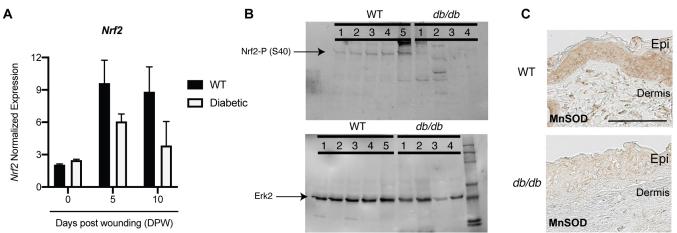
Cell Reports, Volume 33

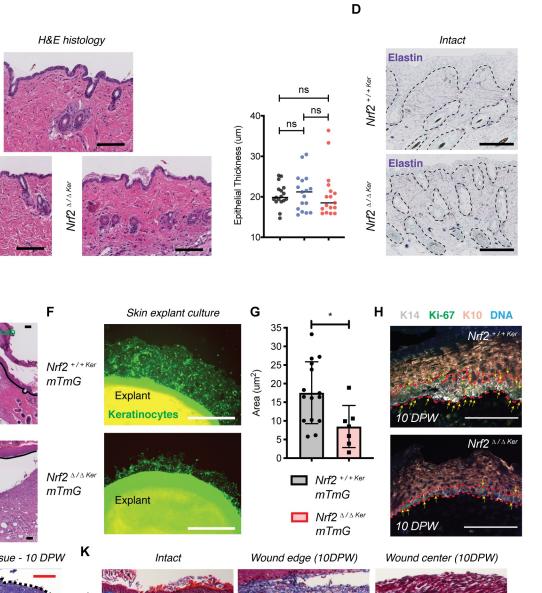
Supplemental Information

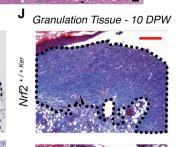

Keratinocyte-Macrophage Crosstalk

by the Nrf2/Ccl2/EGF Signaling Axis

Orchestrates Tissue Repair

Alvaro Villarreal-Ponce, Melat Worku Tiruneh, Jasmine Lee, Christian F. Guerrero-Juarez, Joseph Kuhn, Joshua A. David, Kristen Dammeyer, Renee Mc Kell, Jennifer Kwong, Piul S. Rabbani, Qing Nie, and Daniel J. Ceradini


Supplemental Figure 1. Dysfunctional activation of Nrf2 in diabetic wounds, Related to Figure 1


A. qPCR of *Nrf2* in whole wounds belonging to WT and db/db mice at 10 DPW (n=3). Data was normalized to *18S* and is expressed as mean \pm SD.

B. Western Blot (WB) for active Nrf2 (Nrf2 S40-P) on whole wound lysates belonging to WT and db/db mice at 10 DPW (n=5,4). Erk2 is a loading control.

C. Representative immunohistochemical labeling of MnSOD expression in wounds belonging to WT and *db/db* mice at 10 DPW. MnSOD (brown). Scale, 100um. (n=3).

FIGURE S2

С

Nrf2 +/+ Ker

Nrf2 Δ/Δ Ke

Nrf2 Δ/Δ Ke

2 3

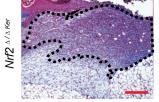
Nrf2

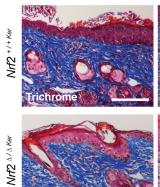
Nrf2 ^/+ Ker

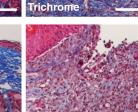
Nrf2 + / + Ker - 10 DPW

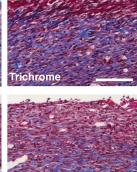
Nrf2 Δ/Δ Ker - 10 DPW

Epithelial Gap


Epithelial Gap


Scab


1 2 3 4


1

Vrf2

Α

Nqo1

Erk2

MnSOD

B-Actin

Е

L

Nrf2 +/+Ker

Nrf2 Δ/Δ Ker

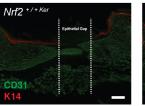
Casp3

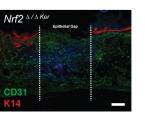
Casp3

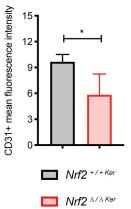
в

Nrf2 +/+ Ker

3


Nrf2 +/+ Ker


3 4


2 4

2

Nrf2

Trichrome

Trichrome

Supplemental Figure 2. Acute Nrf2 Deletion in the basal epidermis affects keratinocyte and non-keratinocyte autonomous repair defects, Related to Figure 2

A. WB for Nqo1 on whole wound lysates belonging to $Nrf2^{\Delta/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 10 DPW (n=4). Erk2 is a loading control. **B**. WB for MnSOD on whole wound lysates belonging to $Nrf2^{\Delta/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 10 DPW (n=4). B-actin is a loading control.

C. Representative H&E images of intact skin belonging to tamoxifen-induced $Nrf2^{+/+Ker}$, $Nrf2^{\Delta/+Ker}$, and $Nrf2^{\Delta/\Delta Ker}$ mice (n=3). Quantification of epithelial thickness (n=3). Scale, 100um.

D. Elastin staining in intact skin belonging to $Nrf2^{\Delta/+ Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice (n=3). Scale, 100um.

E. Representative images of epithelial gap in $Nrf2^{+/+ Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 10 DPW. Measurements made on H&E sections are depicted in main figure. (n=13,15)

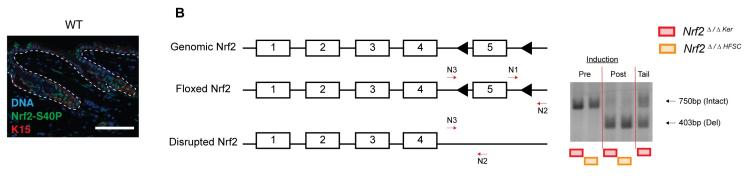
F. Representative images depicting migration distance traveled by GFP⁺ keratinocytes in skin explants cultured ex vivo. 4mm circular skin biopsies were taken from intact skin belonging to $R26^{mTmG/+}$; $Nrf2^{+/+Ker}$ and $R26^{mTmG/+}$; $Nrf2^{\Delta/\Delta Ker}$ mice (n=7).

G. Quantification of the migration distance traveled by GFP^+ keratinocytes in (F) (n=7). Area measurements (explant base to epithelial sheet edge) were taken from independent high-powered fields (20x) in independent biological replicates.

H. Representative images of Ki67⁺ keratinocytes at the epithelial edge in $Nrf2^{+/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ wounds at 10 DPW (n=4). K14 (grey); Ki-67 (green); K10 (orange); DAPI (blue). Measurements made on H&E sections are depicted in main figure.

I. IF labeling of cleaved Caspase3 to demarcate apoptotic cells in basal keratinocytes of the epithelial edge in wounds belonging to $Nrf2^{\Delta/+ Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 10 DPW (n=3). Caspase3 (brown). Scale, 100um.

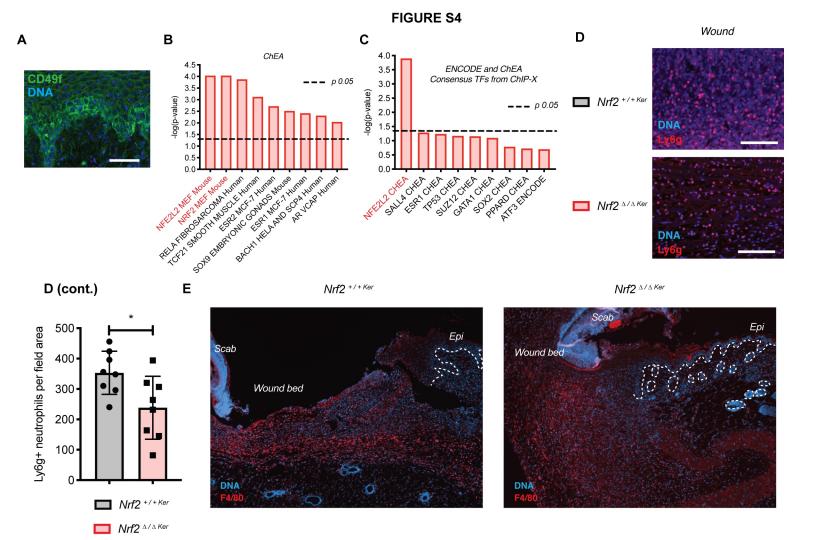
J. Representative images of the granulation tissue in $Nrf2^{+/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ wounds at 10 DPW. Measurements made on H&E sections are depicted in main figure. Scale, 200um. (n=11,8)


K. Trichrome staining of intact and wounded $Nrf2^{\Delta/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ skin at 5 and 10 DPW (n =3,3) to assess collagen deposition and organization. Scale, 100um.

L. IF/quantification of CD31⁺ vascular tissue the wounds belonging to $Nrf2^{+/+ Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 10 DPW (n=3). CD31 (green) and K14 (red). Scale, 100px. Quantification of CD31⁺ immunofluorescent labeling in wounds belonging to $Nrf2^{+/+ Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 10 DPW (n=3). Labeling was quantified from independent high-powered fields (20x) in independent biological replicates.

All quantified data is represented as mean \pm SD.

For (C), two-way ANOVA with multiple comparisons was used to analyze statistical significance of open wounds between groups on respective days post wounding. ns = not significant.


For (G) and (L), unpaired t-tests were used to analyze statistical significance between the two experimental groups. ns = not significant; *p<0.05; ***p<0.001; ****p<0.0001.

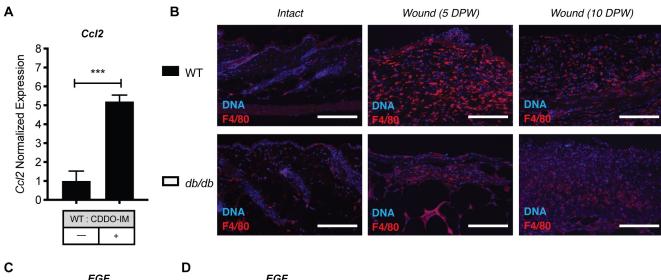
Supplemental Figure 3. Nrf2 expression in HFSCs and recombination efficiency in transgenic animals, Related to Figure 2

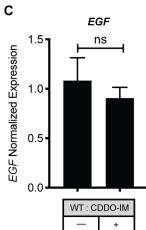
A. IF labeling of active Nrf2 in intact WT skin demonstrates its expression in Keratin 15 $(K15)^+$ hair follicle stem cells (HFSCs) (n=3). Active Nrf2 (Nrf2 S40-P) (green), K15 (red), and DAPI (blue). Scale, 100um.

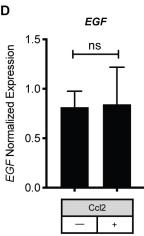
B. Representative gel image of genotyping PCR showing the Nrf2 floxed locus before and after induced recombination in basal keratinocytes (lanes 1,3) and flow cytometry isolated $Nrf2^{\Delta/\Delta HFSC}$ HFSCs (lanes 2,4) (n>3). Lane 5 is of PCR amplification from cell heterogenous tail DNA.

Supplemental Figure 4. Epidermal Nrf2 deletion impairs keratinocyte-mediated signaling for immune cell trafficking during wound repair, Related to Figure 3

A. Immunofluorescent labeling of CD49f in WT skin belonging demonstrate its specificity to the basal epidermis. CD49f (green), DAPI (blue). Scale, 50um.


B. EnrichR Chromatin immunoprecipitation enrichment analysis (ChEA) of bulk RNA-seq comparing DEGs in wound-associated keratinocytes from $Nrf2^{+/+ Ker}$ and $Nrf2^{\Delta\Delta Ker}$ wounds at 5 DPW.


C. Enrich R ChIP-X analysis of bulk RNA-seq comparing DEGs in wound-associated keratinocytes from $Nrf2^{+/+ Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ wounds at 5 DPW.


D. IF labeling of neutrophils trafficked into the wounds of $Nrf2^{+/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 2 DPW (n=10). Ly6g (red) and DAPI (blue). Scale, 100um. Quantification of Ly6g⁺ immunofluorescent labeling in wounds belonging to $Nrf2^{+/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 2 DPW. Labeling was quantified from independent high-powered fields (20x) in independent biological replicates. The data is represented as mean \pm SD and unpaired t-tests were used to analyze statistical significance between the two experimental groups. ns=not significant; *p<0.05.

E. IF of macrophages trafficked into the wounds of $Nrf2^{+/+Ker}$ and $Nrf2^{\Delta/\Delta Ker}$ mice at 5 DPW (n=10). F4/80 (red) and DAPI (blue). Scale, 100um.

FIGURE S5

Supplemental Figure 5. Macrophage trafficking dysfunction in diabetic mice and the effects of CDDO-IM, Ccl2 treatment in keratinocytes, Related to Figure 4 and 5

A. qPCR of Ccl2 in CDDO-IM treated WT keratinocytes. Data normalized to 18S (n=3).

B. Immunofluorescent labeling of macrophages trafficked into the wounds of from WT and db/db mice at 0, 5, and 10 DPW (WT, db/db: n=4,3 (0 DPW), n=9,10 (5 DPW), n=7,7 (10 DPW). Paraffin sections (5um) were stained with antibodies against F4/80 (red) and DAPI (blue) as a nuclear counterstain. Scale bar, 100um.

C. qPCR of *EGF* in CDDO-IM treated WT keratinocytes. Data normalized to 18S (n=3).

D. qPCR of *EGF* in WT keratinocytes after treatment with exogenous Ccl2. Data normalized to *18S* (n=3).

Oligonucleotides (cont.)		
EGF F	Life Technologies	N/A
5'-GGAAGCCACGCTTACATTCAT-3'		
EGF R	Life Technologies	N/A
5'-ACTGAGTAGAAGATCCGATCACC-3'		
Nqo1 F	Life Technologies	N/A
5'-AGGATGGGAGGTACTCGAATC-3'		
Nqo1 R	Life Technologies	N/A
5'-AGGCGTCCTTCCTTATATGCTA-3'		
Nrf2 F	Life Technologies	N/A
5'-CACATTGGGATTCACGCATA-3'		
Nrf2 R 5'-CCCCTGGAAGTGTCAAACAG-3'	Life Technologies	N/A
Sod2 F	Life Technologies	N/A
5'-GTGAAACCTCACTCACGGC-3'	Life recinologies	IV/A
Sod2 R	Life Technologies	N/A
5'-ACAGCACCCCAGTCATAGTG-3'	Life reenhologies	IVA
Cre F	Life Technologies	N/A
5'-TAAAGATATCTCACGTACTGACGGTG-3'		
Cre R	Life Technologies	N/A
5'-TCTCTGACCAGAGTCATCCTTAGC-3'		
Nrf2 flox N1	Life Technologies	N/A
5'-TCTTAGGCACCATTTGGGAGAG-3'		
Nrf2 flox N2	Life Technologies	N/A
5'-TACAGCAGGCATACCATTGTGG-3'		
Nrf2 flox N3	Life Technologies	N/A
5'-TGAGAGCTTCCCAGACTCACTT-3'		
Rosa F	Life Technologies	N/A
5'-CGAGGCGGATCACAAGCAATA-3'		
Rosa R	Life Technologies	N/A
5'-TCAATGGGCGGGGGGGTCGTT-3'		

Table S1. Oligonucleotides used for qPCR and genotyping, Related to STAR Methods