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Supporting Information Text

A. Microswimmer equations of motion. We model the motion of a microswimmer in one dimension by the well-known Najafi-
Golestanian swimmer (see also main text) (1). It consists of three beads of radius R at positions xi(t), i = 1, 2, 3, separated
by two arms of length L1(t) and L2(t) which vary over time t. The microswimmer agent proposes forces F1(t) and F3(t)
which act on the swimmer beads 1 and 3 (see left panels in main text Fig. 1). Since the microswimmer moves force-free,
the force on bead 2 is given by F2(t) = −F1(t) − F3(t). When the forces Fi(t), i = 1, 2, 3, are known, the velocities of the
beads vi(t) can be computed, and are linearly related to the forces via the mobility tensor M: vi(t) = Mij(t)Fj(t). The
components of the mobility tensor,Mij(t), consist of self-mobilitiesMii(t) and of cross-mobilitiesMij(t), i 6= j induced by
the hydrodynamic interactions (HI) between the beads. In the limit of far-field HI described by the Oseen approximation this
leads to the following linear relation between the velocities and forces (2):

v1(t) = F1(t)
6πηR + F2(t)

4πηL1(t) + F3(t)
4πη(L1(t) + L2(t)) , [1]

v2(t) = F1(t)
4πηL1(t) + F2(t)

6πηR + F3(t)
4πηL2(t) , [2]

v3(t) = F1(t)
4πη(L1(t) + L2(t)) + F2(t)

4πηL2(t) + F3(t)
6πηR . [3]

In order to prevent the microswimmer agent from contracting or stretching the arms to an infinite amount, we add piecewise
harmonic restoring forces FR(L1) and −FR(L1) to beads 1 and 2, respectively, and −FR(L2) and FR(L2) to beads 3 and 2,
respectively. We define FR(Li) for i = 1, 2 as

FR(Li) =


(Li − Lmin)×K if Li < Lmin

(Li − Lmax)×K if Li > Lmax

0 else ,
[4]

where K represents the spring constant of the harmonic restoring forces and Lmin and Lmax mark the minimum and maximum
extent of the arm lengths Li where the FR(Li) set in. The total forces acting on the outer beads are then F1 → F1 + FR(L1)
and F3 → F3 −FR(L2); by employing the force-free condition, the change in F2 can be written as F2 → F2 −FR(L1) +FR(L2).
We use the parameters K = F0/R, Lmin = 0.7L0 and Lmax = 1.3L0.

Basics of Neural Networks. An artificial neural network (ANN) is a set of units (neurons) which are interconnected with each
other such that an input vector, x(I) = (x1, . . . , xNI) is processed, in a (non-linear) tensor operation to an output vector,
y(O) = (y1, . . . , yNO), which can be seen as a function of the input of the realization, N , of the ANN, i.e. y(O) = N (x(I)).

Usually in ANNs, neurons are organized in layers, ν(l) = (ν(l)
1 , . . . , ν

(l)
Nl

), and the connection from neuron i in layer l to
neuron j in layer k is realized via elements, w(kl)

ji , in so-called weight matrices, W(kl) ∈ RNk×Nl : the output vector of all
Nl neurons, y(l) = (y(l)

i , . . . , y
(l)
Nl

) of layer l is related to the input, x(k)
j of neuron j in layer k (usually k = l + 1) by the

operation x(k)
j =

∑Nl
i=1 w

(kl)
ji y

(l)
i + b

(k)
j , or in matrix vector notation x(k) =W(kl)y(l) + b(k), where b(k) = (b(k)

1 , . . . , b
(k)
Nk

) ∈ RNk
is the so-called bias vector of neuron k. The layer-wise input is then subject to a usually non-linear activation function,
y(k) = f(x(k)) = (f(x(k)

1 ), . . . , f(x(k)
Nk

)), such that y(k) renders the layer-wise output of layer k. Such an activation function can,
for instance, be a perceptron activation fΘ(x) = (sign(x) + 1)/2 realized through the Heaviside theta function, a simple sign
function f±(x) = sign(x), a softer, continuous activation function such as the hyperbolic tangent fth(x) = tanh(x), a sigmoid
activation function fσ(x) = 1/(1 + exp(−x)), a rectified linear unit (“relu”) activation function frelu(x) = max(x, 0), a clipping
activation fclip(x) = max(min(x, 1),−1), or even the identity transformation fI(x) = x (the later being a linear activation
function). There are notably many more activation functions possible as they can be designed on demand.

Here we described a so-called dense feed-forward ANN architecture, which is, arguably, conceptually the simplest way of
describing these tensor like ANNs: information which is fed into the network, x(I), is gradually processed layer by layer. The
goal of a typical supervised learning task involving such feed forward ANNs is to optimize the weights, W(kl), and biases, b(k),
such that the output, y(O), of the ANN reproduces the correct output, Y(O), of already known training data, as we discuss in
the next section. By constraining the possible connections (see convolutional layers or residual blocks of ANNs) or by allowing
feedback loops (as done so in recurrent ANNs), the topology of the network can be modified in a way that it can cope more
efficiently with a given task. The success of the learning procedure strongly depends on the network topology but also on the
choice of activation functions, the cost function and on the learning algorithm.

Unsupervised Learning Using NEAT. For certain tasks, such as (for instance) object classification in images, usually a training
data set can be defined which maps a set of input data, xN = (x(I)

1 , . . . ,x(I)
N ), to a labeled set of desired output data,

YN = (Y(O)
1 , . . . ,Y(O)

N ); the weights and biases of the ANN can be trained in a supervised way until the ANN can faithfully
reproduce (i.e., fit) the desired output data via the actual ANN output data, yN = (y(O)

1 , . . . ,y(O)
N ). This is usually
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achieved by applying the back-propagation algorithm (3, 4), i.e., a gradient descent based algorithm, to minimize a cost-
function of the output data C(yN ,YN ) −→ min. The cost function might be a simple least mean squared function, i.e.
CLMSQ(yN ,YN ) =

∑N

i=1 |y
(O)
i −Y(O)

i |
2/N , but can also be a more complicated function.

To a certain extent, this approach of minimizing a cost function can be understood as a fitting procedure such that given
the input data, xN, the output of the ANN, yN, faithfully reproduces the desired output YN . ANNs are excellent tools to
perform (data fitting) tasks with high precision and with great numerical performance which are potentially too complicated or
which are numerically too demanding for being implemented via more conventional algorithmic approaches. The predictive
power of ANNs is rooted in the immense flexibility of how information can be processed by the network of interconnected
artificial neurons. On the one hand, to properly predict the desired output of a training data set with sufficient accuracy and
precision (i.e., to avoid underfitting) the architecture of the ANN needs to be complex enough. On the other hand, great
caution has to be taken during training to ensure that a complex ANN does not simply learn the correct output of the training
data “by heart”; such overfitting of the training data is usually associated with a poor quality of the predictions of an ANN
when being subjected to new input data which are not present in the training data set. For the purpose of avoiding overfitting
a variety of so-called regularization techniques exist. A successfully trained ANN will not only correctly map each element of
the training data set to a provided target (within sufficiently small numerical uncertainties), but will also return meaningful
results on input data that are similar to the training data set but which were never explicitly used in the training procedure.
In literature, this behavior is often referred to as the generalization capabilities of ANNs; it is thus often assumed that ANNs
are able to learn concepts of a given task after being trained on a task specific data set rather than plainly fitting the data
(this of course highly depends on the topology of the used ANNs but also on the particularly employed training procedure) (4).

In the unsupervised learning task that we employ in this manuscript no meaningful mapping between input data and
desired output data of the ANN can be provided a priori. This fact makes the learning procedure drastically more complicated
since standard algorithms such as back-propagation cannot simply be applied. In our example of a microswimmer learning
chemotaxis, the ANN needs to be trained by directly experiencing the problem at hand by trial and error (and positive
reinforcement through a suitable reward function). Many reinforcement learning (RL) algorithms (5) are available nowadays
(such as Q-learning (QL) (6), deep deterministic policy gradient (DDPG) (7), asymmetric actor critic agents (A3C) (8), or
proximal policy optimization (PPO) (9)) which are, in principle, capable of performing RL tasks. In general, their performance
depends on the specific problem and often requires parameter fine tuning of the employed RL algorithm.

In our case of a microswimmer learning chemotaxis we rely on the biologically inspired unsupervised learning algorithm of
NeuroEvolution of Augmenting Topologies (NEAT) (10). In contrast to most learning algorithms NEAT does not only optimize
the weights of an ANN in order to optimize a so-called target function, but, moreover, evolves the weights and the topology of
the ANN simultaneously (10). This algorithm helps identifying ANN solutions of minimal complexity (i.e. a minimal number
of neurons) required to successfully cope with a target task.

The NEAT algorithm we employ in this contribution (11) maintains a population (of fixed size) of different realizations of
ANNs and subjects them to an evolutionary process which mainly involves the concepts of generations, reproduction, mutations
and artificial selection. At each iteration step of the algorithm the current realization of the population renders a so-called
generation. For each generation every ANN is subjected to perform several cycles of a given RL task (such as, for instance, to
maximize the distance of uni-directional locomotion of a microswimmer in phase one or performing chemotaxis in phase two
of the main text, respectively). The quality of each ANN is measured by a fitness value which numerically quantifies how
well (or how poor) an ANN solution is adapted to execute the target task. In our case, the NEAT fitness value is chosen as
the cumulative reward of the RL task after one episode (see phase one in the main text) or the minimum cumulative reward
amongst several, qualitatively different episodes (see phase two in the main text); many other problem specific choices for
the reward scheme are possible. ANN solutions with high fitness values are in contrast to those with low fitness values more
likely to be selected for reproduction in order to form the next generation of the NEAT algorithm. In that way, good traits are
favoured during reproduction and will prevail over time while others will eventually perish. During reproduction two different
ANNs are merged together, following certain rules (11). The resulting ANNs are then subject to random mutations which
allows the algorithm to explore disconnected regions in configuration space, evolving the entire population gradually – in the
course of several, successive generations – towards an optimal solution to the target task.

Now we focus on the mere ANN architecture inherent to the algorithm: the above introduced layer-by-layer topology of, for
instance, dense ANNs can be generalized to a graph-based architecture such that every node can in principle be connected
with every other node in the network. This feature can be realized by either maintaining a feed-forward architecture (4) or,
by allowing feedback circles over iterative time steps, in a recurrent way (4). The NEAT genetic algorithm relies on this
generalized graph based approach for describing the architecture of ANNs, as explained in the following.

Each of the n = 1, . . . , N neurons of an ANN represents a uniquely labeled node with index νn, to which an associated vector
of j = 1 . . . , Nn input values is assigned, vn = (vn 1, . . . , vnNn); these values are the output signals from other nodes (or directly
the input to the network). The node input is then accumulated in An(vn) : RNn −→ R, either by summation, An(vn) ≡

∑Nn
j=1 vn j ,

by product, An(vn) ≡
∏Nn
j=1 vn j , or a similar operation, before the output of the neuron, on = fn(An(vn) + bn), is evaluated

through a non-linear activation function fn(x) ∈ R; here bn ∈ R is a so-called bias to the accumulated input An(vn). Note
that additional to the bias bn also the accumulation function, An(·), as well as the activation function, fn, are specific to each
neuron and represent optimization features of the NEAT algorithm. Next, the connectivity of neuron νn with other neurons,
νm, (νn being input to νm) in the network is realized by scalar weights, {wmn}, such that the vector product of all defined (or
non-zero wnm) weights with the related neurons, i.e. vm = (vm 1, . . . , vmNm) = {wmn · on}, represents the input to neuron νm.
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Such a network can have a far more complicated architecture as layer-wise feed-forward networks. However, ANNs evolved by
the NEAT algorithm have the tremendous potential of solving specialized tasks with a minimum number of parameters (10).

Phase One: Swimmer Action Layer. In this contribution we rely on artificial ANNs to control the arm lengths of a three bead
model of a microswimmer which can learn to self-propel through viscous, hydrodynamic media. Here we will discuss the
sub-network discussed in phase one in the main text, i.e. the swimmer action layer (SAL) whose objective is to actively
maximize the swimmer’s center of mass position, xc(t) = (x1(t) + x2(t) + x3(t))/3, over time given the swimmer’s arm lengths,
L1(t), L2(t) with LT(t) = L1(t) +L2(t) and the arm velocities V1(t) = dL1(t)/dt, V2(t) = dL2(t)/dt with VT(t) = V1(t) +V2(t).
The SAL gains control over the swimming gaits by suggesting forces F1(t), F3(t) which are applied to the outermost beads
located at x1(t) and x3(t) of the three-bead swimmer at each instance of time. To improve readability, we henceforward drop
the explicit time-dependency of the above mentioned quantities, unless we want to explicitly emphasize the time-dependence.

We define the input variables, L1, L2 and LT as well as V1, V2 and VT, in units of L0 and L0T
−1
0 , respectively (see main

text for definition of L0 and T0), and collect these scalar quantities in an input vector X as

X =
(
L1

L0
,
L2

L0
,
LT

L0
,

V1

L0T
−1
0

,
V2

L0T
−1
0

,
VT

L0T
−1
0

)
. [5]

The output of the ANN, i.e. the forces, can also be defined in vector form as F = (F1(X), F3(X)) and is written as an explicit
function of the input variables.

Swimmer Action Layer Solutions. As described in the main text, we perform ten independent training runs each consisting of
1000 consecutive NEAT generations. For phase one training we always use the swimmer initial conditions L1(0) = L0 and
L2(0) = L0.

Our NEAT training revealed solutions consisting of a dense SAL, directly connecting the input values, X, with the output
neurons, F, without using any hidden neurons (see main text and Fig. S3). The corresponding relation can be written as

FSAL(X) = F0 fth (WSAL ·X + bSAL) = (F1(X), F3(X)). [6]
Here, WSAL is the 2 × 6 dimensional weight matrix (connecting the six dimensional input vector with the two output

neurons), bSAL is a two dimensional bias vector and fth(x) represents an element-wise “tanh(x)” activation function, i.e.
fth(x) = [tanh (x1), . . . , tanh (xN )] for an N dimensional vector xN = (x1, . . . , xN ). The output of the SAL, all together given
by Eq. (6), represent the instantaneous actions F1(X), F3(X) ∈ [−F0, F0], which are applied in each time step during swimming
in the hydrodynamic environment.

The minimal complexity SAL, which we used in the main text, can be described by the following sparse weight matrix,
WSAL and bias vector bSAL:

WMC−SAL =
(

0 20.202 0 0 0 0
5.720 0 0 0 0 0

)
and bMC−SAL =

(
−18.559
−5.412

)
, [7]

which only requires L1 and L2 as input and consists of four ANN parameters in total. In the main text, we introduced the
weights w1 = 20.2/L0 and w2 = 5.7/L0 which correspond to the matrix elements (WMC−SAL)12/L0 and (WMC−SAL)21/L0,
respectively, while the biases b1 and b2 are collected in the vector bMC−SAL = (b1, b2). From the definition of the tanh function
we can see that for lengths L2,1 > L∗

2,1 = −b1,2/w1,2 the respective forces F3,1 are positive, and otherwise negative, leading
to a simple phase-shifted periodic output (Fig. 2A in main text and Movie S2) with period TS ≈ 217T0. The magnitudes of
w1 and w2 determine the steepness of the tanh function and hence how fast the forces approach their maximum values when
crossing L∗

2,1 (see Movie S2).
With the NEAT genetic algorithm we were able to identify even more efficient solutions for WSAL and bSAL in terms of

maximal average swimming velocity for uni-directional locomotion strategies via a SAL given by Eqs. (5) and (6). However,
such solutions are related to a more complicated internal architecture of the two-neuron based SAL. As illustrated in Fig. S3
there is a class of solutions of vastly different complexity which obtain very similar fitness values, i.e. very similar mean
swimming velocity. One example of this class of optimal solutions requires only four connections. The associated weights and
biases, denoted by WO−SAL−1 and bO−SAL−1, are given by

WO−SAL−1 =
(
−9.613 50.537 0 0 0 0
30.125 20.763 0 0 0 0

)
and bO−SAL−1 =

(
−32.050
−50.604

)
. [8]

The O-SAL-1 solution has a stroke period of TS ≈ 268T0 and is illustrated by the black ANN in the top left inset of the left
panel of main text Fig. 2A.

The ANN with the absolutely largest fitness which we have encountered in ten independent NEAT training runs (see Figs. S1
to S4) additionally features one hidden neuron that forwards the weighted, sigmoid-activated input V2 to the F3 output neuron
(see gray ANN in the top left inset of the left panel of main text Fig. 2A). Arguably, the terminology swimmer action layer
does not fully apply to this kind of ANN but for the sake of simplicity we refer to this NEAT ANN solution as optimal SAL 2
(O-SAL-2). In Matrix notation, the O-SAL-2 NEAT ANN can be described by introducing an additional sigmoid activated
layer for the hidden neuron as

xσ(X) = fσ

(
W(1)

O−SAL−2 ·X + b
(1)
O−SAL−2

)
, [9]
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with a (sparse) weight matrix and bias given by

W(1)
O−SAL−2 = (0, 0, 0, 0,−132.173, 0) and b

(1)
O−SAL−2 = 4.453. [10]

The scalar output xσ(X) given by Eq. (9) can now be used to extend the regular SAL input X = (L1/L0, . . . , VT/L0T
−1
0 )

defined in Eq. (5) as

Xσ = X ∪ (xσ(X)) =
(
L1

L0
, . . . ,

VT

L0T
−1
0

, xσ(X)
)

[11]

and, subsequently, the extended input Xσ ∈ R7 can be subjected to a tanh-activated SAL given by Eq. (6), but with a 2× 7
weight matrix W(2)

O−SAL−2 and an associated bias b(2)
O−SAL−2 defined by

W(2)
O−SAL−2 =

(
0 43.705 −5.746 0 0 −26.753 0

12.339 0 27.420 0 20.406 0 −68.68

)
and b(2)

O−SAL−2 =
(
−26.998

0.947

)
. [12]

The O-SAL-2 solution has a stroke period of TS ≈ 260T0 and is illustrated by the gray ANN in the top left inset of the left
panel of main text Fig. 2A.

In this contribution our choice for the specific set of the weights and biases of the SAL is given by Eq. (7) due to the
strikingly simple form of the weight matrix. We use these weights to further study microswimmer chemotaxis with a more
advanced chemotaxis agent (see main text Fig. 3A).

Comparison of microswimmer fitness to 4-state solutions. We now compare the fitness of our optimum SAL solutions (v̄ ∼
1.36 · 10−3R/T0) to 4-state solutions where the microswimmer expands/contracts one arm, while the second arm length is
constant. In such a way the arms perform a square in (L1,L2) phase space (see Fig. S6).

The fact that we use elastic restoring forces with spring stiffness K = F0/R allows the arms to approximately take values of
the lengths Lα = Lmin − R = 0.6L0 = 6R and Lβ = Lmax + R = 1.4L0 = 14R (see e.g. solutions in Fig. 2A in main text).
Hence we consider the lengths L1, L2 ∈ {Lα, Lβ} in the 4-state calculations.

In order to model the dynamics of the arms in the 4-state solution we consider two possible scenarios: First, we allow the
arms to change their length with constant speed |V1,2| = 0.138R/T0, which is approximately the fasted velocity possible in our
system: it occurrs when F1 = F2 = ±F0 and hence F2 = ∓2F0 (see Eqs. (1) to (3)). We solve Eqs. (1) to (3) numerically for
the four subsequent paths in (L1,L2) space under the constraint of constant arm velocities and evaluate the time dependent
arm and center of mass velocities and the forces necessary to fulfill the motion. This leads to a mean swimming speed (fitness)
of v̄ = 2.1 · 10−3R/T0 and is hence about 50% faster than our O-SAL solutions despite the fact that the stroke period is
TS = 4(Lβ − Lα)/|V1,2| = 232T0 and hence about 10% larger compared to our O-SAL solutions (TS = 260T0). Note, however,
that this high fitness is only possible for this 4-state solution since the forces are allowed to exceed ±F0, as can be seen in
Fig. S6A.

In a second case of 4-state solutions (Fig. S6B), the forces are not allowed to exceed ±F0, but the arms are allowed to move
as fast as possible under this constraint. The forces on the beads can be obtained as follows: For example, when the arm
lengths (L1, L2) pass from state (Lα, Lα) to (Lβ , Lα) the first arm stretches with maximum possible velocity when F1 = −F0,
and F3 (and hence F2 = −F1 − F3) can be obtained from the constraint that L2 has to be constant using again Eqs. (1) to (3).
Similar the other three state transitions can be computed. In this way we obtain a relatively large stroke period TS = 449T0
and fitness v̄ = 1.08 · 10−3R/T0. Hence, for this case, our O-SAL solutions are about 25% faster than this 4-state solution
reiterating the fact that our RL algorithm optimizes the nontrivial policy and dynamics in (L1, L2) shape space which differ
considerably from the simple 4-state solution.

MC-SAL solution as dynamical system. Inspired by the different quality of SAL solutions obtained in phase one (swimming
vs. resting arm lengths, see also Fig. S3B,C), we consider as an important example the MC-SAL topology with solution
F1 = F0 tanh(w1L2 + b1) and F3 = F0 tanh(w2L1 + b2) (see main text), which shows both swimming and resting solutions
depending on the value of the weights. Together with restoring forces FR (Eq. (4)) the total forces on the beads can be written
as F1(L2) + FR(L1) and F3(L1)− FR(L2) and are hence independent of the arm velocities which do not enter in the obtained
MC-SAL policy. Therefore, the forces can be eliminated from Eqs. (1) to (3), and transformed into a dynamical system for
the arm lengths dL/dt = V(L; W) using L = (L1, L2), V = (V1, V2) and the weight vector W = {w1, w2, b1, b2} (as control
parameters):

12π dL1

dt
= (−4 + 6

L1
)FR(L1) + (2− 3

L1
− 3
L2

+ 3
L1 + L2

)FR(L2)− 4 tanh(b1 + L2w1) + 6 tanh(b1 + L2w1)
L1 [13]

− 2 tanh(b2 + L1w2) + 3 tanh(b2 + L1w2)
L1

+ 3 tanh(b2 + L1w2)
L2

− 3 tanh(b2 + L1w2)
L1 + L2 [14]

12π dL2

dt
= −3 tanh(b1 + L2w1)

L1
+ 3 tanh(b1 + L2w1)

L1 + L2
− 3 tanh(b1 + L2w1)

L2
+ 2 tanh(b1 + L2w1) [15]

− 6 tanh(b2 + L1w2)
L2

+ 4 tanh(b2 + L1w2) + FR(L1)
( 3
L1 + L2

− 3
L1
− 3
L2

+ 2
)

+
( 6
L2
− 4
)
FR(L2) [16]
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We can now numerically integrate this system of ordinary differential equations and obtain solutions of phase space curves
(L1(t), L2(t)) which depend on the initial conditions L0 and the parameters (weights W). For a given set of initial conditions
and parameters our system approaches a stable attractor in the two-dimensional (L1, L2) phase space, which is either a fixed
point or a limit cycle. For example, as expected, inserting the W-values from the MC-SAL solution presented in the main text,
then results in stable limit cycle solutions corresponding to swimming solutions. By tuning the parameters we are able to
identify transitions from a resting state (fixed point) to a swimming state (limit cycle). This we have illustrated in Fig. S7
where we have used the same weights and biases obtained for the MC-SAL solution shown in the main text, but only varied the
weight w1. We can see that for small w1 both arms expand until a fixed point length L∗ = (Lmax +R,Lmax +R) is reached.
When increasing w1, this fixed point is shifted and becomes unstable, and a bifurcation to a stable limit cycle in (L1, L2)
phase space emerges which corresponds to swimming solutions, including the MC-SAL solution presented in the main text
(w1 = 2.02/R). By increasing w1 further the swimming solutions disappear, and via a second bifurcation another stable fixed
point at L∗ = (Lmin −R,Lmin −R) appears, where the swimmer ends in a stable contraction of the arm lengths.

Conditional Permutation Control: Employing Symmetries of the Model. The equations of motion of the three bead swimmer
are mirror symmetric for rightward and leftward motion: applying −F3(t) to bead one (x1) and −F1(t) to bead three (x3)
following a force-trajectory of swimming to the right (see Fig. 2A in the main text) the microswimmer will move to the left (i.e.
vi(t)→ −vi(t)).

Such symmetries of the governing equations of motion can be employed, in general, not only by predefined action-trajectories
but also directly by the policy of an agent whose input and output can be related and transformed by a corresponding symmetry
transformation. In our case, swimming to the left can be realized with the same policy as swimming to the right (given, for
instance, by the SAL defined in Eq. (6)), but in a mirror symmetric way:

Fperm. SAL(X) = PF · FSAL(Px ·X). [17]

Eq. (17) represents the permuted SAL policy for intentional leftward motion of the microswimmer. To evaluate the forces
Fperm. SAL(X) defined by Eq. (17) we first permute the input, X∗ = Px ·X, apply the SAL to the permuted input according
to Eq. (6), i.e. F∗

SAL = FSAL(X∗), and transform the output (which has been evaluated for rightward motion) accordingly,
Fperm. SAL = PF · F∗

SAL. The permutation matrices, Px and PF , are defined by

Px =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 , [18]

exchanging L1 ↔ L2 and V1 ↔ V2, and

PF =
(

0 −1
−1 0

)
[19]

exchanging F1 ↔ −F3. Note that PxPx = Ix and PFPF = IF yield the 6× 6 and 2× 2 identity transformations when being
applied twice thus forming a group with two elements (left- and rightward motion) acting on the input X and on the output F,
respectively.

If an agent has access to additional information about the environment (such as the chemotaxis agent shown in main text
Fig. 3A which can sense the value of a chemical field, c(x)), it can decide which operation to perform in order to maximize
the reward (i.e. if swimming to the left or to the right is the better choice). When some basic operations are known from a
preceding training-stage (e.g. phase one in the main text of this contribution), the agent can make use of this already obtained
knowledge and does not need to learn the entire, rather complex task at once, which makes a subsequent, more specialized
training considerably more efficient. In this contribution, the agent’s task in phase two in the main text is to identify the
chemical gradient ∇c(x) and to swim towards the maximum of the chemical field. If the gradient is available as a binary
variable, i.e. g = 0 for ∇c(x) > 0 and g = 1 for ∇c(x) < 0, this information can be used to apply the linear transformation
given by Eq. (17), dependent on the value of g, as

FPCL(X, g) = PgF · FSAL(Pgx ·X), [20]

with P0
x = Ix and P0

F = IF ; thus, either Eq. (6) or Eq. (17) is applied depending on the value of g = 0 or g = 1, respectively.
As we demonstrate via Eq. (20) both motions (left- and rightward self-propulsion) can be related with a conditional group

transformation of the input (and appropriately of the output) of the SAL. We introduce two permutation control layers (PCL)
in the chemotaxis agent (main text Fig. 3A) which employ the transformation given by Eq. (20) as a function of the prediction
D of the sign of the chemical gradient ∇c(x) (see main text): the conditional transformation given by Eq. (20) acting on both,
the input and output of the SAL can be realized as two separate layers in an ANN, i.e.
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XD =
[
fΘ− (D)× Px + (1− fΘ− (D))× Ix

]
·X and [21]

FD =
[
fΘ− (D)× PF + (1− fΘ− (D))× IF

]
· FSAL(XD), [22]

which take respectively as input (i) X and F and, additionally, (ii) the predicted sign D of the gradient. The PCL controls via
a negative perceptron activated channel, g = fΘ− (D) = Θ(−D), if the permutation is applied (g = 1) or not (g = 0). The PCL
approach is schematically visualized in Fig. S8.

The binary conditional transformation proposed in this contribution can directly be generalized to more complex tasks
featuring more than two operations which are related by symmetry transformations of their input variables and their output.
In that way, an agent only needs to learn how to perform one operation (or a few, qualitatively different operations) gi(X) from
a set of NG operations, {g1(X), . . . , gNG(X)}, which are related by transformations of the agent’s in- and output variables,
gj(X) = Oji(gi(Iij(X)): first, Iij(·) transforms the input X, required to perform a particular operation gj , into the frame of
reference of the known operation gi. Subsequently, the operation gi is employed and the output of operation gi is transformed
by Oji(·) into the frame of reference of operation gj . The agent then only needs to learn how to decide, which of the set of
transformations, {g1(X), . . . , gNG(X)}, to apply based on ND additional measurements D = {D1, . . . , DND} of the environment;
the total input of the agent is the union X ∪D.

Phase Two: Fitness Function and Training of the Chemotaxis Agent. To train the chemotaxis agent depicted in Fig. 3A in the
main text we define the reward function rc =

∑NI
i=1[xc(ti)− xc(ti−1)]D(ti), where D(ti) = sign[∇c(xc(ti))] = ±1 represents

the sign of the gradient at consecutive instances of time ti = iT0 = ti−1 + T0, and NI the number of steps (see main text). In
that way, rc represents the total distance that a particular microswimmer realization moves along an ascending gradient during
the total integration time TI = NIT0.

We train the different chemotaxis agents (main text Fig. 3) solely on piece-wise linear chemical fields, c(x) = max(0, a−
k|x− x0|), assuming amplitudes a in the range of a/c0 ∈ [98, 102] and slopes k in the range k/c0R−1 ∈ [0.99, 1.01]. The fields
are centered at x0 and below we use positive and negative values of x0 to allow positive and negative slopes k.

Based on the general reward scheme for RL learning introduced in the main text we define a (necessarily) more complicated
NEAT fitness function for phase two learning (compared to phase one): during each RL step every microswimmer chemotaxis
agent from the current NEAT generation has to perform chemotaxis for Nc = 4 different chemical environments, namely at
x0/R ∈ [−10,−0.4, 0.4, 10], for given values of a and k specified in Nc = 4 independent episodes. To avoid that the agent learns
the field values or field gradients by heart, we chose the values for a and k at random at the beginning of each episode (however,
within the related ranges defined above). Notably, for each generation of N = 288 ANN based microswimmer agents in the
NEAT genetic algorithm (i.e., for each RL step) we use the same chemical field amplitude of a = (1± 2× 10−2 δa)a0 with a
slope of k = (1±1×10−2 δk)k0, where a0 = 100c0 and k0 = 1c0/R0. Furthermore, we allow random initial configurations of the
arm-lengths L1(0) = δL1 and L2(0) = δL2 in the range [Lmin, Lmax] for each RL episode, always ensuring that xc(0) = 0; the
uniformly distributed random numbers δa, δk ∈ [0, 1] and δL1, δL2 ∈ [Lmin, Lmax] vary for each realization of a microswimmer
agent. We evaluate the respective chemotactic reward rc for every microswimmer instance in a NEAT generation with the
specified field parameters a and k for all four field positions x0/R ∈ [−10,−0.4, 0.4, 10]. We then define the NEAT fitness
v̄D = min(rc)/TI of one RL step for every individual microswimmer as proportional to the minimum value min(rc) of the
Nc = 4 cumulative rewards which the respective chemotaxis agent has collected in the independent episodes. Similar to phase
one, v̄D represents the mean swimming velocity but now projected onto the direction up the gradient. The objective of RL of
chemotaxis via NEAT is to identify a NEAT ANN of a chemical gradient block (see main text Fig. 3B,C) by means of genetic
processes with whom the fitness value related to phase two is maximized.

We present the learning progress (and details on the different training procedures) for the chemotaxis agents depicted in
Fig. 3 in the main text for spatial gradient sensing in Fig. S9 and for temporal gradient sensing in Fig. S12 to S14, respectively;
notably, we also used smaller slopes of k0 = 0.1 c0/R for the training of temporal gradient sensing agents (see Fig. S12 to S14).
The corresponding NEAT ANNs for the spatial and temporal gradient sensing chemotaxis agents (see Figs. 3C,E) are specified
below.

Spatial Chemical Gradient Estimation. The spatial chemical gradient estimator (SG) introduced in Fig. 3B of the main text
features an ANN that is to be identified by the NEAT algorithm via phase two RL (defined in the main text and above). The
NEAT ANN solution for the SG agent depicted in Fig. 3D of the main text (see also Movie S3) can be represented by a single
layer ANN. The chemical field at all three bead positions is measured in units of c0 by the agent such that the input, xSG, and
output, G, of the NEAT ANN become

xSG = 1
c0

(c(x1(ti)), c(x2(ti)), c(x3(ti))) [23]

G = fclip(WSG · xSG + bSG), [24]

with weights and biases given by

WSG = (−71.147, 0, 71.16) and bSG = 1.373, [25]
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and with fclip(x) = max(min(1, x),−1) being the clip-activation function. The NEAT ANN output G given by Eq. (24) is
forwarded to the output neuron of the SG agent D(G) (see main text Fig. 3B) as

D = f±(G), [26]

where f±(x) = sign[x] ensures that D ∈ {−1, 1}.

Recurrent Chemical Gradient Estimation. For the temporal chemical gradient sensing we evaluate the chemical gradient by
temporal means, as schematically visualized in Fig. 3C of the main text. We define the input, xTG(t), for temporal chemical
gradient sensing in the following way

xTG(ti) =
(
LT(ti)
L0

,
VT(ti)
L0T

−1
0

,
c(xc, ti)
c0

)
, [27]

capturing the total arm length LT(ti) and velocity VT(ti) of the swimmer in units of L0 and L0T
−1
0 , respectively, and the

instantaneous value of the chemical field at the center of mass position, cc(ti) = c(xc, ti), in units of c0. The goal of the
temporal CG block is to predict the sign D(ti) of the chemical gradient ∇xcc(ti) at the swimmer’s center of mass xc at time ti.

As mentioned in the main text, we subdivide the temporal CG block into (i) a NEAT ANN block and (ii) into a recurrent
chemical memory control (CMC) cell (see main text Fig. 3C). (i) The NEAT ANN’s primary goal is to predict the temporal
gradient Gy(ti) ∼ ∇xcc(ti) but via a second output Cy(ti) it controls the future action of the CMC cell. (ii) The CMC cell
pre-processes, based on the recurrent value of Cy(ti−1), the value of the chemical field cc(ti) for the NEAT ANN using an
internal memory M(ti) of the chemical field. Based on this recurrent chemical interface, i.e. on the input xCMC(ti) defined as

xCMC(ti) = (Cy(ti−1), Gy(ti−1),M(ti−1)) [28]

we define a particular method how the recurrent information is processed between successive time steps ti−1 and ti and
how the memory unit is updated based on the recurrent control signal. For that purpose we introduce the following coupled,
conditional equations

Cx(ti) = αCy(ti−1) + β

(
cc(ti)
c0
−M(ti−1)

)
, [29]

Gx(ti) = Gy(ti−1), [30]

M(ti) = αM(ti−1) + β

(
cc(ti)
c0

+ δc

c0

)
, [31]

which, in our case, are entirely controlled by the two binary variables α = (1− fΘ(Cy(ti−1))) and β = 1− α = fΘ(Cy(ti−1))
through a perceptron activation, fΘ(Cy(ti−1)) = Θ(Cy(ti−1)). The random variable δc in Eq. (31) accounts for noisy memory
readings as discussed in the main text. An ANN representation of the CMC cell defined via Eqs. (29) to (31) is shown in
Fig. S11A.

The CMC cell provides the NEAT ANN with recurrent inputs Cx(ti) and Gx(ti) which cover information about the temporal
field gradient. The NEAT ANN, that is to be identified by the NEAT algorithm via phase two RL (discussed in the main text
and above) maps the input xR(ti), defined as

xR(ti) =
(
LT(ti)
L0

VT(ti)
L0T

−1
0

, Cx(ti), Gx(ti)
)
, [32]

onto two scalar output values, yR(ti) = N (xR(ti)), i.e.

yR(ti) = (Gy(ti), Cy(ti)) . [33]

Gy(ti) is the predicted chemical gradient at the swimmer’s center of mass xc at time ti and Cy(ti) is the recurrent control
output forwarded to the CMC cell.

The output of the entire temporal CG block is the predicted sign D(ti) of the chemical gradient ∇xcc(ti) which we define as

D(ti) = f±(Gy(ti)), [34]

where f±(x) = sign[x] is the sign function. Thus, the temporal CG block maps xTG(ti) given by Eq. (27) onto D(ti) given by
Eq. (34) via the internal recurrent mechanisms given by Eqs. (28) to (33).

We want to stress that, aside from the input and output interface of the NEAT algorithm given by Eq. (32) and (33), we
have only specified that Cx(ti) and Gx(ti) represent recurrent signals which are related to the outputs Cy(ti−1) and Gy(ti−1)
of the NEAT ANN at the previous time step ti−1 = ti − T0 via Eqs. (29) to (31):

The NEAT algorithm is used to identify the ANN, N , which processes the input xR(t) to the output yR(t) such that the
swimmer maximizes the mean swimming velocity v̄D into the direction up the gradient of a chemical field cc(t) (see phase
two in the main text and above). The complexity of the final, NEAT-evolved ANN depicted in main text Fig. 3E is, again,
remarkably simple such that, in addition to the fixed recurrent topology defined by Eqs. (27) to (34), the recurrent control
output can be written as
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Cy(ti) = fclip

(
WC ·

LT(ti)
L0

+ bC

)
, [35]

and the gradient estimate Gy(ti) takes the form

yI(ti) =WI ·Gx(ti) + bI, [36]
yP(ti) = Π (WP ⊗ (Gx(ti), yI(ti))) + bP, [37]
yR(ti) = frelu(WR ⊗ yP(ti) + bR), [38]
Gy(ti) = fclip(Π (WG ⊗ (Gx(ti), yP(ti), yR(ti), Cx(ti))) + bG), [39]

with weights and biases given by

WC = (3.3001) and bC = −7.3894, [40]
WI = (−7.3303) and bI = −3.5747, [41]
WP = (9.9623, 3.7959), and bP = 31.6729, [42]
WR = (−0.9578) and bR = 0.02371 and [43]
WG = (4.6648, 1.4068,−2.9839,−4.0215) and bG = −7.3599. [44]

Π(x) = x1·x2 . . . xN denotes aggregation by product of the components of a vector x = (x1, . . . , xN ) and a ⊗ b = (a1b1, . . . , aNbN )
is an element-wise product of two vectors a = (a1, . . . , aN ) and b = (b1, . . . , bN ). The activation functions used in Eqs. (28) to
(39) are given by fclip(x) = max(min(x, 1),−1), f±(x) = sign[x], and frelu(x) = max(x, 0) and are referred to as linear clip-,
sign- and relu-activation functions, respectively. Note, that in this contribution we clipped the output values Cy(ti) and Gy(ti)
of the ANNs to an interval of [−1, 1].

The entire temporal chemical gradient sensing block of the recurrent chemotaxis agent is defined through Eqs. (27) to (39)
and can be subdivided into two self-contained sub-blocks: (i) the recurrent chemical memory control (CMC) cell introduced in
phase two in the main text which is defined by Eqs. (29) to (31) and illustrated in Fig. S11A and (ii) the evolved NEAT ANN
defined by Eqs. (35) to (39) (see main text Fig. 3E).

The task of the CMC cell is to control the entire process of recurrent feedback and memory updates of the chemical field
within the microswimmer-agent. Per default, i.e. whenever α = 1, the recurrent inputs of the current time step are the recurrent
outputs from the previous ANN evaluation, i.e. Cx(ti) = Cy(ti−1), Gx(ti) = Gy(ti−1) and M(ti) = M(ti−1). As soon as the
control aspect of the recurrent process is activated, i.e. when β = 1, the memory unit is updated M(ti) = c(xc, ti)/c0 + δc and
the recurrent input Cx(ti) of the current time step ti is defined as the (delayed) chemical gradient Cx(ti) = cc(ti)/c0−M(ti−1).
In other words, the CMC cell can act in two different modes, namely as a bypass that maintains the current state of its

input, or as a temporal chemical gradient estimate with respect to previously measured chemical field values; both modes are
schematically depicted in Fig. S11B,C.

The dynamical behavior of the input and output signals of the NEAT ANN for different chemical environments is depicted
in Figs. S15 to S17. These figures highlight the two mechanisms the NEAT ANN unites: (i) The control output defined via
Eq. (35) is sensitive to the total arm-length of the swimmer and is activated whenever the latter exceeds LT(ti) & 2.23L0 (see
Cy(ti) in Figs. S15 to S17). Given the periodic swimming gates of the SAL block in the chemotaxis agent (see main text
Fig. 3A and LT(ti) in Figs. S15 to S17), the control neuron is periodically activated and thus acts as a natural pacemaker for
inducing measurements of the chemical field. (ii) The chemical gradient estimate defined via Eq. (39) is a highly non-linear
function which correlates the previous values of the gradient estimate Gx(ti) (to the third power), the relu-activated Gx(ti)
(squared) and the recurrent value of the control neuron, Cx(ti), in a clip-activated neuron.

Chemotaxis Learning Progress. We performed ten independent training runs, (i) for the spatial gradient estimator (see main
text Fig. 3B,D) and (ii) for the temporal (recurrent) chemical gradient estimator (see main text Fig. 3C,E). For both cases
we used two different initial conditions for the swimmer arm lengths, namely (i) random initial conditions, and (ii) equal
arm-lengths L1(0) = L2(0) = L0 at the beginning of each RL episode.

Typical results of the training progress (i.e., of the fitness versus NEAT generations), the corresponding NEAT ANN
solutions and the chemotactic behavior of the respective spatial chemical gradient agents for selected chemical environments are
presented in Fig. S9. For the given episode-setup of phase two RL, the randomization of the initial arm lengths during training
helps the NEAT algorithm in identifying numerically more robust spatial sensing ANNs, such as given by Eq. (26), that are able
to perform chemotaxis in gradients of steepness k of the chemical field which have not been used during training (Fig. S9C).
The random initial conditions for the arm lengths result in a stochastic training progress since different initial conditions belong
to slightly different optimum ANN solutions. Because of the simple ANN structure training basically converges after 30 NEAT
generations.

In Fig. S12 we show typical training curves for the temporal chemical gradient estimators which have been performed
at steepness k0 = 1 c0/R (left) and k0 = 0.1 c0/R (right), again, for both random initial arm lengths (top) and for equal
initial arm lengths (bottom). In contrast to the training of spatial sensing ANNs the temporal gradient agents had to train
significantly longer, i.e. hundreds or even thousands of RL steps. Interestingly, for k0 = 1 c0/R, compared to training with
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initial equal arm lengths, we found that training with initial random arm lengths typically approaches the optimum solution
faster, leads to less biased solutions, and allows to perform chemotaxis at very small gradient steepness k, see Fig. S14A,C.
Training at smaller k0 = 0.1 c0/R is, however, less stable under random arm length initial conditions, the optimum fitness
fluctuates more strongly, and occasionally even decreases towards zero fitness, see Fig. S14B.

In Fig. S13 we show the corresponding ANN solutions obtained from the training runs shown in Fig. S12: While in B-D we
show the final solution at generation 15000, in A (corresponding to the solution shown in main text Fig. 3E) we show a solution
which already occurred at ∼ 300 generations, but which has already optimum fitness despite its simple topology. Interestingly,
the networks shown in A,C,D use the (periodically varying) total swimmer arm length LT as a decision input for the control
neuron Cy, while the solution shown in B does not make use at all of the internal locomotive state of the swimmer.

In Fig. S14 we have compared corresponding typical trajectories in a linear chemical field of different steepness k. It
demonstrates the diversity of k values microswimmers which have learned in different training environments are able to perform
chemotaxis.

In order to better understand the operation of the ANNs obtained for temporal sensing shown in the main text and in
Fig. S13A, we have shown the interplay between swimmer trajectory, input signals, chemical memory, gradient estimators
and control neurons in Figs. S15 to S17. It demonstrates the decisions a microswimmer makes about keeping or changing the
direction based on the temporal measurement of the chemical field. Details are given in the figure captions.

Effect of Noise and Gradient Steepness. The chemotactic response of the temporally sensing microswimmer discussed in the
main text was trained in chemical gradients of slope k/c0R−1 ∈ [0.99, 1.01]. As shown above, we found that after training the
swimmer is able to perform chemotaxis in much weaker gradients, and, as shown in the main text, to perform biased run-and
tumble motion in the presence of noise. In Fig. S20 we show trajectories of ensembles of 100 non-interacting microswimmers
moving in constant gradients c(x) = kx for different noise strengths ξ and for a broad range of gradient steepness k. Depending
on the noise strength, we see either ballistic behavior moving up the gradient, run-and-reverse motion up the gradient, or
run-and-reverse motion in the direction against the gradient due to the negative bias visible for this microswimmer at small k
or sufficiently large ξ values. These trajectories form the basis for Fig. 4D shown in the main text (see discussion in main text)
which show the mean chemotactic drift velocity vc, defined as the ensemble and time average of the individual microswimmer
velocities, depending on k and ξ .

In Fig. S21 we show the chemotactic behavior of microswimmers which have learned in four different environments (k0 = c0/R
and k0 = 0.1c0/R, each with random/equal initial arm lengths during training, see e.g. respective ANN solutions in Fig. S13).
The left column shows the chemotactic velocity compared to the MC-SAL fitness, vc/v̄MC , depending on the noise strength ξ
for different values of the gradient steepness k. In contrast, the center columns show vc/v̄MC depending on k for different ξ.
The right column shows the extracted run times to the right, τR, and to the left, τL (see also main text). We can see that
the microswimmers which use the swimmer length LT as decision-making input for the measurement of the chemical field
through the control neuron Cy are able to perform chemotaxis for a broad range of gradient steepness and noise levels, while
the network which does not use the internal state of the swimmer fails to perform chemotaxis in gradient steepness not used
during training.
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Movie S1. Evolution of the artificial neural networks in phase one shows the time evolution of the fittest
network per generation, quantified by its fitness v̄. The connections between neurons are color-coded in
terms of the strength of the weights. Color-coding of the neurons corresponds to their bias. In addition the
(L1, L2) and (F1, F3) phase space curve of the network output in the absence of a chemical field are shown. The
transition from non-swimming to swimming solutions is indicated by the emergence of periodic solutions in
these phase space plots.

Movie S2. Dynamics of a microswimmer in the absence of a chemical field (corresponding to blue trajectory
shown in Fig. 2A of the main text). Top left: The x axis shows the positions xi of the three beads (gray
trajectories and red circles (not to scale)) and of the center of mass xc (black trajectories and gray diamond).
The thickness of the arms (blue) represents the strength of the forces applied to the outer beads (thin:
extraction; thick: compression). Top right: Dynamics of the arm lengths in (L1, L2) phase space (blue moving
point). The blue line shows the steady state periodic stroke pattern leading to motion in positive x direction.
Bottom right: Dynamics of the forces in (F1, F3) phase space. Color code same as for arm lengths. Bottom
left: Dynamics of the instantaneous policy of the artificial neural network which proposes the forces on the
beads. Bottom center: Sketch of the corresponding network topology.

Movie S3. Evolution of the artificial neural networks in phase two for spatial sensing showing the time
evolution of the fittest network per generation, quantified by its fitness v̄D, and which leads to the solution
shown in Fig. 3D in the main text. The connections between neurons are color-coded in terms of the strength
of the weights. Color-coding of the neurons corresponds to their bias.

Movie S4. Evolution of the artificial neural networks in phase two for temporal sensing showing the time
evolution of the fittest network per generation, quantified by its fitness v̄D, and which leads to the solution
shown in Fig. 3E in the main text. The connections between neurons are color-coded in terms of the strength
of the weights. Color-coding of the neurons corresponds to their bias.

Movie S5. Dynamics of a temporally sensing microswimmer in a piecewise linear chemical field (corresponding
to the blue/red trajectory shown in Fig. 2B of the main text). Left: The x axis shows the positions xi of the
three beads (gray trajectories and red circles (not to scale)) and of the center of mass xc (black trajectories
and gray diamond). The thickness of the arms (blue) represents the strength of the forces applied to the
outer beads (thin: extraction; thick: compression). Top right: Dynamics of the arm lengths in (L1, L2) phase
space (blue/red moving point). The blue line shows the steady state periodic stroke pattern leading to motion
in positive x direction. The red line shows the symmetry-transformed stroke pattern (motion in negative x
direction). Bottom right: Dynamics of the forces in (F1, F3) phase space. Color code same as for arm lengths.

Movie S6. Dynamics of a temporally sensing microswimmer in a Gaussian chemical field (corresponding to
the blue/red trajectory shown in Fig. 2C of the main text). Left: The x axis shows the positions xi of the
three beads (gray trajectories and red circles (not to scale)) and of the center of mass xc (black trajectories
and gray diamond). The thickness of the arms (blue) represents the strength of the forces applied to the
outer beads (thin: extraction; thick: compression). Top right: Dynamics of the arm lengths in (L1, L2) phase
space (blue/red moving point). The blue line shows the steady state periodic stroke pattern leading to motion
in positive x direction. The red line shows the symmetry-transformed stroke pattern (motion in negative x
direction). Bottom right: Dynamics of the forces in (F1, F3) phase space. Color code same as for arm lengths.

Movie S7. Dynamics of a spatially sensing microswimmer in a Gaussian chemical field (corresponding to the
black trajectory shown in Fig. 2C of the main text). Left: The x axis shows the positions xi of the three
beads (gray trajectories and red circles (not to scale)) and of the center of mass xc (black trajectories and
gray diamond). The thickness of the arms (blue) represents the strength of the forces applied to the outer
beads (thin: extraction; thick: compression). Top right: Dynamics of the arm lengths in (L1, L2) phase space
(blue/red moving point). The blue line shows the steady state periodic stroke pattern leading to motion
in positive x direction. The red line shows the symmetry-transformed stroke pattern (motion in negative x
direction). Bottom right: Dynamics of the forces in (F1, F3) phase space. Color code same as for arm lengths.

Movie S8. Dynamics of a temporally sensing microswimmer subjected to intrinsic noise of the chemical
memory readings using the parameters shown in Fig. 4A (green trajectory) of the main text. Left: The x axis
shows the positions xi of the three beads (gray trajectories and red circles (not to scale)) and of the center
of mass xc (black trajectories and gray diamond). The thickness of the arms (blue) represents the strength
of the forces applied to the outer beads (thin: extraction; thick: compression). Right: Time evolution of the
run time statistics: Blue: Run times in positive x direction; red: run times in negative x direction.
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Fig. S1. Maximum fitness curves obtained for an ensemble of N = 200 ANNs obtained for 10 independent NEAT training runs at phase one.
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Fig. S2. Maximum fitness, number of network connections, and number of hidden neurons for Training Run 1 (see Fig. S1) which leads to the most fittest ANN solution
(O-SAL-2) of phase one training consisting of 8 connections and one hidden neuron (see also Fig. 1D and Fig. 2A in main text, and Movie S1).
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Fig. S3. (A): Scatter Plot of obtained microswimmer fitness values v̄ depending on the number of network connections and hidden neurons. The black dashed line approximately
divides good swimming solutions (periodic motion in (L1, L2) phase space) (above), and non-swimming solutions where transient arm motion stops at a certain position in
(L1, L2) phase space (below). Note, bad swimming solutions also have fitness values below the black dashed line. (B) Sketch of swimming solution in (L1, L2) phase space.
(C) Sketch of non-swimming solution in (L1, L2) phase space. See also figure S7 for discussion on bifurcation between swimming and non-swimming solutions.
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Fig. S4. Different minimal complexity (MC-SAL) and optimum (O-SAL) solutions for the swimmer action layer (SAL) network and dynamics in (L1, L2) and (F1, F3) phase
space. The values for the weights and biases are color-coded in the connections, and neurons, respectively see color bar. Top row: 1st column: MC-SAL solution as presented
in the main text; 2nd column: MC-SAL-2 solution connecting LT with F3 but of smaller fitness compared to MC-SAL presented in main text; 3rd column: MC-SAL-3 solution
using the arm velocity V1 to determine the force F3; 4th column: one-link solution which leads to swimming (yet inefficient) solution due to the exploitation of elastic restoring
forces. Bottom row: Examples of O-SAL solutions all of similar fitness and dynamics in (L1, L2) and (F1, F3) phase space demonstrating the robustness of the optimum
solutions. 1st and 2nd column: O-SAL solutions presented in the main text; 3rd column: O-SAL-3 solution consisting of five connections (same connections and similar weights
as O-SAL-1, but one connection added); 4th column: O-SAL-4 solution consisting of six connections (same connections and similar weights as O-SAL-1, but two connections
added).
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Fig. S5. Comparison of MC-SAL solutions presented in the main text using different activation functions but same topology and weights. Blue: MC-SAL (see Fig. S4) with
standard tanh activation corresponding to a fitness v̄ = 0.95×10−3R/T0. Orange: MC-SAL with its activation replaced by a clip function fclip(x) = max(min(x, 1),−1)
leading to a fitness of v̄ = 0.77× 10−3R/T0.

16 of 34 Benedikt Hartl, Maximilian Hübl, Gerhard Kahl, and Andreas Zöttl



A fixed arm velocity solution
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Fig. S6. 4-state solutions of the three bead swimmer. Left: 4-state dynamics in (L1,L2) state space. Center: Corresponding dynamics of the forces (F1,F3). Right:
Corresponding arm velocities (V1,V2). (A) 4-state swimming solution where the velocity of the arms have been fixed to |V1,2| = 0.138R/T0. (B) 4-state swimming solution
where the forces on the beads have been limited to |F1,3| ≤ F0.
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Fig. S7. Solutions for the arm length trajectories (L1(t), L2(t)) from Eqs. (13) to (16) for different initial conditions (colored curves) for the MC-SAL topology presented in
the main text. The weights have been chosen as for the MC-SAL solution presented in the main text, except for w1 which has been used as a control parameter. By tuning
w1 a bifurcation from a fixed point to a limit cycle, and a second bifurcation to another fixed point occurs. The MC-SAL solution presented in the main text is captured by
w1 = 2.02/R.
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Fig. S8. Permutation control layer (PCL) which represent a building block of the proposed chemotaxis agent, see main text Fig. 3A. The PCL performs a permutation
transformation, XD = g(D)PX + (1− g(D)) X, on an arbitrary input X, depending on a control input D via g(D) = fΘ− (D) = Θ(−D). In the case of a chemotaxis
agent (see main text Fig. 3A) this transformation is applied to both, the SAL input via Eq. (18) and the SAL output via Eq. (19).
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Fig. S9. Top panel: Typical NEAT learning progress for the spatial chemical gradient sensing microswimmer-agent left for training with randomized arm-lengths at the beginning
of each RL episode and right with equal initial arm-lengths L1(0) = L2(0) = L0. The final ANN (central left) is given by Eqs.(23) and (24), see main text Fig. 3D and Movie
S3. The mean fitness value (black), the maximum fitness value (blue) and the standard deviation of all fitness values (gray vertical lines) are presented for a total number of 288
ANNs per NEAT generation for consecutive NEAT generations. The spatial gradient sensing agent was trained using the fitness function related to phase two in the main
text (and specified in the text above). The training was employed on the Vienna Scientific Cluster (VSC-4) (12) and is practically converged after 30 NEAT generations for
both cases (left and right) which corresponds to roughly 30 CPU hours (0.6 hours on a 48 core node for a total number of 288 ANNs per NEAT generation). Central panel:
Final NEAT ANNs of the training procedures with (left) and without (right) randomized initial arm lengths at the beginning of each episode. The colors of the connections
and the output neurons emphasize the numerical value of the respective weights and biases (blue: negative, red: positive) which evaluate toWSG = (−71.147, 0, 71.16)
and bSG = 1.373 (left), andWSG = (−15.092,−13.331, 29.311) and bSG = 1.092 (right). Bottom panel: Center of mass xc(t) dynamics of the spatial CG agents,
equipped with the respective NEAT ANN (as shown in the central left and central right panels), in linear fields of the form c(x) = max(0, a− k|x− x0|) (see Fig. 2B in the
main-text) with three different values of the slope k/(c0R) ∈ {1, 0.1, 0.01} (blue, magenta, black) and with peak positions at x0 = +2R (solid lines) and x0 = −2R
(dashed lines) for a = 100 c0.
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Fig. S10. Non-optimum solution obtained for spatial gradient detection which was trained with a 10-fold increased slope-noise 10 × δk and equal initial arm-lengths
L1(0) = L2(0) = L0. The weight matrix and bias of the NEAT ANN (left panel) evaluate toWSG = (−23.694, 19.184, 2.456) and bSG = 1.658 (see Eqs.(23) and (24)).
The solution shows that a microswimmer is able to learn a policy where it slows down (see trajectory xc and phase space curves) when approaching the peak of a chemical
field (here a piece-wise linear field of the form c(x) = max(0, a− k|x− x0|) with slope k = 1 c0/R centered at x0 = −2 R and an amplitude of a = 100 c0), despite
the fact that training was divided to phase one and phase two using MC-SAL (see main text).
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Fig. S11. (A) Sketch of the chemical memory control (CMC) cell which is used in a temporal chemical gradient block (see main text Fig. 3C) to estimate the gradient of a
chemical field cc(ti) = c(xc(ti), ti) at the center of mass position xc(ti) of a microswimmer over time. The functionality of the CMC cell can be described by Eqs. (29) to
(31) (see also equations in phase two in the main text): a recurrent control neuron (labeled Cy ) is used to control the value of a memory neuron (labeled M ) via a perceptron
activated neuron (gray neuron) following Eqs. (29) and (31); the recurrent gradient estimate Gx(ti) = Gy(ti−1) is directly forwarded as defined via Eq. (30), independent
of the value of Cy . The flow of information between the neurons in the CMC cell is indicated via arrows. Black (red) arrows mark positive (negative) unit weights 1 (-1)
and
⊗

symbols represent simple multiplication neurons (without any bias). (B) Sketch of the bypass mode of the CMC cell induced by Cy(ti−1) < 0: per default, the
value of neuron Cy is forwarded as Cx(ti) = Cy(ti−1) to the NEAT-ANN of the chemical gradient block (see main text Fig. 3C) due to the inactive gray perceptron (the
three multiplier neurons block all incoming signals and are thus colored in red). Simultaneously, the internal chemical memory M(ti) = M(ti−1) is preserved over time.
Active (inactive) connections are colored black (light-gray). (C) Sketch of the chemical gradient mode of the CMC cell induced by Cy(ti−1) > 0: due to the active gray
perceptron, the multiplier neurons (now colored in green) forward their respective input values. Now, the value of the chemical field cc is stored into the chemical memory,
M(ti) = cc(ti)/c0 + δc/c0 and the value of Cx is updated according to Cx(ti) = cc(ti)/c0−M(ti−1) thereby quantifying the chemical gradient between two delayed
measurements. The field-memory reading may be influenced by noise as indicated by the (Gaussian distributed) random variable δc which is represented by the cyan colored
noisy input channel of M . The gray lines indicate signals which cancel each other out to zero.
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Fig. S12. A: Typical NEAT learning progress for the temporal chemical gradient sensing microswimmer-agent in a chemical field of slope k0 = 1 c0/R with randomized
initial arm-lengths at the beginning of each RL episode, giving rise to the NEAT ANN defined by Eqs.(32) to (39) which is used for the temporal chemotaxis analysis in this
contribution (see main text Fig. 3C, Fig. S13A and Movie S4). The mean fitness value (black), the maximum fitness value (blue) and the standard deviation of all fitness values
(gray vertical lines) are presented for a total number of 288 ANNs per NEAT generation for consecutive NEAT generations. The temporal gradient sensing agent is trained using
the fitness function v̄D related to phase two in the main text (and specified in the text above). B: same as panel A but for training with k0 = 0.1 c0/R. C (D): same as panels
A (B) but for equal initial arm lengths L1(0) = L2(0) = L0 at the beginning of each RL episode. As compared to the spatial gradient sensing agent (see Fig. S9) the training
of the temporal gradient sensing agents takes orders of magnitude longer to converge: For the training depicted in panel A after 350 NEAT generations a plateau of the fitness
is reached featuring the ANN depicted in the main text Fig. 3E. For the training depicted in panel B roughly 1000 NEAT generations are necessary to reach comparable results.
For the training depicted in panel C reasonable ANN solutions emerge after roughly 4000 NEAT generations and for the training depicted in panel D almost 15000 generations
are explored by the NEAT genetic algorithm to identify reasonable temporal sensing ANNs. The training runs are all performed with 288 ANNs per NEAT generation. The
training shown in the top left panel are performed over∼ 14 hours on a 48 core node on the Vienna Scientific Cluster (VSC-4) (12) which amounts to 672 CPU hours. The
other training runs are performed over∼ 40 hours each on the same hardware, i.e., for an equivalent of 1920 CPU hours. ANN results obtained from the four training runs are
depicted in Fig. S13 and corresponding applied chemotaxis of the four agents in different chemical environments are shown in Fig. S14.
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Fig. S13. Comparison of different temporal CG NEAT ANN solutions corresponding to the training runs depicted in Fig. S12 (same respective panel arrangement). Linear
(identity) or relu activation functions of the hidden neurons are indicated as I orR with indices⊕ or⊗ labelling whether accumulation by summation or by product is used in
the respective neurons. The activation of the output units Cy and Gy is fixed as to fclip(x), normalizing the output of the ANNs to values of [−1, 1]. Weights and biases are
emphasized via red (positive) and blue (negative) coloring according to the colorbar. A: NEAT evolved ANN, equivalent to the solution shown in main text Fig. 3E and described
via Eqs. (35) to (39), which is mainly used in this contribution for temporal chemotaxis analysis. Numerical details on the weights and biases of the ANN are given by Eqs. (35) to
(39) and the corresponding output signals of each neuron are explicitly labeled in Fig. 3E in the main text. Notably, the red colored I⊗ identity neuron with product aggregation
is removed in the ANN shown in Fig. 3E in the main text to reduce the complexity of the ANN and the corresponding weights and biases are absorbed into bI, bP andWP
defined in Eqs. (36) and (37). B: Temporal sensing NEAT ANN which does not require LT (or VT ) as input for the control neuron Cy but which can detect chemical gradients
solely via recurrent processes (relying on the interface with the CMC cell, see Eqs. (29) to (30)). Here, Cy(t) is only sensitive to its recurrent state Cx(t) = Cy(ti−1)
whenever Cy(ti−1) < 0 or to the measured temporal chemical gradient Cx(ti) = cc(ti)/c0 −M(ti−1) (provided by the CMC cell) for Cy(ti−1) > 0. Gy(t) is, again,
a highly non-linear function of the inputs Gx(t) and Cx(t). The ANN can be used in a temporal chemotaxis agent to efficiently perform chemotaxis (see Fig. S14B) but has
shortcomings in chemical environments with slopes that are different to k ≈ 0.1c0/R (which was used during training, see Fig. S21B). C: Simple ANN solution for temporal
gradient sensing which only requires two hidden neurons. The ANN can cope with a wide range of slopes k of a chemical field when used in a temporal chemotaxis agent (see
Fig. S14C and Fig. S21C). Compared to the ANNs presented in panels A, B and D, the ANN depicted in panel C exhibits a relatively large bias towards the right for small values
of k. D: Slightly more complex but numerically more robust ANN for temporal gradient sensing compared to the panel C ANN. A corresponding temporal CG agent can cope
with a large range of k values compared to k0 = 0.1c0/R used during training but is slightly more biased (to the right) as compared to the ANN shown in panel A, especially
for small values of k (see Fig. S14D and Fig. S21D).
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Fig. S14. Comparison of center of mass dynamics xc(t) of different temporal CG NEAT ANN solutions corresponding to the training runs depicted in Fig. S12 (same
respective panel arrangement). The NEAT ANNs used in the temporal chemotaxis agents (see Fig. 3C) to evaluate the different trajectories in panels A to D are depicted
Fig. S13. Similar to the bottom panels of Fig. S9, the four different temporal chemotaxis agents A to D are each applied to six different piece-wise linear chemical fields
c(x) = max(0, a− k|x− x0|), with slopes k/(c0R) = {1, 0.1, 0.01} (blue, magenta, black), peak centers at either x0 = 2 R (solid lines) or x0 = −2 R (dashed
lines) and a peak amplitude of a = 100 c0. A: The presented chemotaxis agent quickly approaches the peak maxima at x0 = ±2 R for all variants of the chemical field,
then oscillates around the peaks. B: The presented chemotaxis agent quickly approaches the peak maxima at x0 = ±2 R for k = 0.1 c0/R (for which it was trained)
and performs narrow oscillations around the maxima. For all other investigated values of the slopes, k = 1.0 c0/R and k = 0.01 c0/R, the chemotaxis strategy of the
swimmer fails. C: The presented chemotaxis agent quickly approaches the peak maxima at x0 = ±2 R for k = 1 c0/R (for which it was trained) and performs oscillations
around the maxima. For smaller slopes values of k < 1.0 c0/R, the chemotaxis strategy of the swimmer fails (see also Fig. S21). D: The presented chemotaxis agent quickly
approaches the peak maxima of the chemical field at x0 = +2 R for all shown slope scenarios and the peak at x0 = −2 R for k = 1 c0/R and k = 0.1 c0/R, then
oscillates around the peaks. For k = 0.01 c0/R the swimmer does not identify the peak maximum at x0 = −2 R correctly (black dashed line) but oscillates for t > 10TS
around x ≈ 0.5 R, revealing a slight bias to the right for small k values.

Benedikt Hartl, Maximilian Hübl, Gerhard Kahl, and Andreas Zöttl 25 of 34



0.00

0.25

0.50

x c
(t i

) [
R]

k = 1 c0/R k = 10 1 c0/R k = 10 2 c0/R

1.0

0.5

0.0
k = 10 3 c0/R

xc(ti), D=1
xc(ti), D=-1

0.6

0.4

0.2

0.0

Ch
em

ica
l F

ie
ld

 [c
0]

×1 + 100

0.6

0.4

0.2

0.0
×10 1 + 100

0.6

0.4

0.2

0.0
×10 2 + 100

1.5

1.0

0.5

×10 3 + 100

cc(t)
M(ti 1)

1.6

1.8

2.0

2.2

To
ta

l A
rm

-L
en

gt
h 

[L
0]

LT(ti)

1.0

0.5

0.0

0.5

Co
nt

ro
l N

eu
ro

n

Cy(ti 1)
Cx(ti)

0 500 1000 1500
t[T0]

1

0

1

Gr
ad

ie
nt

 E
st

im
at

e

0 500 1000 1500
t[T0]

0 500 1000 1500
t[T0]

0 500 1000 1500
t[T0]

Gy(ti 1)
Gx(ti)

Fig. S15. Analysis of decision-making strategy of the temporal chemotaxis agent introduced in the main text (see main text Fig. 3C,E and in Fig. S13A) in a piece-wise linear
field of the form c(x) = max(0, a − k|x − x0|) (see Fig. 2B in the main-text) with four different values of the slope k = {1, 10−1, 10−2, 10−3} c0/R (column-wise
arranged from left to right) centered at x0 = 0.4 R with an amplitude of a = 100 c0. The panels from top to bottom show for the respective (column-wise) chemical
environments (i) the time evolution of the swimmer’s COM position xc(ti), (ii) the value of the chemical field cc(ti) at the COM position of the microswimmer (note the different
slope-scales in the second row) and the associated chemical memory M(ti−1), (iii) the total arm-length LT (ti) = L1(ti) + L2(ti), (iv) the value of the control neuron
Cy(ti−1) (Cx(ti)) prior (posterior) to the CMC-cell, see Eq. (29), and (v) the gradient estimate Gy(ti−1) (Gx(ti)) prior (posterior) to the CMC-cell, see Eq. (30); the blue
(red) color-coding in the top panels indicates the current intentional rightward (leftward) motion, i.e. D = 1 (D = −1), for the respective chemical environments. Short
measurement intervals are induced periodically after approximately one stroke period TS = 217 T0 of the swimmer whenever the total arm-length LT /L0 & 2.23 as can be
seen in the third row (see main-text Fig. 3E and Eq. (35)); measurement time-instances tβ when β(Cy(ti−1)) = Θ(Cy(ti−1)) = 1 or, equivalently, Cy(ti−1) > 0 (see
Fig. S11C) are indicated by large green circles in all panels, respectively. The chemotaxis agent can predict the chemical gradient in slopes of k = 1 to 10−2 c0/R (left three
columns) but fails for slope values of k = 10−3 c0/R and smaller (right column). During the measurement intervals the agent either decides whether to continue swimming
into a certain direction (e.g. at tβ = 348 to 366 T0 for k = 1 to 10−2 c0/R emphasized by the gray vertical region and illustrated in Fig. S16) or to reverse its direction (e.g.
at tβ = 785 to 786 T0 for for k = 1 to 10−2 c0/R emphasized by the orange vertical region and illustrated in Fig. S17); for completeness, the corresponding data for
k = 10−3 c0/R is also shown in Figs. S16 and S17 in the respective time-frames.
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Fig. S16. Same as Fig. S15 but focused on the time interval tβ ∈ [348, 366] T0 (highlighted by large green circles) where the temporal chemotaxis agents (see main text
Fig. 3C,E and top-left panel of Fig. S13) for k/(c0R) = 1, 10−1 and 10−2 (left three columns) decide to continue with their rightward swimming strategy; the y-axis of the
control neuron (forth row) is presented on a sym-log scale which is linear in the interval Cx(ti), Cy(ti−1) ∈ [−10−6, 10−6] and logarithmic otherwise, respectively for
positive and negative values. Per default, i.e., whenever the control output of the ANN Cy(ti−1) < 0 the respective recurrent input Cx(ti) = Cy(ti−1). Measurements of
the chemical field are induced by the CMC cell whenever the recurrent ANN output Cy(ti−1) > 0 as defined by Eq. (29) which updates Cx(ti) = cc(ti)/c0 −M(ti−1).
The NEAT evolved ANN learned to measure the chemical field only in short intervals whenever LT & 2.23L0 (see large green circles): the request by the ANN to perform
measurements is controlled by Cy(ti) and solely depends on the total arm-length LT as defined by Eq. (35). The temporal chemotaxis agent measures (here for k = 1
to 10−2 c0/R) the chemical field in an interval of a leftward moving COM (see first row). In this time-interval, the temporal agent performs a series of measurements of
the temporal gradient in consecutive time steps ti = ti−1 + T0 (emphasized by large green circles). After a short dynamical onset at the beginning of the measurement
which lasts for 2T0 to 3T0, the agent interprets the corresponding time-delayed gradient input Cx(ti) = cc(ti)/c0 −M(ti−1) < 0 correctly as positive gradient direction
(see plateaus at small negative values of Cx(ti) ≈ 10−3, 10−4 and 10−5 in the first three columns in row four). Hence, as long as for consecutive time steps the value
of cc(ti) − cc(ti−1) < 0 during the steady state time-frame of the measurement interval (corresponding to the plateaus in Cx(ti)), the swimmer maintains its current
swimming direction. For the depicted chemotaxis agent we find empirically that for slopes of k & 10−2 c0/R the chemical gradient can be correctly predicted (left three
columns) but for slopes of k . 10−3 c0/R the temporal gradient sensing strategy fails (right column). This k-dependent change in behavior can be motivated by the coupled
dynamical system of changing arm-lengths which induce measurements, predictions of the chemcial gradient that cause the COM position to update and thereby influence, at
which positions the chemical field is measured and, consequently, which temporal gradient Cx(ti) = cc(ti)/c0 −M(ti) the ANN perceives. If two measurements appear
between two consecutive time steps, Cx(ti) = (cc(ti)− cc(ti−1))/c0 can be very small and even (see column four) change sign. Thus, in the latter case the chemical
gradient may not be predicted correctly and temporal chemotaxis fails.
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Fig. S17. Same as Figs. S15 and S16 but focused on a time interval where the swimmer initially moves rightwards but its COM position is located in a chemical field with
negative slope k = {−1,−10−1,−10−2} c0/R (left three columns), such that it has to switch directions in order to move up the gradient. At ti = 785 and 786 T0,
two measurement of the chemical field are induced and the swimmer correctly reverses its direction only based on these two measurements. The gradient sensing for
k = 10−3 c0/R fails (right column) and the trajectory is shown for the sake of completeness in the same time-frame as the left three columns (see also Figs. S15 and S16).
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Fig. S18. Similar as Fig. S15 but for a fixed slope value of k = 0.1 c0/R (see main text Fig. 4A) and for four different memory reading noise levels ξ =
{0, 10−5, 10−4, 10−3}c0 (column-wise from left to right) during times of measurement Cy(ti−1) > 0 (green circles), inducing updates of the chemical memory
M(ti) = (cc(ti) + δc)/c0 following Eq. (31); δc are Gaussian distributed random numbers with standard deviation ξ. We see that for the left two cases where ξ = 0 and
10−5 c0, the temporal chemotaxis agent moves up the gradient in a ballistic way. For a noise level of ξ = 10−4 c0 (third column) the microswimmer occasionally changes
direction from rightward to the leftward motion (finite red colored xc(ti) intervals) although being immersed in a chemical environment with positive slope k = 0.1 c0/R. The
mean drift velocity is still positive and the swimmer performs a biased run-and-reverse motion towards positive x values. For an even larger noise of ξ = 10−3 c0 (right
column) the chemotaxis agent can not predict the chemical gradient for k = 0.1 c0/R correctly and a stochastic behavior with center of mass oscillations around x(ti) = 0
emerges. The gray vertical area in all panels correspond to a situation where the microswimmer for the low-noise regime (left two columns) can correctly resolve the gradient
during a measurement interval, where for the run-and-reverse regime (third column) a misinterpretation of the temporal chemical field differences leads to a change in direction,
and where for the stochastic regime (right column) the agent returns, by change, to the correct estimated gradient direction; details on the input and output signals of the NEAT
ANN are provided in Fig. S19. We further show in main text Fig. 4D and in the top row of Fig. S21 that a uniform ξ/(kR) ≈ 10−3 ratio exists for the investigated temporal
chemotaxis agent (see Fig. 3C,E), which separates the ballistic regime (ξ/(kR) . 10−4, left two columns) and the stochastic regime (ξ/(kR) & 10−2, right column) and
which allow the chemotaxis agent to perform run-and-reverse (ξ/(kR) ≈ 10−3, third column).
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Fig. S19. Same as Fig. S18 but focused on a time interval of ti ≈ 1000 T0, highlighted in Fig. S18. The temporal chemical gradient Cx(ti) = cc(ti)/c0 −M(ti−1)
whenever a measurement occurs (i.e., Cy(ti−1) > 0) is subjected to Gaussian distributed noise δc of standard deviation ξ via noisy memory readings M(ti) =
(cc(ti) + δc)/c0 following Eq. (31). In the low-noise regime ξ = 0 and 10−5 c0 (left two columns), the chemotaxis agent can perfectly predict the gradients of the chemical
field (with steepness k = 0.1 c0/R). For values of ξ = 10−4 c0 (third column) the noisy memory reading can lead to occasional misinterpretations of the chemical gradient,
since consecutive measurements of the chemical field Cx(ti) = (cc(ti) − cc(ti−1) + δc)/c0 (for Cy(ti−1) > 0) can change in sign (see also Figs. S16 and S17)
which may cause the microswimmer to switch directions. For large noise values of ξ = 10−3 c0 (last column) we find that, owed to the intrinsic dynamical behavior of the
microswimmer, |cc(ti)− cc(ti−1)| . ξ for consecutive measurements of a chemical field with steepnes k = 0.1 c0/R, resulting in predictions of the chemotaxis gradient
that are solely governed by noise and, as a consequence, in a stochastic motion of the microswimmer.

30 of 34 Benedikt Hartl, Maximilian Hübl, Gerhard Kahl, and Andreas Zöttl



0

25

50

x c
/R

= 1.00 × 10 4 c0

k
=

0.
01

c 0
/R

= 1.00 × 10 3 c0 = 1.00 × 10 2 c0 = 1.00 × 10 1 c0

0

25

50

x c
/R

k
=

0.
1c

0/R

0

25

50

x c
/R

k
=

1.
0c

0/R

0 50 100 150 200
t/Ts

0

25

50

x c
/R

k
=

10
.0

c 0
/R

0 50 100 150 200
t/Ts

0 50 100 150 200
t/Ts

0 50 100 150 200
t/Ts

Fig. S20. Trajectories of an ensemble of 100 non-interacting temporal sensing microswimmers moving in a chemical field of slope k, their internal memory reading is influenced
by a noise strength ξ. Gray lines indicate the individual center of mass trajectories of the microswimmers and black lines represent the average center of mass positions as
functions time. Solutions correspond to the microswimmer presented in the main text using temporal sensing of the chemical field.
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Fig. S21. (A)-(D) Run and reverse dynamics corresponding to four different chemotactic gradient estimating ANN solutions presented in the respective panels (A)-(D) in
Fig. S13 where (A) shows the solutions corresponding to Fig. 4D in the main text. Left column: Mean chemotactic drift velocity vc of a temporal sensing microswimmer (see
main text Figs. 3DE) as a function of ξ for different slopes k. Center column: Same as in left column but as a function of k for different ξ. We would like to stress that in
panels (A,C,D) chemotaxis is not only possible to the maximum values shown (k = 5c0R). We have additionally tested the chemotactic behavior for these solutions up to
(k = 100c0R), and we found that they are still able to perform chemotaxis in these very steep gradients. Right column: Decay times to the right (τR) and to the left τL
depending on k at noise level ξ = 0.01c0.

32 of 34 Benedikt Hartl, Maximilian Hübl, Gerhard Kahl, and Andreas Zöttl



0 5 10 15
t/Ts

0.0

0.5

1.0

1.5

2.0

x
c
/R

xc temporal

xc spatial

0.7

1.0

1.3

Le
n
g
th

s

15 16 17 18
t/Ts

1

0

1

Fo
rc

e
s

0.7 1.0 1.3
L1/L0

0.7

1.0

1.3

L 2
/L

0

1 0 1
F1/F0

1

0

1

F 3
/F

0

10 9.94
c(x)/c0

0.0

0.5

1.0

1.5

2.0

x
/R

F
F 1

/F
0
, 
F 3

/
0

F 1
/F

0
,

F 1
/F

0
L 1

/L
0
, 
L 2

/L
0

L 1
/L

0
,

L 1
/L

0

Fig. S22. Same as Fig. 2C of the main text but with a larger width (σ = 19R) of the Gaussian chemical profile which is centered at x0 = 2R, leading to a broader region
where the microswimmer moves around the maximum of the profile. The mean COM position of the swimmer for t & 7.5 TS is slightly biased towards smaller values of x than
the actual peak position of the chemical field at x = 2R.
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