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Supporting Information Text

Tissues as active two-component fluids

Mass conservation in growing tissues. In this work, we describe the tissue as a two-component system with (i) a cell phase
that accounts for cells and the surrounding extra-cellular matrix, and (ii) the interstitial fluid that permeates the cell phase.
Such a description has been introduced in Ref. (1). Here, we briefly review this approach to clarify the conceptual basis of
Eq. [6] in the main text.

The cell phase is characterized by a cell mass mc, a cell number density nc, and a cell volume Ωc, and we introduce similarly
mf , nf and Ωf for the interstitial fluid. The assumption that the cells and the fluid fill completely the space is written as:

ncΩc + nfΩf = 1 . [1]

We use this assumption to define the cell volume fraction φ = ncΩc and the fluid volume fraction nfΩf = 1 − φ. Mass
conservation in the tissue reads:

∂tρ+ ∂αjα = 0 , [2]

where ρ = mcnc +mfnf is the tissue density and jα = mcncvc
α +mfnfvf

α is the total mass flux with vc,f
α the cell and interstitial

fluid velocities. As a consequence of cell division and death, cell number is not conserved but obeys a continuity equation:

∂tn
c + ∂α(ncvc

α) = nc(kd − ka) , [3]

where kd and ka are the rates of cell division and apoptosis respectively. Using mass conservation [2], the cell continuity
equation [3], and assuming a constant fluid particle mass, we obtain the continuity equation for the fluid particle density (2):

∂tn
f + ∂α(nfvf

α) = −mc

mf n
c(kd − ka) − nc

mf
d
dtm

c, [4]

where d/dt = ∂t + vc
γ∂γ is the convected time derivative with respect to the cell flow. The above equation implies that a cell of

mass mc can be converted into mc/mf fluid particles and vice versa when cells die or divide.
We define the total volume flux vα = ncΩcvc

α + nfΩfvf
α. Using Eqs. [1], [3] and [4] we obtain the following expression for its

divergence (1):

∂αvα =
(

1 − ρc

ρf

)
φ

(
kd − ka + 1

Ωc
d
dtΩ

c
)

− φ

ρf
d
dtρ

c − 1 − φ

ρf (∂t + vf
α∂α)ρf ,

[5]

where we have defined ρc = mc/Ωc and ρf = mf/Ωf the cell and fluid particle mass densities. Assuming that cell and fluid
densities are constant and that ρc = ρf , the previous equation simplifies to yield ∂αvα = 0 (1). In the presence of the
drain, which imposes a nonvanishing fluid velocity at the inner boundary of the spheroid, the integration of the total flow
incompressibility in spherical coordinates yields Eq. [6] in the main text.

Constitutive equations for the isotropic and anisotropic parts of the cell stress. Following Refs. (1–3), we derive the constitutive
equations for the cell stress σc

αβ for a permeated tissue in the presence of electric fields. We decompose the cell stress tensor
into an isotropic contribution σc and a traceless part σ̃c

αβ , such that σc
αβ = σ̃c

αβ + σcδαβ .
We first discuss the isotropic cell stress. Cell volume Ωc and cell volume fraction φ are in general functions of the isotropic

cell stress σc, the anisotropic cell stress σ̃c
αβ , the electric field Eα, and the velocity difference Vα = vc

α − vf
α. A general equation

of state for the cell volume can therefore be written as:

Ωc = Ωc(σc, qαβ σ̃
c
αβ , pαEα, pαVα) , [6]

and a similar expression for the cell volume fraction φ. Since nc = φ/Ωc, we can use the equation of state [6] to write the time
dependence of the cell number density:

1
nc

dnc

dt =− 1
χ

dσc

dt − 1
χ0

d(qαβ σ̃c
αβ)

dt − 1
χ1

d(pαEα)
dt − 1

χ2

d(pαVα)
dt , [7]

where χ = nc(∂nc/∂σc)−1 and χ0 = nc[∂nc/∂(qαβ σ̃c
αβ)]−1, denotes the isotropic and anisotropic compressibilities of the cells,

and where we have defined the other compressibility coefficients as χ1 = nc[∂nc/∂(pαEα)]−1, and χ2 = nc[∂nc/∂(pαVα)]−1.
To write the constitutive equation for the isotropic stress in a closed form, we now eliminate nc. For this purpose the cell
continuity equation [3] can be rewritten as:

1
nc

dnc

dt = −vc
γγ + kd − ka , [8]
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and we specify a constitutive equation for the net growth rate of the tissue kd − ka. This growth rate in general depends on the
isotropic stress σc and may also depend on qαβ σ̃c

αβ , pαEα and pαVα. In the absence of anisotropic stresses, electric fields and
flows, a constant cell density is achieved when cell death compensates cell division. The resulting isotropic cell pressure is the
homeostatic pressure P c

h . To linear order, the net growth rate near the homeostatic pressure reads (1, 3):

kd − ka = η̄−1(P c
h + σc + ν0σ̃

c
αβqαβ + ν1pαEα + ν2pαVα) , [9]

where η̄ is a constant and will be identified as the bulk viscosity in the following, ν0 is a dimensionless coefficient that takes
into account the possible dependence of the growth rate on the anisotropic part of the stress, ν1 characterizes the influence of
the electric field on the growth rate and ν2 is a coefficient accounting for the effects of the relative motion of the cells and the
interstitial fluid to the growth rate. Using Eqs. [7]-[9], we obtain a general constitutive equation for the isotropic cell stress:(

1 + τ
d
dt

)
(σc + P c

h) + ν0

(
1 + τ ′

d
dt

)
σ̃c
αβqαβ

+ ν1

(
1 + τ1

d
dt

)
pαEα + ν2

(
1 + τ2

d
dt

)
pαVα = η̄vc

γγ ,

[10]

where τ = η̄/χ is and τ ′ = η̄/χ0 are the isotropic and anisotropic relaxation rates, τ1 = η̄/χ1 the relaxation rate associated
with the electric field, τ2 = η̄/χ2 the relaxation rate arising from a velocity difference. At long times that we consider in the
main text, we neglect the relaxation processes and Eq. [10] reduces to

σc + P c
h = η̄vc

γγ − ν0σ̃
c
αβqαβ − ν1pαEα − ν2pαVα , [11]

which is Eq. [2a] in the main text. In this long-time limit, cells are described as an active viscous fluid where η̄ is revealed as
an effective bulk viscosity due to cell division and death.

We now discuss the anisoptropic part of the cell stress σ̃c
αβ . We assume that the tissue behaves as an isotropic elastic

material in the absence of cell division and apoptosis. When these events are considered, a reference state for the stress cannot
be defined and we therefore express the changes of stress as a differential equation (1):

D
Dt σ̃

c
αβ = 2µṽc

αβ + D
Dt σ̃

c,a
αβ , [12]

where (D/Dt)σc
αβ = ∂tσ

c
αβ + vc

γ∂γσ
c
αβ + ωαγσ

c
γβ + ωβγσ

c
αγ refers to the corotational time derivative with respect to the cell

flow with ωαβ = (∂αvc
β − ∂βv

c
α)/2 the cell flow vorticity. This corotational derivative allows us to define a constitutive equation

which does not depend on a frame of reference. We have also introduced the shear-rate tensor ṽαβ , and, assuming that the
tissue is isotropic in terms of its elastic properties, we have introduced the cell shear modulus µ. The stress stemming from
active processes is denoted by by σ̃c,a

αβ . Note that for the shear mode, cell neighbor exchanges (T1 processes) play a role similar
to cell division and death. This is why the tissue shear viscosity is much smaller than the bulk viscosity, which requires division
and death. In general, this term can depend on any of the traceless symmetric tensors in our model, such that at linear order
we write:

D
Dt σ̃

c,a
αβ = − 1

τa

(
σ̃c
αβ − ζqαβ + ν3[Eαpβ ]st + ν4[Vαpβ ]st

)
. [13]

where τa characterizes the anisotropic stress relaxation time. The constitutive equation for the anisotropic stress finally
reads (2, 4): (

1 + τa
D
Dt

)
σ̃c
αβ = 2ηṽc

αβ + ζqαβ − ν3[Eαpβ ]st − ν4[Vαpβ ]st , [14]

where we have defined the effective tissue shear viscosity η = µτa. In the main text we consider the long-time limit and the
previous equation becomes:

σ̃c
αβ = 2ηṽc

αβ + ζqαβ − ν3[Eαpβ ]st − ν4[Vαpβ ]st , [15]

which is Eq. [2b] in the main text.
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