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Supplementary Methods Appendix 
Droplet-based single-cell RNA barcoding and library preparation 

inDrop high-throughput single-cell labeling was performed as reported with minor adaptations.1,2 

Briefly, cells were trypsin-detached, washed in phosphate-buffered saline (PBS, Sigma-Aldrich) 

and maintained dissociated in suspension supplemented with 15% OptiPrep (Sigma-Aldrich). Cells 

(~1000 cells/µl) were loaded into a chilled syringe pump and injected into a custom-designed 

microfluidics device. Flow settings were adjusted to allow individual cells to become encapsulated 

with single hydrogel beads presenting cell-specific barcoding oligonucleotide primers inside 3-5 nL 

encapsulation mixture droplets that contain 20 U µL-1 reverse transcriptase (SuperScript III, Thermo 

Fisher Scientific), First-Strand Buffer (Thermo Fisher Scientific), 0.6% (v/v) IGEPAL CA-630 

(Sigma-Aldrich), 1 mM dNTPs (New England Biolabs), 6.67 mM DTT (Thermo Fisher Scientific), 

2700 units mL-1 murine RNase inhibitor (New England Biolabs), and 0.1 M Tris-HCl (pH 8.0)).2 

Primers consisted of a poly-T sequence to trap mRNA molecules, two 7-to-10 base cell-specific 

barcodes, 5-base unique molecular identifier (UMI) sequence, and a T7 promoter sequence. 

Droplets were collected, the primers were photo-cleaved by exposing the emulsion to UV (365 nm 

10 mW cm-2, BlackRay Xenon lamp) for 10 minutes at room temperature, and reverse transcription 

of trapped mRNA was performed at 50 ºC for 2 hours. Droplets were then demulsified by adding 

1H,1H,2H,2H-perfluoro-1-octanol (Sigma Aldrich) dissolved in HFE-7500 (Novec) at 20% (v/v). 

Single-stranded DNA primers and primer dimers were digested using 1 unit µL-1 ExoI (New England 

Biolabs) and 1 U µL-1 HinFI (Thermo Fisher Scientific). mRNA:cDNA hybrids were purified using 

Agencout AMPure XP beads (Beckman Coulter Genomics) according to the manufacturer’s 

instructions. Second-strand cDNA synthesis was performed using NEBNext Ultra II Non-Directional 

RNA Second Strand Synthesis Module (New England Biolabs) and amplified by in vitro 

transcription (HiScribe, New England Biolabs). RNA products were fragmented using Ambion RNA 

Fragmentation Reagents (AM8740, Thermo Fischer Scientific), purified using Agencout AMPure 

XP beads, and reverse-transcribed using random hexamer primers (SuperScript III, Thermo Fisher 

Scientific). Single-stranded DNA fragments were linearly amplified via 14 PCR cycles (HiFi HotStart 

ReadyMix, Kapa Biosystems). 

 

Sequencing and processing of single-cell RNA data: Non-conditioned, matrix-conditioned 
and early differentiating cells 

scRNA profiling of non-conditioned, matrix-conditioned and early differentiating cells was 

performed using MSCs that were obtained from a male donor, age 40, weight 73 kg, height 173 

cm.  Libraries were paired-end sequenced (PE5: 45 bp and PE7: 35 bp) on a NextSeq 500 platform 

using a High Output kit (75 cycles, Illumina). Sequences were demultiplexed using indices and 

barcodes, permitting ≤ 1 nucleotide alignment substitution. After removing low-complexity poly-
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adenylated sequences, transcripts were aligned against an indexed reference genome 

(GRCh38.p12) using Bowtie 0.12.8, and gene intensities were evaluated based on UMI frequency. 

Cells with high representation of mitochondrial RNA (>25%) or low gene number (≤1,900 per 

15,000 UMIs) were discarded. Mitochondrial and ribosomal genes were discarded as well as low-

frequency genes that were detected in ≤ 5 cells. Finally, UMI count was down-sampled to 15,000 

per cell, thus normalizing gene expression and minimizing batch-specific confounders. 

 

Clustering MSC subpopulations 

Computational and statistical analyses were performed using established protocols in R (R 

Foundation for Statistical Computing) and Matlab (Matlab 2019 Mathworks Ltd). We distinguished 

highly variable genes from technical noise as described previously by Brennecke and colleagues.3 

Outlier expression values were truncated by winsorizing, the squared coefficient of variation (CV2) 

versus the mean, 𝜇𝜇, was fitted by 𝛼𝛼 𝜇𝜇� + 𝛽𝛽,3 and highly variable genes were identified using the Chi-

squared test (FDR < 10-3). UMI counts (CPM) of highly variable genes were log2(𝑥𝑥 + 1) transformed 

and single-cell transcriptomes were dimension-reduced via PCA. The number of significant PCs 

was determined based on a screen test. Unsupervised cell clustering was performed using k-

means clustering in the PCA space. The number of clusters was determined based on within-

cluster sum of squares (Scree plot). Genes that were differentially expressed across clusters were 

assigned based on the corresponding log-fold ratios of expression levels and the adjusted two-

tailed Wilcoxon rank-sum test p-values (Benjamini–Hochberg method). Functional enrichment 

analysis was performed using Gene Set Enrichment Analysis database.4 

 

Diffusion pseudotime analysis 

Diffusion mapping was performed using the Destiny package in R.5 Only genes that varied 

significantly across soft and stiff matrix-conditioned cells, which we identified using the CV2 plot as 

described above (FDR < 10-3), were retained. Diffusion mapping was calculated separately for cells 

that were cultured on soft matrices (NV, D3Soft and D6Soft; Fig. 3a) and cells that were cultured 

on stiff matrices (NV, D3Stiff and D6Stiff; Fig. 3b). For each matrix, we performed PCA 

dimensionality reduction, and the diffusion components were calculated based on the top twenty 

principle components that maximized variance between transcriptomes with the local sigma 

calculated by nearest-neighbour approximation (k = 50). 

Matrix-directed cell differentiation dynamics was analysed using the MeRLOT package in R.6 Soft 

and stiff matrix scaffold trees were reconstructed using the first two diffusion components 

(CalculateScaffoldTree function in R). Principle elastic trees were calculated, and cells were 

assigned to 50 discrete support nodes that were aligned along the bifurcating branches 
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(CalculateElasticTree function in R). Setting the first support nodes that are associated with non-

conditioned MSC state as the initial pseudotime, pseudotime values were further propagated along 

the bifurcating branches of the support trees in proportion with the distance from 𝑡𝑡0 and cells were 

assigned accordingly (CalculatePseudotimes function in R). Next, cells were binned into 

pseudotime sets (25 bins for the trunk and for each of the branches), and dynamic gene expression 

profiles were averaged within each bin along the bifurcating trajectories of the soft and stiff matrix 

trees.7 Gene trajectories were further smoothed by fitting a natural cubic spline with three degrees 

of freedom (Figs. 4a and Fig. S5b).  

Gene trajectories along the Soft-Adipo and Stiff-Osteo were clustered using k-means, and the 

clusters were chronologically ordered according to the average pseudotime point of maximal gene 

expression. Genes that were differentially expressed between cell subpopulations (lfc > 1, adjusted 

FDR < 10-5) were ranked by similarity using a cosine-distance metric within each cluster, and 

trajectories of most similar genes within each cluster were plotted with respect to SoftAD (Fig. 3b-

i) and StiffOS (Fig. 3b-ii) branches. 

 

Permutation test of mechanically diverging genes  

The statistical significance of gene divergence along the SoftAD versus StiffOS trajectories was 

evaluated using a permutation test. Specifically, cells were randomly reassigned a branch label 

while maintaining the correct overall distribution of cells between branches. New branch curves 

were then calculated, and the normalized divergence area between the curves was calculated as 

described above. A distribution of the divergence area was obtained based on 1,000 random 

permutations, and p-value of the non-permutated divergence was calculated. 

 

Pathway analysis 

The activation of SRF and YAP1 signaling was evaluated by measuring the expression levels of 

respective target genes.8,9 Single-cell expression levels of target genes showing a minimum 

average expression (UMI > 0.5) were linearly rescaled to [0,1], and signaling pathway activation 

was scored in each cell by the average normalized intensity.  

 

Transcriptome-based scoring of adipogenic-osteogenic differentiation  

Adipogenic and osteogenic differentiation was scored based on a subset of established markers 

(adipocytes: PPARG, CEBPA, PLIN1, G0S2; osteocytes: COMP, TMEM119, DCN, BCAP31, 

ITGA5, COL1A1, ATF4, CREB3L1, FSTL3) using: 
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where ,c ig  is the transcript level of gene i in cell c. 

 

Transcriptome-based scoring of cell cycling 

Cell cycling scoring of single-cell transcriptomes based on a combined group of gene markers 

of S phase (43 genes) and G2M phase (54 genes) as listed in Supplementary Dataset S3.10 The 

single-cell expression intensities of these gene markers were z-scored normalized across cells 

and cell-cycling scores were obtained by averaging all gene markers per transcriptome. Cells 

in G1-phase will not express S phase nor G2M phase markers.    

 

Transcriptome-based scoring of oxidative phosphorylation state 

Oxidative phosphorylation was scoredusing a set of 23 genes that encode proteins of the 

electron transport chain (complexes I-V) and the ATP synapse complex. The single-cell 

expression intensities of these genes were z-score normalized and averaged. D3soft 

subpopulation was divided into low oxidative (< −0.23), mid (> −0.23 and > 0.13) and high (>

0.13) oxidative phosphorylation cells. 

 

Sequencing and processing of single-cell RNA data: TPM1.7, shTPM1, and Control cells 

scRNA profiling of TPM1.7, shTPM1 and control conditions was performed using MSCs that were 

isolated from two donors (Donor-1: Female age 43, weight 88 kg, height 179 cm. Donor-2: Female 

age 35). Cells were seeded at 5,000 cells cm-2 in polystyrene 75 cm2 flasks and cultured in basal 

medium for three days and three days in bi-potential induction medium. Droplet-based scRNA seq 

was performed as described above. Low-complexity poly-adenylated sequences were filtered out, 

the remaining sequences were de-multiplexed using the dropEst pipeline,11 and aligned to a human 

indexed reference genome (GRCh38.p12) using TopHat2 2.0.08.12 Gene expression loom file was 

generated based on the aligned transcript UMIs that included both spliced and unspliced sequence 

counts. Cell quality control was performed using the R software package Seurat3 to remove 

transcriptomes with < 500 genes or < 1,000 unique UMIs or cells with >25% mitochondrial RNA.13 

Log-scaled gene expression intensities were normalized according to transcript number. PCA 

dimension reduction of the single-cell transcriptomes was performed with respect to the highly 

variable genes and the top twenty principal components were UMAP-visualized. Graph-based 

clustering was performed in the PCA space according to the Seruat3 pipeline. 
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RNA velocity analysis 

RNA velocity was performed using the show.velocity.on.embedding.cor function in the velocyto 

package in R (La Manno et al., 2018). 35x35 grid RNA velocity fields were visualized based on the 

top two principal components of the single cell transcriptomes. Porjected arrows were square-root 

scaled. 

 

Population-level RNA sequencing  

Population-level RNA profiling was performed using MSCs that were isolated from two donors 

(Donor-1: Male age 32, 64 kg. Donor-2: Female age 43, weight 88 kg, height 179 cm). DDR-TPM1.7 

(overexpressed), shTPM1 (knockdown), and DDR Control MSCs were expanded on polystyrene 

plates in basal medium. Cell extracts were extracted by treating cells with Trizol reagent (Bio-Labs) 

and homogenizing with a 25-gauge needle. Cell lysates were mixed with Chloroform (Sigma-

Aldrich) in a 5:1 ratio. The aqueous phase was separated via centrifugation and purified using 

RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol. Biological triplicates of poly(A) 

RNA were extracted and genomic libraries were generated using the KAPA Stranded mRNA-Seq 

Kit (KAPA Biosystems). Single-end sequencing with a 30 million reads depth per sample were 

performed using NextSeq500 (Illumina) with the High Output Kit v2 (Illumina). Human genome 

alignment (hg19/GRCh38) was performed using Bowtie2,14 and unique reads were counted using 

the HTSeq package.15 Differential gene expression analysis was performed with DESeq2.16 
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Figure S1 | Matrix elasticity directs MSC differentiation toward soft and stiff tissue 
lineages. a, (i) Adipogenic differentiation was evaluated via Nile red neutral lipid staining of cells 
that were cultured for 3 days in basal medium and 7 days in basal, adipogenic, osteogenic, or 
bi-potential induction media on soft and stiff matrices. (ii) In some cells no lipids formed where 
in other cells the area captured by the lipid droplets was comparable with nucleus projected area 
or above. Scale bar: 10 µm. (iii) The fraction of positively stained cells (> half nucleus area) was 
high on soft matrices only under medium conditions that support adipogenesis. c, (i) Osteogenic 
differentiation was evaluated via Alizarin red staining of calcification deposition by cells that were 
cultured for 3 days in basal medium and subsequent 14 days in basal, adipogenic, osteogenic, 
or bi-potential induction mediu on soft and stiff matrices. (ii) Cells maintained a homogenous 
coverage along two weeks of culture under all specified conditions as demonstrated via Hoechst 
staining. Scale bar: 50 µm. d, Osteogenic differentiation was evaluated by average Alizarin red 
intensities across three replica showing baseline level osteogenesis in basal and adipogenic 
media and upregulation on stiff matrices in osteogenic and bi-potential medium conditions. Error 
bars indicate STD. MSCs were derived from a male donor age 32. 
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Figure S2 | Single-cell transcriptomes are clustered based on culture settings and matrix 
elasticities. a, Highly variable genes across non-conditioned, matrix-conditioned, and early-
differentiation induction single-cell transcriptomes are detected using a CV2-mean plot (orange). 
b, Single-cell transcriptomes cluster according to cell state (top left). MC (top right) and DI 
(bottom-left) cells cluster according to matrix elasticity. c, The technical replicates of NC, MC and 
DI cells (male donor age 32) are superimposed on the t-SNE map showing overlapping 
agreement across all conditions. d, The single-cell transcriptomes of donors D1 (female donor 
age 43) and D2 (female donor age 35) overlap on the UMAP field of TPM1.7, shTPM1 and 
Control conditions. NC: non-conditioned. MC: matrix conditioned. DI: differentiation induction. 
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Figure S3 | Soft matrix supports low-oxidative phosphorylation cells directed towards 
endochondral ossification. a, Comparison between single cell distributions of D0PS cells and 
matrix-conditioned D3Soft and D3Stiff subpopulation reveal the emergence of low oxidative 
phosphorylation (OxPhos) cells in the D3Soft subpopulation. Bars correspond to binned values 
of D3Soft cells. b, Projection analysis of D3Soft cells onto the transcriptome averages of early 
differentiating soft-matrix subpopulations D6SoftAD and D6SiftND cells was calculated with 
respect to differentially expressed genes (flc>1; FDR<10^-5). Low oxidative-phosphorylation and 
high oxidative phosphorylation D3Soft cells appear to sub-cluster in tune with transcriptome 
projections onto D6SoftNA and D6SoftAD cells, respectively. 
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Figure-S4 | Cell cycling is linked with osteogenic linage commitment of pre-osteoblastic 
progenitors. a. (i) Early-differentiating MSCs (Day-6) were cultured on glass and 
immunostained against the gene markers of cycling marker (KI67), osteogenesis (ATF4), 
adipogenesis (CEBPA), and DAPI. High nuclear KI67 cells (white arrowheads) express high 
nuclear ATF4 but not nuclear CEBPA counter to low nuclear KI67 cells (yellow arrowheads). 
Scale-bar: 50 µm. b. Single-cell transcript levels of MKI67 are correlated with (i) CEBPA and 
with (ii) ATF4 on soft and stiff matrix pseudotime diffusion maps. Cell cycling is restricted to 
matrix-conditioned MSCs on soft matrix but extends towards early-differentiation osteogenic 
cells on stiff matrix. MSCs were derived from a male donor, age 40. 
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Figure S5 | Soft matrices direct adipogenesis of multipotent cells and support 
endochondral ossification of non-adipogenic cells. a, Scaffold tree branch assignments of 
matrix conditioning (green), adipogenic/non-osteogenic (red), and osteogenic/non-adipogenic 
(blue) fates on (i) soft and (ii) stiff matrices serve as templates for principle elastic tree support 
nodes (black). b, (i) Comparison between the pseudotime gene trajectories of non-osteogenic 
Day-6 subpopulations show upregulation of CEBPA and downstream adipogenic markers on 
soft matrices. (ii) Comparison between the pseudotime gene trajectories of non-adipogenic Day-
6 subpopulations show upregulation of endochondral ossification and electron transport chain 
genes on soft matrix. c, Single-cell SRF activation map of early-differentiating subpopulations. 
tSNE map is reproduced from Fig. 1c. 
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Figure S6 | Perturbing tropomyosin-1 expression in MSCs. a, (i) Representative images of 
cells transduced with vectors for overexpression of tropomyosin-1.7 isoform conjugated to 
Dednra2 fluorescent protein (DDR-TPM1.7), short hairpin silencing RNA targeting TPM1 gene 
(shTPM1), and the corresponding controls expressing Dendra2 (DDR) and non-hairpin control 
sequence (Ctrl shRNA). Cells were immunostained against tropomyosin isoforms. Scale bar: 
100 μm. (ii) Quantitative immunofluorescence analysis of tropomyosin levels shows 
approximately twofold upregulation in TPM1.7 and twofold downregulation in shTPM1 cells 
compared with controls. b, Tropomyosin immunoblotting shows (i) ectopic overexpression above 
endogenous levels that increases protein levels twofold in TPM1.7 relative to DDR control, and 
(ii) twofold knockdown relative to Ctrl shRNA cells. Total protein levels were adjusted and 
normalized to GAPDH loading control. DDR: Dendra2 control. DDR-TPM1.7: Dendra2-
conjugated tropomyosin 1.7. Ctrl shRNA: Non-hairpin insert sequence. shTPM1: shRNA 
targeting TPM1. MSCs were derived from a male donor, age 40. 
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Figure-S7 | Bifurcation in RNA velocity fields is determined by tropomyosin-1 
perturbations: RNA velocity fields of (a) Control and (b) TPM1.7 overexpressing MSCs show 
effective bifurcating transcriptional flow towards osteogenic and non-osteogenic fates, counter 
to (c) shTPM1 MSCs. Intensities of gene markers of osteogenesis (ALPL, TMEM119, and 
TGFBI), early endochondral ossification (HPALN1), and cell cycling (MKI67) are independently 
normalized within each condition. MSCs were derived from two female donors age 43 and 35. 
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