT (S473), AKT, p-S6RP (S240/244), S6RP and Tubulin. Note that, p-AKT (S473) levels were decreased in a graded fashion at lower temperatures similar to 3T3-L1 adipocytes (**A**). Bar graph represent image quantitation of p-AKT (S473) normalized to AKT. Difference between groups was calculated by one-way ANOVA followed by Tukey's multiple comparison post-hoc test. * p<0.05, ** p<0.01. F=39.69, p=0.002 (**B**).

Fig. S6. Effects of mild cold vs. severe cold on iBAT thermogenic gene expression. UCP1, TRPM8, Trpv1, Trpv2, Trpv3 and Trpv4 gene expression was analyzed in iBAT of mice acclimated to thermoneutrality, housed at RT, and in mice exposed to 4°C for 4 hours. 36b4 was used for internal normalization. Statistical difference between groups by unpaired 2-tailed T-test, n.s. non significant, *p< 0.05, **p< 0.01 and *** p<0.001 (**A-F**).

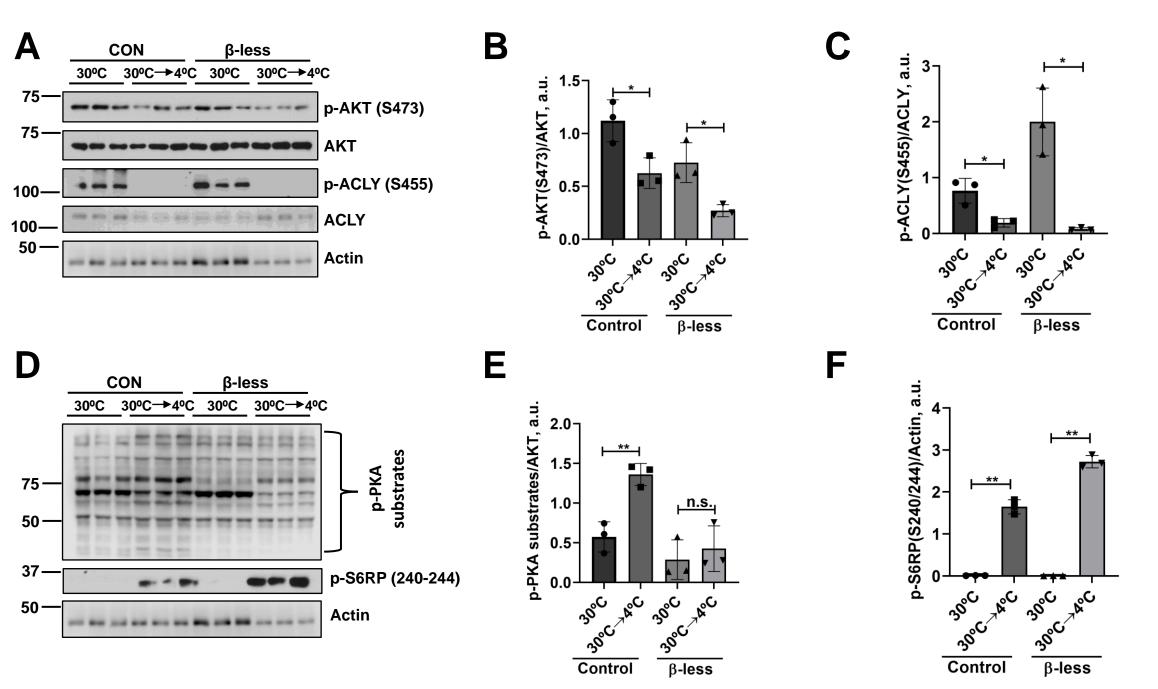
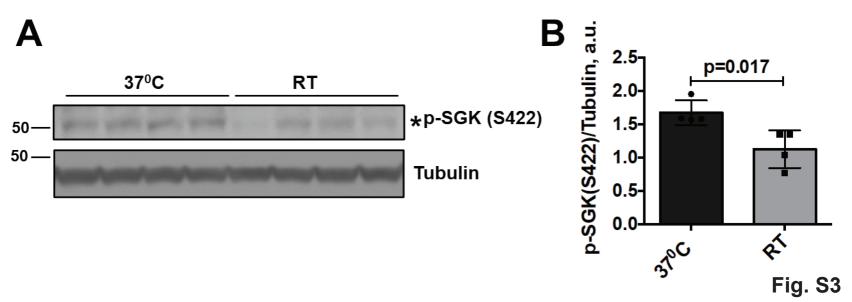
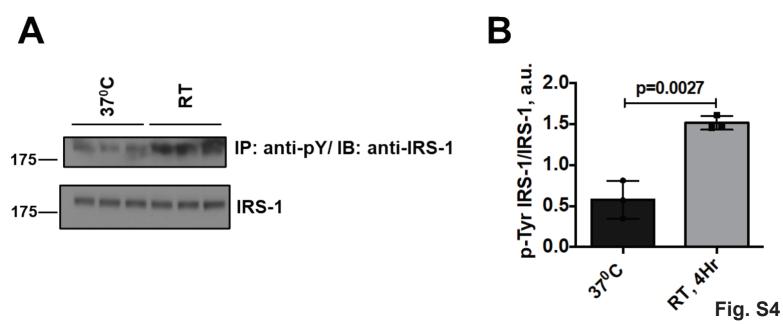




Fig. S2

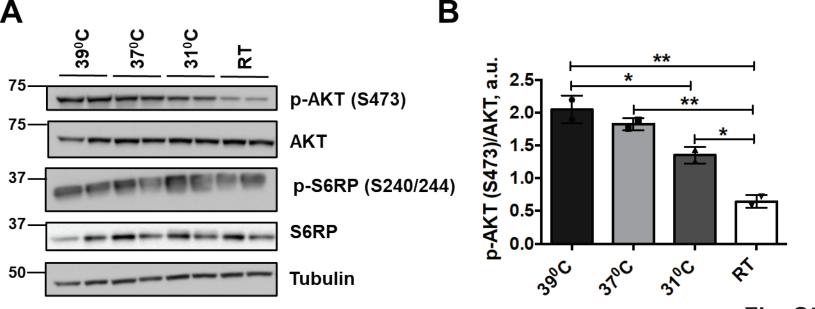


Fig. S5

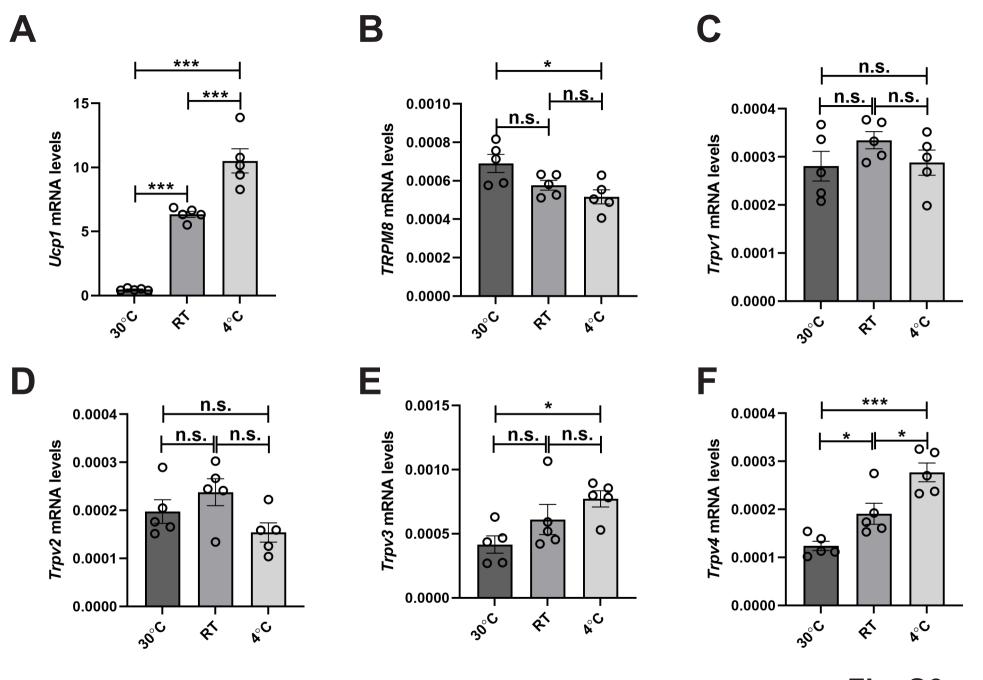


Fig. S6