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Supplementary text 
Estimation of anthropogenic emissions in 2020 

We estimated the anthropogenic emission for China in 2020 based on the MEIC 2017 
(http://www.meicmodel.org) according to the control plan established by the Chinese government and the emission 
trends in recents years. From 2013 to 2017, the Chinese government launched the to Air Pollution Prevention and 
Control Action Plan to mitigate haze events. Zheng et al. (2018) compiled the trends of anthropogenic emissions 
during this period and demonstrated that the SO2, NOx, and PM (particulate matter, including PM10, PM2.5, and its 
components) emissions have been reduced significantly. In 2018, the Chinese government issued a Three-Year Action 
Plan (2018–2020) to further reduce the SO2, NOx, and PM emissions (http://www.gov.cn/zhengce/content/2018-
07/03/content_5303158.htm). Previous control measures were implemented and the emissions were thought to 
continue decreasing after 2017. As the most recent available data on China’s anthropogenic emissions are from 2017, 
we estimated the emissions for 2020 based on the MEIC 2017 according to the trends of these emissions in recent 
years (Zheng et al., 2018). Table S1 shows the scaling factors from 2017 to 2020 for NO2, PM, and SO2 in the power 
plant, industry, transportation, and residential sectors. The VOC emission was assumed to be unchanged from 2017 
to 2020 because it increased by only 2% from 2013 to 2017 (Zheng et al., 2018). The NO2, PM, and SO2 emissions 
from transportation were also assumed constant from 2017 to 2020, considering that they had changed little during 
2015–2017. The NOx emission in the residential and industrial sectors was assumed to be the same in 2020 as in 
2017 in view of its flat trend in recent years. Because the NOx emission from power plants decreased by ~47% from 
2013 to 2017 (11.7% per year), we assumed it to further decrease by 35% from 2017 to 2020. The same approaches 
were applied to the reductions of the PM and SO2 emissions from 2017 to 2020. With these adjustments, we derived 
an estimated anthropogenic emission inventory for China in 2020. The model-simulated pollutant concentrations 
using this inventory showed a reasonable agreement with the surface measurement data during the period before the 
COVID-19 lockdown (Table S2, also see the Model evaluation section below), which suggested the estimated 
emission inventory was reasonable. 
 
Estimated reduction of anthropogenic emissions during the CLD period 

We estimated the emission reductions during the COVID-19 lockdown period according to the recent literature 
(Doumbia et al., 2021; Wang et al., 2020; Huang et al., 2020). For the transportation sector, the decrease in national 
traffic volume was estimated at 70% during the lockdown according to transportation index data. The industry 
emissions were assumed to decrease by 40% across China. The emissions of power plants were estimated to decrease 
by 30% due to the less consumption of electricity. The emissions of residential activities were assumed to increase 
by 10% due to more coal combustion and cooking. We kept the emissions from agriculture unchanged because they 
were less affected by the city lockdowns. Fig. 8 presents the reductions of NOx, VOCs, CO, PM, and SO2 emissions 
due to the changes in anthropogenic activities during the lockdown, which generally match the estimation by Huang 
et al. (2020). The observed pollutant concentrations during the lockdown period could faithfully captured by the 
CMAQ model using this estimated reduced emissions (Table S2, also see the Model evaluation section below), which 
suggested the estimated reductions of anthropogenic emissions were acceptable. 
 
Model evaluation 

Statistical parameters were calculated to validate the model performance in simulating the air pollutant 
concentrations from January 2 to February 12, 2020, including the mean observation (OBS), mean simulation (SIM), 
mean bias (MB), mean absolute gross error (MAGE), root mean square error (RMSE), index of agreement (IOA), 
and correlation coefficient (r). The equations of these statistical parameters can be found in Fan et al. (2013). 

Table S2 shows the evaluation results of the simulated concentrations of SO2, NO2, CO, O3 and PM2.5 in China 
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for the periods before and during the COVID-19 lockdown, respectively. As the measured NO2 by the catalytic 
conversion method in the national network overestimates the NO2 (Xu et al., 2013), we adjusted the observed NO2 
data following the method proposed by Zhang et al. (2017) and Fu et al. (2019). Generally, the CMAQ model 
faithfully reproduced the observed concentrations of NO2, SO2, CO, PM2.5 and O3 with low biases during both peirods. 
The evaluation results suggested reasonable estimations of the anthropogenic emissions for the year 2020 and during 
the lockdown. 

As we focused on the O3 changes in NC, CC, and SC regions, we futher evaluated the modeling performace in 
simulating the variations of O3 and NO2 for these regions. Fig. S1 shows the time series of simulated and observed 
O3 and NO2 mixing ratios. The magnitude and variation of the observed NO2 mixing ratios for these three regions 
were all well captured by the CMAQ model. The observed O3 mixing ratios for three regions were also reasonably 
reproduced. Both the simulation and observation showed an O3 increase in NC and CC but a decrease in SC (also 
shown in Fig. 4). However, the O3 mixing ratio in NC during the lockdown was underestimated, probably due to the 
uncertainties in meteorological simulation. The O3 mixing ratio in SC was generally overestimated during the 
simulation period, which might be attributed to the influence of the overestimated O3 concentrations on the ocean. 
Nevertheless, the model was able to faithfully capture the observed O3 variations in these three regions. 

Overall, despite some uncertainties, the CMAQ model performance is acceptable and can support further 
analysis of O3 changes during the COVID-19 city lockdowns. 
 
 
Reference: 
Doumbia, T., Granier, C., Elguindi, N., Bouarar, I., Darras, S., Brasseur, G., Gaubert, B., Liu, Y., Shi, X., Stavrakou, 

T., Tilmes, S., Lacey, F., Deroubaix, A., and Wang, T. Changes in global air pollutant emissions during the 
COVID-19 pandemic: a dataset for atmospheric chemistry modeling. Earth Syst. Sci. Data Discuss, 2021. (In 
review). 

Fan, Q., Liu, Y. M., Wang, X. M., Fan, S. J., Chan, P. W., Lan, J., and Feng, Y. R.: Effect of different meteorological 
fields on the regional air quality modelling over Pearl River Delta, China, Int. J. Environ. Pollut., 53, 3-23, 
10.1504/ijep.2013.058816, 2013. 

Fu, X., Wang, T., Zhang, L., Li, Q., Wang, Z., Xia, M., Yun, H., Wang, W., Yu, C., Yue, D., Zhou, Y., Zheng, J., and 
Han, R.: The significant contribution of HONO to secondary pollutants during a severe winter pollution event 
in southern China, Atmos. Chem. Phys., 19, 1-14, 10.5194/acp-19-1-2019, 2019. 

Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, 
L., Li, Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F., Davis, 
S. J., Zhang, Q., and He, K.: Enhanced secondary pollution offset reduction of primary emissions during 
COVID-19 lockdown in China, National Science Review, 10.1093/nsr/nwaa137, 2020. 

Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution events not avoided by reduced 
anthropogenic activities during COVID-19 outbreak, Resources, Conservation and Recycling, 158, 104814, 
https://doi.org/10.1016/j.resconrec.2020.104814, 2020. 

Xu, Z., Wang, T., Xue, L. K., Louie, P. K. K., Luk, C. W. Y., Gao, J., Wang, S. L., Chai, F. H., and Wang, W. X.: 
Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four 
differently polluted sites in China, Atmos. Environ., 76, 221–226, 
https://doi.org/10.1016/j.atmosenv.2012.09.043, 2013. 

Zhang, L., Li, Q. Y., Wang, T., Ahmadov, R., Zhang, Q., Li, M., and Lv, M. Y.: Combined impacts of nitrous acid 
and nitryl chloride on lower-tropospheric ozone: new module development in WRF-Chem and application to 
China, Atmos Chem Phys, 17, 9733-9750, 10.5194/acp-17-9733-2017, 2017. 



 4 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., 
Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of 
clean air actions, Atmos. Chem. Phys., 18, 14095-14111, 10.5194/acp-18-14095-2018, 2018. 

 
  



 5 

 
Figure S1: Time series of observed (black points) and simulated (red lines) mixing ratios of maximum daily average 
8-h (MDA8) O3 and NO2 in North China, Central China, and South China from 2 January to 12 February 2020. The 
solid lines are the simulated average value and the shaded areas mark the standard deviations. The observed NO2 
data were adjusted based on the method proposed by Zhang et al. (2017) and Fu et al. (2019): 𝑁𝑂#	%&' =

𝑁𝑂#	%&') × +%,	-./
+%,	-./0+%1	-./0+%2	-./

3 , where 𝑁𝑂#	%&')  is the measured NO2 data by the catalytic conversion technique, 

𝑁𝑂#	'45, 𝑁𝑂6	'45, and 𝑁𝑂7	'458  are the simulated data of NO2, NOz, and particulate nitrate, respectively, using the 
WRF-CMAQ model. 
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Fig. S2: Simulated changes in O3 mixing ratios across China during the COVID-19 lockdown period and 
contributions from meteorological changes and emission reductions. (a, d, g) The simulated total O3 changes for all-
day average, daytime average, and nighttime average during the CLD period relative to the pre-CLD period. (b, e, h) 
Contribution of meteorological changes to O3 for all-day average, daytime average, and nighttime average. (c, f, i) 
The same with (b, e, h), respectively, but for contribution of emission reductions. 
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Figure S3 The contributions of meteorological changes and emission reduction to the changes in daytime and 
nighttime O3 concentrations during the CLD period compared with the pre-CLD period. (a) North China; (b) Central 
China; (c) South China 
 
 
 
 
 
 
 
 

 
Figure S4: Biogenic isoprene emissions during the pre-CLD and CLD periods and their difference (CLD minus pre-
CLD). 
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Figure S5: Model simulated changes in nighttime temperature at 2 m height, specific humidity at 2 m height, wind 
field at 10 m height, planetary boundary layer (PBL) height, cloud fraction, and precipitation during CLD period 
relative to pre-CLD period. In panel (c), the shaded color and vector represent the wind speed and wind direction, 
respectively. 
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Table S1: Scaling factors applied to different economic sectors in order to estimate the anthropogenic emissions of 
China for the year 2020 based on the 2017 MEIC emission inventory. 

Emitted species Power plants Industry Residence Transportation 
NOx -35% - - - 
SO2 -40% -40% -25% - 
PM - -20% -30% - 

 
 
 
 
 
Table S2: Evaluation results of the air pollutants across China for the pre-CLD (2-22 January 2020) and CLD (23 
January-12 February 2020) periods. OBS is mean observation; SIM is mean simulation; MB is mean bias; MAGE is 
mean absolute gross error; RMSE is root mean square error; IOA is index of agreement; r is correlation coefficient; 
OBS, SIM, MB, MAGE, and RMSE have the same units as given in the first column, while IOA and r have no unit. 

Species Period OBS SIM MB MAGE RMSE IOA r 
SO2 (ppbv) Pre-CLD 4.9 5.4 0.5 3.8 4.5 0.79 0.35 
 CLD 4.1 4.1 0.0 3.1 3.8 0.77 0.33 
NO2

a (ppbv) Pre-CLD 14.7 12.5 -2.2 5.1 6.0 0.90 0.49 
 CLD 6.6 6.7 0.1 3.1 3.7 0.89 0.58 
CO (ppmv) Pre-CLD 0.94 0.66 -0.28 0.42 0.48 0.88 0.40 
 CLD 0.75 0.51 -0.24 0.34 0.40 0.88 0.40 
MDA8 O3 (ppbv) Pre-CLD 26.2 30.1 3.9 10.5 13.0 0.94 0.35 
 CLD 36.0 37.6 1.6 10.5 12.9 0.97 0.38 
PM2.5 (µg/m3) Pre-CLD 69.3 71.8 2.4 33.0 41.6 0.90 0.51 
 CLD 55.3 52.7 -2.6 25.9 34.2 0.90 0.55 

a The observed NO2 data were adjusted based on the method proposed by Zhang et al. (2017) and Fu et al. (2019): 

𝑁𝑂#	%&' = 𝑁𝑂#	%&') × +%,	-./
+%,	-./0+%1	-./0+%2	-./

3 , where 𝑁𝑂#	%&')  is the measured NO2 data by the catalytic conversion 

technique, 𝑁𝑂#	'45, 𝑁𝑂6	'45, and 𝑁𝑂7	'458  are the simulated data of NO2, NOz, and particulate nitrate, respectively, 
using the WRF-CMAQ model. 


