Appendix of the manuscript: BNIP3 promotes HIF-1 α -driven melanoma growth by curbing intracellular iron homeostasis by Vara-Perez M. *et al*.

Appendix Figures S1-3 Appendix Tables S1-5 References

Appendix Figure S1. BNIP3 levels in melanoma inversely correlate with patient's prognosis (related to Figure 1).

- (A) Hazard ratio analysis of all the specimens of the SKCM cohort (n=469) from the TCGA, segregated in *BNIP3* highest and lowest levels using different cut-offs (50% cut-off takes the 50% of the samples harboring the highest *BNIP3* levels and compares them against the other 50% with the lowest *BNIP3* levels, 40% compares the 40% highest with the 40% lowest, and so forth).
- (B) Distribution of *BNIP3* levels within the SKCM cohort (n=469) from the TCGA, sorted from minimum to maximum.
- (C) Hazard ratio analysis of the primary samples of the SKCM cohort (n=103) from the TCGA, segregated in *BNIP3* highest and lowest levels using different cut-offs (alike in Fig. S1A).
- (**D**) Distribution of *BNIP3* levels within the primary samples of the SKCM cohort (n=103) from the TCGA, sorted from minimum to maximum.
- (E) Kaplan Meier representing the survival difference between the SKCM primary samples with the 40% highest *BNIP3* values against the samples with the lowest 40% *BNIP3* levels.
- (F) Hazard ratio analysis of the metastatic samples of the SKCM cohort (n=366) from the TCGA, segregated in *BNIP3* highest and lowest levels using different cut-offs (alike in Fig. S1A).
- (G) Distribution of *BNIP3* levels within the metastatic samples of the SKCM cohort (n=366) from the TCGA, sorted from minimum to maximum.
- (H) Kaplan Meier plot representing the survival difference between the SKCM metastatic samples with the 40% highest *BNIP3* values against the samples with the lowest 40% *BNIP3* levels.

Data information: Hazard ratios were calculated using the Mantel-Haenszel test and corresponding p-values using the log-rank (Mantel-Cox) test. Both Kaplan Meier curves were analyzed using the log-rank (Mantel-Cox) test.

Appendix Figure S2. BNIP3 loss rewires melanoma cell's metabolism (related to Figure 3).

(A-B) OCR per μg of protein of B16-F10 cells assayed in either glucose (A; 25mM glucose, 2mM glutamine; n=4) or galactose (B; 25mM galactose, 2mM glutamine; n=3) medium using the Seahorse technology. Basal respiration (glucose) was analyzed using a RM one-way ANOVA (Geisser-Greenhouse correction) with Holm-Sidak's multiple comparisons test

Data information: All quantitative data are mean ± SEM. # p < 0.05 when compared against shCntl.

Appendix Figure S3. BNIP3 stabilizes normoxic HIF-1α on a post-translational level in murine melanoma cells (related to Figure 4).

- (A-B) Immunoblot detection of BNIP3, luciferase (Luc) and ACTIN (A) or hydroxylated HIF-1α (HIF-1α-OH), total HIF-1α, LDHA and ACTIN (B) protein levels from lysates of B16-F10 cells lentivirally transduced with either Luc (shCntl Luc, shBNIP3 Luc) or a BNIP3-FL (shBNIP3 BNIP3) construct. The HIF-1α-OH /HIF-1α ratio is shown in a bar graph below. Densitometric quantifications relative to ACTIN levels are shown below each corresponding band.
- (C) Immunoblot detection of hydroxylated HIF-1α (HIF-1α-OH), total HIF-1α, LDHA and ACTIN protein levels from lysates of B16-F10 cells collected after 24h of hypoxic (1% O₂) exposure.

- (**D**) *Hif1a* transcript levels from lysates of normoxic, hypoxic or tumor B16-F10 cells [Cntl^{KD} (n=6), BNIP3^{KD} (n=6) and ATG5^{KD} (n=7)].
- (E) Immunoblot detection of hydroxylated HIF-1 α (HIF-1 α -OH), total HIF-1 α , LDHA and ACTIN protein levels from normoxic lysates of B16-F10 cells cultured in the presence or absence of the proteasomal inhibitor MG132 (10nM) for 6h.
- (F) Vegfa transcript levels in lysates from normoxic B16-F10 cells.

Data information: All quantitative data are mean \pm SEM. Densitometric quantifications of all protein levels are shown below the corresponding band *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 when compared against shCntl. Unless otherwise stated, each graph represents n=4 biologically independent experiments analyzed using a one-sample T-test against shCntl.

Patient data Figure 1C - paired primary and metastases											
Patient	Age at diagnosis	Gender	Туре	TILS	Breslow from primary (mm)	Ulceratior	n Mitoses	Regressio	n		
1	87	F	SSMM	non-brisk	1,73	no	1-6	no			
2	74	М	ALMM	non-brisk	3,25	yes	1-6	no			
3	64	F	NMM	non-brisk	1,58	no	1-6	no			
4	66	F	ALMM	non-brisk	4,00	yes	> 6	no			
5	47	М	SSMM	non-brisk	1,44	no	1-6	no			
6	58	М	SSMM	non-brisk	3,68	yes	> 6	no			
7	58	М	SSMM	non-brisk	3,20	yes	> 6	no			
Patient data Figure 1D - TMA											
Sample	Age at time of sampling	Gender	Type 1st metastases	Site primary	Type primary	Breslow primary	Ulceration primary	Mitoses primary	TILS primary		
				BNIP3 s	core = 0						
1	88	F	in transit metastases	foot	ALMM	6,2	NA	NA	NA		
BNIP3 score = 1											
2	55	F	LN metastases	lower leg	SSMM	0,7	+	NA	NA		
3	44	F	lung, spleen adrenal, LN metastases	shoulder	MMnos	NA	NA	NA	NA		
4	47	F	LN metastases	trunk	SSMM	1	NA	NA	NA		
5	89	F	LN metastases	conjuncti va	MMnos	NA	NA	NA	NA		
6	38	F	LN metastases	arm	SSMM	1	NA	NA	NA		
7	88	F	in transit metastases	foot	ALMM	1,8	+	NA	NA		
8	30	F	LN metastases	unknown	NMM	20	NA	NA	NA		
9	69	F	local cutaneous metastases	unknown	SSMM	1,92	NA	NA	NA		
10	52	F	LN metastases	foot	SSMM	3,68	+	>6	0		
11	60	F	LN metastases	arm	NMM	2,8	+	>1 <6	non- brisk		

Appendix Table S1. Patient information (related to Figure 1).

12	50	F	LN metastases	knee	SSMM	1,6	NA	NA	NA
13	76	F	LN metastases	lower leg	SSMM	1,25	NA	NA	NA
				BNIP3 s	core = 2				
14	75	F	LN metastases	lower leg	SSMM	NA	NA	NA	NA
15	68	F	LN metastases	lower leg	NMM	1,9	NA	NA	NA
16	61	F	local recurrence	foot	MMnos	1	NA	NA	NA
17	70	F	abdominal metastases	trunk	SSMM	1,4	NA	NA	NA
18	61	F	local recurrence	foot	MMnos	1	NA	NA	NA
19	36	F	LN metastases	lower leg	NMM	1,1	NA	NA	NA
20	43	F	LN metastases	shoulder	SSMM	0,39	NA	NA	NA
21	30	F	LN metastases	thigh	MMnos	12	NA	NA	NA
22	27	F	LN metastases	leg	NMM	2,01	NA	NA	NA
23	62	F	in transit, LN, lung metastases	nail toe	ALMM	NA	NA	NA	NA
24	34	F	LN metastases	back	SSMM	1,1	NA	NA	NA
25	68	F	LN metastases	lower leg	SSMM	18	+	NA	microsa tellite
26	43	F	LN metastases	back	SSMM	3,06	NA	NA	NA
27	34	F	local cutaneous metastases	lower leg	NMM	2,1	NA	NA	NA
28	51	F	LN metastases	unknown	LN metastas es	NA	NA	NA	NA
29	51	F	LN metastases	unknown	LN metastas es	NA	NA	NA	NA
30	38	F	LN metastases	arm	SSMM	1	NA	NA	NA
31	63	F	NA	upper leg	SSMM	1,6	NA	NA	NA

32	77	F	local cutaneous metastases	lower leg	SSMM	1,9	NA	NA	NA
33	61	F	intestinal metastases	lower leg	MMnos	NA	NA	NA	NA
34	43	F	LN metastases	shoulder	SSMM	1,4	NA	NA	NA
35	51	F	LN metastases	arm	SSMM	1,125	-	++	non- brisk
36	36	F	LN metastases	lower leg	NMM	5	NA	NA	NA
37	71	F	local cutaneous recurrence	lower leg	MMnos	5,5	NA	NA	NA
38	48	F	LN metastases	unknown	MMnos	NA	NA	NA	NA
39	52	F	LN metastases	trunk	SSMM	0,44	NA	NA	NA
40	52	F	LN metastases	lower leg	SSMM	1,06	NA	NA	NA
41	55	F	LN metastases	lower leg	MMnos	1,6	NA	NA	NA
42	55	F	LN metastases	lower leg	MMnos	1,6	NA	NA	NA
43	58	F	LN metastases	vulva	SSMM	4,5	NA	NA	NA
44	70	F	LN metastases	unknown	MMnos	4,1	NA	NA	NA
45	39	F	LN metastases	lower leg	NMM	12	+	>6	0
46	36	F	LN metastases	lower leg	SSMM	2,08	NA	NA	NA
47	69	F	in transit metastases	lower leg	SSMM	1,9	-	unknow n	unknow n
48	40	F	breast metastases	arm	SSMM	0,69	-	unknow n	brisk
49	39	F	brain metastases	back	SSMM	1,28	-	>1 <6	brisk
50	80	F	LN metastases	arm	MMnos	2,75	+	>6	brisk
51	69	F	LN metastases	arm	SSMM	10,9	-	>6	non- brisk
52	55	F	local recurrence	ear	NMM	2,4	NA	NA	NA

53	51	F	LN metastases	lower leg	ALMM	1,92	NA	NA	NA
54	65	F	LN metastases	upper leg	NMM	3,1	NA	NA	NA
55	49	F	LN metastases	back	NMM	5,6	NA	NA	NA
56	75	F	LN metastases	trunk	NMM	3,3	NA	NA	NA
57	39	F	LN metastases	upper arm	SSMM	1,25	NA	NA	NA
58	59	F	LN metastases	trunk	SSMM	1,39	NA	NA	NA
59	86	F	in transit metastases	lower leg	MMnos	8	NA	NA	NA
60	71	F	LN metastases	lower leg	SSMM	0,93	-	0	NA
61	54	F	in transit metastases	foot	SSMM	3,5	+	NA	NA
62	61	F	in transit metastases	lower leg	SSMM	2,6	NA	NA	NA
63	81	F	in transit metastases	teen	SSMM	1,06	-	>1 <6	0
64	76	F	LN metastases	face	SSMM	0,55	NA	NA	NA
65	88	F	salivary gland metastases	face	MMnos	NA	NA	NA	NA
66	61	F	LN metastases	lower leg	SSMM	2,24	NA	NA	NA
				BNIP3 s	core = 3				
67	71	F	local skin metastases	lower leg	SSMM	NA	NA	NA	NA
68	34	F	LN metastases	back	SSMM	1,1	NA	NA	NA
69	71	F	local skin metastases	lower leg	SSMM	NA	NA	NA	NA
70	58	F	in transit metastases	foot	ALMM	NA	NA	NA	NA
71	53	F	LN metastases	unknown	SSMM	1	NA	NA	NA
72	46	F	in transit metastases	lower leg	MMnos	2,75	NA	NA	NA
73	79	F	LN metastases	arm	NMM	2,4	NA	NA	NA
74	77	F	LN metastases	face	MMnos	1,36	NA	NA	NA

75	76	F	bone metastases	lower leg	NA	4	NA	NA	NA
76	47	F	LN metastases	upper leg	MMnos	5,6	NA	NA	NA
77	36	F	subcutaneou s, LN metastases	lower leg	SSMM	1,04	NA	NA	NA
78	72	F	local cutaneous metastases	lower leg	SSMM	2,4	NA	NA	NA
79	84	F	nasal	nasal mucosa	MMnos	NA	NA	NA	NA
80	90	F	LN metastases	toe	ALMM	NA	NA	NA	NA
81	56	F	nodal metastases	thigh	SSMM	3,26	unknown	unknow n	unknow n
82	61	F	NA	axilla	LN metastas es	NA	NA	NA	NA
83	39	F	LN metastases	lower leg	SSMM	1,1	NA	NA	NA
84	49	F	LN metastases	arm	SSMM	1,125	-	++	non- brisk
85	71	F	cutaneous metastases	lower leg	NMM	3	+	NA	NA
86	60	F	LN metastases	nail toe	ALMM	3,8	NA	NA	NA
87	36	F	local cutaneous metastases	lower leg	NMM	2,1	NA	NA	NA
88	72	F	cutaneous metastases	lower leg	NMM	3	+	NA	NA
89	40	F	lung, bone, LN metastases	lower leg	LN metastas es	NA	NA	NA	NA
90	79	F	local cutaneous metastases	unknown	SSMM	3,46	+	>6	absent
91	22	F	in transit metastases, LN metastases	back	NMM	11	NA	NA	NA
92	42	F	LN metastases	rectum	MMnos	NA	NA	NA	NA

93	60	F	local cutaneous metastases	lower leg	MMnos	NA	NA	NA	NA
94	80	F	local cutaneous metastases	unknown	SSMM	3,46	+	>6	absent
95	88	F	local skin metastases	lower leg	NMM	unknown	unknown	unknow n	unknow n
96	80	F	local cutaneous metastases	unknown	SSMM	3,46	+	>6	absent
97	45	F	abdominal metastases	upper arm	SSMM	1,2	NA	NA	NA
98	76	F	local skin metastases	lower leg	SSMM	NA	NA	NA	NA
99	66	F	in transit metastases	lower leg	SSMM	1,9	-	unknow n	unknow n
100	62	F	LN metastases	lower leg	SSMM	0,8	NA	NA	NA
101	93	F	in transit metastases	unknown	NMM	5	NA	NA	NA
102	50	F	in transit metastases	lower leg	MMnos	2,75	NA	NA	NA
103	88	F	local skin metastases	lower leg	NMM	unknown	unknown	unknow n	unknow n
104	41	F	lung metastases	vulva	SSMM	5,1	+	NA	NA
105	62	F	local cutaneous metastases	lower leg	MMnos	NA	NA	NA	NA
106	72	F	local cutaneous recurrence	lower leg	MM nos	5,5	NA	NA	NA
107	81	F	local cutaneous metastases	unknown	SSMM	3,46	+	>6	absent
108	42	F	lung metastases	vulva	SSMM	5,1	+	NA	NA
109	43	F	LN metastases	unknown	MMnos	7,2	NA	NA	NA
110	89	F	local skin metastases	lower leg	NMM	unknown	unknown	unknow n	unknow n

111	38	F	local cutaneous metastases	lower leg	NMM	2,1	NA	NA	NA
112	75	F	cutaneous metastases	lower leg	NMM	3	+	NA	NA
113	72	F	in transit metastases	lower leg	MMnos	NA	NA	NA	NA
114	75	F	cutaneous metastases	lower leg	NMM	3	+	NA	NA
115	33	F	LN metastases	hand	MMnos	2,75	-	>6	non- brisk
116	69	F	cardiac metastases	hand	SSMM	5,12	+	>6	0
117	25	F	lung metastases	unknown	MMnos	NA	NA	NA	NA
118	37	F	LN metastases	neck	SSMM	2,81	unknown	unknow n	unknow n
119	71	F	in transit metastases	unknown	SSMM	1,3	NA	NA	NA
120	30	F	LN metastases	lower leg	MMnos	NA	NA	NA	NA
121	69	F	LN metastases	lower leg	SSMM	0,93	-	0	NA
122	42	F	LN metastases	upper arm	NMM	1,99	NA	NA	NA
123	77	F	cutaneous metastases	lower leg	NMM	3	+	NA	NA
124	77	F	cutaneous metastases	lower leg	NMM	3	+	NA	NA
125	41	F	local cutaneous metastases	lower leg	NMM	2,1	NA	NA	NA
126	41	F	local cutaneous metastases	lower leg	NMM	2,1	NA	NA	NA
127	68	F	local recurrence	neck	MMnos	NA	NA	NA	NA
128	34	F	LN metastases	lower leg	SSMM	0,75	NA	NA	NA
129	60	F	LN metastases	face	MMnos	NA	NA	NA	NA
130	51	F	lung metastases	brain metastas es	NA	NA	NA	NA	NA

131	68	F	LN metastases, satellite	lower leg	MMnos	3	NA	NA	NA
132	81	F	vulvar recurrence	vulva	MMnos	10	NA	NA	NA
133	73	F	LN metastases	upper leg	SSMM	1,5	NA	NA	NA
134	52	F	cutaneous metastases	lower leg	MMnos	3,84	NA	NA	NA
135	49	F	local recurrence	lower leg	SSMM	4,4	NA	NA	NA
136	67	F	in transit metastases	foot	ALMM	NA	NA	NA	NA
137	59	F	LN metastases	trunk	SSMM	1,39	NA	NA	NA
138	79	F	LN metastases	brain metastas es	no primary	NA	NA	NA	NA
139	63	F	nodal, in transit metastases	lower leg	NMM	3,5	unknown	unknow n	unknow n
140	49	F	local recurrence	lower leg	SSMM	4,4	NA	NA	NA
141	79	F	LN metastases	brain metastas es	no primary	NA	NA	NA	NA
142	79	F	local cutaneous metastases	lower leg	MMnos	NA	NA	NA	NA
143	81	F	vulvar recurrence	vulva	MMnos	10	NA	NA	NA
144	56	F	local cutaneous recurrence	lower leg	SSMM	1,9	NA	NA	NA
145	56	F	LN metastases	sole of foot	ALMM	6,8	+	NA	microsa tellite
146	92	F	local cutaneous metastases	lower leg	NMM	3,2	NA	NA	NA
147	92	F	local cutaneous metastases	lower leg	NMM	3,2	NA	NA	NA
148	42	F	LN metastases	back	SSMM	1,2	-	NA	regressi ve

149	57	F	in transit, LN metastases	lower leg	SSMM	1	NA	NA	NA
150	57	F	local recurrence	lower leg	NMM	5,7	NA	NA	microsa tellite
151	80	F	local cutaneous metastases	lower leg	MMnos	NA	NA	NA	NA
152	64	F	local recurrence	lower leg	SSMM	1,73	NA	NA	NA
153	51	F	abdominal metastases	upper arm	SSMM	1,2	NA	NA	NA
154	78	F	local cutaneous metastases	lower leg	SSMM	NA	+	NA	NA
155	78	F	local cutaneous metastases	lower leg	SSMM	NA	+	NA	NA
156	64	F	local recurrence	arm	cutaneou s metastas es (no primary)	NA	NA	NA	NA
157	69	F	in transit metastases	foot	ALMM	NA	NA	NA	NA
158	63	F	lung, liver, bone, adrenal metastases	shoulder	SSMM	4,1	+	NA	NA

Legend: F (female), ALMM (acral lentiginous malignant melanoma), LN (lymph node), SSMM (superficial spreading malignant melanoma), NMM (nodular melanoma), MMnos (malignant melanoma not otherwise specified), NA (no data available)

Appendix Table S2. Western blot quantifications from Figure 5 and Figure 6

			Figure 5B	(n=3)		
	shCntl IOX2 -	shCntl IOX2 +	shBNIP3 IOX2 -	shBNIP3 IOX2+	shATG5 IOX2-	shATG5 IOX2+
	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM
HIF-1a- OH/ACTIN	1.00 ± 0.00	0.06 ± 0.03***	0.44 ± 0.10*	0.21 ± 0.12*	0.51 ± 0.06*	0.31 ± 0.14*
HIF-1a/ACTIN	1.00 ± 0.00	3.89 ± 2.20	0.28 ± 0.03**	3.32 ± 0.86	0.95 ± 0.09	5.40 ± 1.63
LDHA/ACTIN	1.00 ± 0.00	1.49 ± 0.34	0.28 ± 0.02***	1.06 ± 0.27	0.87 ± 0.06	1.78 ± 0.21
HIF-1a- OH/HIF-1a	1.00 ± 0.00	0.03 ± 0.01***	1.56 ± 0.28	0.06 ± 0.03***	0.55 ± 0.07*	0.08 ± 0.05**

		Figure 5D (n=3)									
	shCntl DFO -	shCntl DFO +	shBNIP3 DFO -	shBNIP3 DFO+	shATG5 DFO-	shATG5 DFO+					
	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM					
HIF-1a- OH/ACTIN	1.00 ± 0.00	0.33 ± 0.18 (p=0.06)	0.91 ± 0.27	0.27 ± 0.09*	1.03 ± 0.54	0.39 ± 0.24					
HIF-1a/ACTIN	1.00 ± 0.00	2.82 ± 0.69	0.60 ± 0.07	3.10 ± 0.44*	1.18 ± 0.25	3.68 ± 0.88					
LDHA/ACTIN	1.00 ± 0.00	1.57 ± 0.18	0.34 ± 0.03**	$0.81 \pm 0.02^*$	0.86 ± 0.14	1.49 ± 0.40					
HIF-1a- OH/HIF-1a	1.00 ± 0.00	0.10 ± 0.03**	1.48 ± 0.32	0.08 ± 0.02***	0.76 ± 0.25	0.09 ± 0.04**					

			Figure 5E	(n=3)		
	shCntl siScr	shCntl siPHD2	shBNIP3 siScr	shBNIP3 siPHD2	shATG5 siScr	shATG5 siPHD2
	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM
HIF-1a- OH/ACTIN	1.00 ± 0.00	0.81 ± 0.06	0.89 ± 0.26	0.99 ± 0.35	1.03 ± 0.07	0.74 ± 0.20
HIF-1a/ACTIN	1.00 ± 0.00	2.58 ± 0.31*	0.73 ± 0.12	2.39 ± 0.86	1.12 ± 0.25	2.21 ± 0.38
LDHA/ACTIN	1.00 ± 0.00	2.03 ± 0.48	0.28 ± 0.10*	0.85 ± 0.20	1.12 ± 0.11	2.32 ± 0.42
PHD2/ACTIN	1.00 ± 0.00	0.14 ± 0.02	1.63 ± 0.31	0.28 ± 0.02**	1.11 ± 0.17	0.17 ± 0.04**
HIF-1a- OH/HIF-1a	1.00 ± 0.00	0.32 ± 0.04**	1.20 ± 0.19	0.42 ± 0.03**	1.08 ± 0.37	0.36 ± 0.13*

	Figure 6C (n=3)					
	shCntl BafA -	shCntl Baf∆ +	shBNID3 BafA -	shBNID3 BafA+	shATG5	shATG5 BafA+
	Shehti balA					
	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM
	1 00 ± 0 00	11 // 1 12*	1 11 + 0 10*	21.98 ± 5.43	1.16 ± 0.04	11 00 ± 1 17*
NCOA4/ACTIN	1.00 ± 0.00	$11.44 \pm 1.13^{\circ}$		(p=0.06)	(p=0.07)	11.00 ± 1.17
FTL/ACTIN	1.00 ± 0.00	0.24 ± 0.07**	1.16 ± 0.50	0.85 ± 0.47	0.84 ± 0.27	0.32 ± 0.15*

	Figure 6F (n=4)					
	shCntl siScr	hCntl siScr shCntl siNCOA4 shBNIP3 siScr siNCOA4 shBNIP3		shBNIP3 siNCOA4	shATG5 siScr	shATG5 siNCOA4
	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM
HIF-1a- OH/ACTIN	1.00 ± 0.00	0.85 ± 0.18	0.53 ± 0.06**	0.55 ± 0.10*	1.12 ± 0.27	0.60 ± 0.15
HIF-1a/ACTIN	1.00 ± 0.00	1.13 ± 0.15	0.52 ± 0.10*	0.74 ± 0.10	1.25 ± 0.22	0.74 ± 0.08*
LDHA/ACTIN	1.00 ± 0.00	1.19 ± 0.06*	0.22 ± 0.02****	0.32 ± 0.03***	1.08 ± 0.11	1.15 ± 0.09
NCOA4/ACTIN	1.00 ± 0.00	0.22 ± 0.05***	2.22 ± 0.36*	0.36 ± 0.14*	1.13 ± 0.23	0.15 ± 0.10**
HIF-1a- OH/HIF-1a	1.00 ± 0.00	0.85 ± 0.18	1.29 ± 0.36	0.84 ± 0.16	0.88 ± 0.11	0.73 ± 0.14

All data was analyzed using a one-sample T test against shCntl untreated (5B, 5D, 6C) or shCntl siScr (5E, 6F) except shBNIP3 BafA- and shBNIP3 BafA+ in 6C that were analyzed using a Wilcoxon rank test against shCntl. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.001.

In 6C, FTL shBNIP3 conditions were analyzed using a Wilcoxon test against shCntl Bafwhereas the rest were analyzed using a one sample T test against shCntl Baf-.

Appendix Table S3. CE-ICP-MS values related to Figure 6B

Condition	Biological Replicate	Fe³+ (µg/L)	Fe ²⁺ (µg/L)	Fe ²⁺ /Fe ³⁺ ratio
shCntl	E1	288.44	86.51	0.30
shCntl	E2	212.06	85.95	0.41
shCntl	E3	347.54	131.03	0.38
shBNIP3	E1	22.27	96.30	4.32
shBNIP3	E2	41.47	118.33	2.85
shBNIP3	E3	31.52	82.97	2.63
shATG5	E1	68.82	47.29	0.69
shATG5	E2	60.93	16.98	0.28
shATG5	E3	55.17	18.43	0.33

Appendix Table S4. CE-ICP-MS values related to Figure 6E

Condition	Biological Replicate	Fe ³⁺ (µg/L)	Fe ²⁺ (µg/L)	Fe ²⁺ /Fe ³⁺ ratio
shCntl siScr	E1	25.60	16.34	0.64
shCntl siScr	E2	42.19	13.49	0.32
shCntl siScr	E3	53.64	19.44	0.36
shCntl siScr	E4	18.96	10.98	0.58
shBNIP3 si Scr	E1	11.55	38.48	3.33
shBNIP3 si Scr	E2	12.99	31.85	2.45
shBNIP3 si Scr	E3	56.02	62.48	1.12
shBNIP3 si Scr	E4	15.50	36.41	2.35
shATG53 si Scr	E1	10.66	3.21	0.30
shATG53 si Scr	E2	13.32	8.54	0.64
shATG53 si Scr	E3	37.72	21.42	0.57
shATG53 si Scr	E4	28.31	15.16	0.54
shCntl siNCOA4	E1	33.29	13.70	0.41
shCntl siNCOA4	E2	24.95	10.34	0.41
shCntl siNCOA4	E3	43.07	26.58	0.62
shCntl siNCOA4	E4	29.39	24.29	0.83
shBNIP3 siNCOA4	E1	38.36	28.77	0.75
shBNIP3 siNCOA4	E2	39.74	11.79	0.30
shBNIP3 siNCOA4	E3	38.44	10.29	0.27
shBNIP3 siNCOA4	E4	42.00	17.97	0.43
shATG53 siNCOA4	E1	8.30	2.51	0.30
shATG53 siNCOA4	E2	51.98	44.84	0.86
shATG53 siNCOA4	E3	50.97	32.46	0.64
shATG53 siNCOA4	E4	15.71	12.01	0.76

Gene	Primer Sequence		Source
		MURINE	
llort	FW	TCCTCCTCAGACCGCTTTT	Inhouse
Hprt	RV	CCTGGTTCATCATCGCTAATC	Inhouse
Ppib	FW	GGAGATGGCACAGGAGGAA	Inhouse
	RV	GCCCGTAGTGCTTCAGCTT	Inhouse
Data2	FW	CCTGTCGCAGTTGGGTTC	Inhouse
ВпірЗ	RV	TTGCCATTGCTGAAGTGC	Inhouse
11:54	FW	GCACTAGACAAAGTTCACCTGAGA	Inhouse
HIJIA	RV	CGCTATCCACATCAAAGCAA	Inhouse
Cluit1	FW	GACCCTGCACCTCATTGG	Inhouse
GIUTI	RV	GATGCTCAGATAGGACATCCAAG	Inhouse
	FW	AAGAGAACAAGGGCGAGGAG	Inhouse
HK2	RV	GGCAAAATGGGGATGTTTC	Inhouse
Direc 1	FW	TGGACATGGTGTTTGCATCT	Inhouse
ΡκΜΙ	RV	CCTTGGCTGTTTCTCCAGAC	Inhouse
Diver 2	FW	GTGACCTGGGCATTGAGATT	Inhouse
РКМ2	RV	CGGAGTTCCTCGAATAGCTG	Inhouse
Dalla1	FW	GTGTTTGCTGAAGCTCCTAAAGG	Inhouse
Ρακι	RV	TGTTCAAAACCACGCCCAAT	Inhouse
Mct1	FW	TTGCCCCTTTGTCTACAACC	Inhouse
	RV	CCTCCGCTTTCTGTTCTTTG	Inhouse
Idha	FW	ATCTTAATGAAGGACTTGGCGGAT	Inhouse
Lana	RV	AGCTTGGAGTTCGCAGTTACA	Inhouse
Idhh	FW	CATTGCGTCCGTTGCAGATG	Inhouse
Land	RV	GGAGGAACAAGCTCCCGTG	Inhouse
Mat 4	FW	GACAGAGGCAGATACAGCGG	Inhouse
11/1/14	RV	GAGGGCTGCTTTCACCAAGA	Inhouse
Voafa	FW	TTAAACGAACGTACTTGCAGATG	Inhouse
vegju	RV	AGAGGTCTGGTTCCCGAAA	Inhouse
$\Gamma_{\alpha}(n) = (D \cup D \cup D)$	FW	GGTCCGTTGAGTGTAGAGCTG	Inhouse
	RV	CAAGAGGCCATGACTCACCT	Inhouse
Ealp1 (DUD2)	FW	CTGTGGAACAGCCCTTTTTG	Inhouse
Egini (PhDZ)	RV	CGAGTCTCTCTGCGAATCCT	Inhouse
	FW	TGTCTGGTACTTCGATGCTGA	Inhouse
	RV	AGCAAGAGCAGATTCAGTTTTTC	Inhouse
Nessa	FW	TCCCAGTGTGATTTGGCCATGTGTTTAGT	Inhouse
INCOA4	RV	TGCACTGCAGGGTGCATAACATGGTAAA	Inhouse

Appendix Table S5. Sequences of the qPCR primers

Gene	Primer orientation	Sequence	Source
		MURINE	
Map1lc3b (LC3B)	FW	AGATGTTACCATACGCCCTTCT	Inhouse
	RV	TCAGAACCACCCTTACAGAGAC	Inhouse
<i>Sqstm1</i> (p62)	FW	CTTCTGGGCAAGGAGGAGG	Inhouse
	RV	CAACCAAGTCCCCATCCTCA	Inhouse

Gene	Primer Sequence orientation		Source
		HUMAN	
HPRT	FW	GACCAGTCAACAGGGGACAT	Inhouse
	RV	GTGTCAATTATATCTTCCACAATCAAG	Inhouse
	FW	CCAACGCAGGCAAAGACACCAA	(Capomaccio et
РРІБ	RV	GCTCTCCACCTTCCGCACCA	<i>al,</i> 2011)
	FW	CTGGACGGAGTAGCTCCAAG	Inhouse
DINIPS	RV	CCGACTTGACCAATCCCATA	Inhouse
	FW	TTTTTCAAGCAGTAGGAATTGGA	Inhouse
	RV	GTGATGTAGTAGCTGCATGATCG	Inhouse
	FW	ATGATGCGGGAGAAGAAGGT	Inhouse
SLCZAI (GLUTI)	RV	TCGAAGATGCTCGTGGAGTA	Inhouse
	FW	AAGGCTTCAAGGCATCTG	$(\lim_{n \to \infty} at a / 2017)$
ΠΚ2	RV	CCACAGGTCATCATAGTTCC	— (JIII <i>et al</i> , 2017)
DKA 42	FW	GTGCGAGCCTCAAGTCACTCCACA	- (Chu at al 2015)
PRIVIZ	RV	TATAAGAAGCCTCCACGCTGCCCA	(Cilu et ul, 2015)
20///	FW	CTGTGATACGGATCAGAAACCG	(Velpula <i>et al,</i>
PDKI	RV	TCCACCAAACAATAAAGAGTGCT	2013)
עשט	FW	AGCCCGATTCCGTTACCT	(Daniele <i>et al,</i>
LUNA	RV	CACCAGCAACATTCATTCCA	2015)
LDHB	FW	CTAGCTAGCCTAGTGAGCTCTAGGCTGTAG	- (luc at al 2012)
	RV	ACGCGTCGACGCACACTACAATAGTTAATTTTA	(Luo et ul, 2013)
<i>SLC16A3</i> (MCT4)	FW	GGGACTTCTACCCGGTTTGG	Inhouse
	RV	CATGTGCCTCTGGACCATGT	Inhouse
	FW	TTAACCGAACGTACTTGCAGATG	Inhouse
VEGFA	RV	GAGAGATCTGGTTCCCGAAA	Inhouse
	FW	AGGCGATAAGATCACCTGGAT	Inhouse
EGLN1 (PHD2)	RV	TTCGTCCGGCCATTGATTTTG	Inhouse

Appendix references

- Capomaccio S, Cappelli K, Spinsanti G, Mencarelli M, Muscettola M, Felicetti M, Verini Supplizi A & Bonifazi M (2011) Athletic humans and horses: comparative analysis of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) expression in peripheral blood mononuclear cells in trained and untrained subjects at rest. *BMC Physiol.* 11: 3
- Chu B, Wang J, Wang Y & Yang G (2015) Knockdown of PKM2 induces apoptosis and autophagy in human A549 alveolar adenocarcinoma cells. *Mol. Med. Rep.* **12:** 4358–4363
- Daniele S, Giacomelli C, Zappelli E, Granchi C, Trincavelli ML, Minutolo F & Martini C (2015) Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death. *Sci. Rep.* **5:** 15556
- Jin F, Wang Y, Zhu Y, Li S, Liu Y, Chen C, Wang X, Zen K & Li L (2017) The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma. *Sci. Rep.* **7**: 3089
- Luo D, Wilson JM, Harvel N, Liu J, Pei L, Huang S, Hawthorn L & Shi H (2013) A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells. *J. Transl. Med.* **11:** 57
- Velpula KK, Bhasin A, Asuthkar S & Tsung AJ (2013) Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect. *Cancer Res.* **73**: 7277–7289